A prospective observational study of all-cause mortality in relation to serum 25-OH vitamin D3 and parathyroid hormone levels in patients with type 2 diabetes

Pär Jennersjö, Hans Guldbrand, Stefan Björne, Toste Länne, Mats Fredrikson, Torbjörn Lindström, Magnus Wijkman, Carl Johan Östgren, Fredrik H Nystrom, Pär Jennersjö, Hans Guldbrand, Stefan Björne, Toste Länne, Mats Fredrikson, Torbjörn Lindström, Magnus Wijkman, Carl Johan Östgren, Fredrik H Nystrom

Abstract

Background: Low levels of vitamin D have been related to increased mortality and morbidity in several non-diabetic studies. We aimed to prospectively study relationships between serum 25-OH vitamin D3 (vitamin D) and of serum parathyroid hormone (PTH) to total mortality in type 2 diabetes. We also aimed to compare the levels of these potential risk-factors in patients with and without diabetes.

Methods: The main study design was prospective and observational. We used baseline data from 472 men and 245 women who participated in the "Cardiovascular Risk factors in Patients with Diabetes-a Prospective study in Primary care" study. Patients were 55-66 years old at recruitment, and an age-matched non-diabetic sample of 129 individuals constituted controls for the baseline data. Carotid-femoral pulse-wave velocity (PWV) was measured with applanation-tonometry and carotid intima-media thickness (IMT) with ultrasound. Patients with diabetes were followed for all-cause mortality using the national Swedish Cause of Death Registry.

Results: Levels of vitamin D were lower in patients with diabetes than in controls, also after correction for age and obesity, while PTH levels did not differ. Nine women and 24 men died during 6 years of median follow up of the final cohort (n = 698). Vitamin D levels were negatively related to all-cause mortality in men independently of age, PTH, HbA1c, waist circumference, 24-h systolic ambulatory-blood pressure (ABP) and serum-apoB (p = 0.049). This finding was also statistically significant when PWV and IMT were added to the analyses (p = 0.028) and was not affected statistically when medications were also included in the regression-analysis (p = 0.01). In the women with type 2 diabetes, levels of PTH were positively related with all-cause mortality in the corresponding calculations (p = 0.016 without PWV and IMT, p = 0.006 with PWV and IMT, p = 0.045 when also adding medications to the analysis), while levels of vitamin D was without statistical significance (p >0.9).

Conclusions: Serum vitamin D in men and serum PTH in women give prognostic information in terms of total-mortality that are independent of regular risk factors in addition to levels of ABP, IMT and PWV.

Trial registration: ClinicalTrials.gov: NCT01049737.

Keywords: Arteriosclerosis; Calcium; Mortality; Parathyroid hormone; Type 2 diabetes; Vitamin D.

Figures

Fig. 1
Fig. 1
Cox regression analysis of total mortality in male patients with type 2 diabetes in relation to vitamin D tertiles. Data are shown for upper (dashed line) and lower tertiles (continuous line) of levels of vitamin D adjusted for parathyroid hormone levels, HbA1c, waist circumference, age, 24-h systolic ambulatory blood pressure, serum-apoB, carotid-femoral PWV and carotid IMT
Fig. 2
Fig. 2
Cox regression analysis of total mortality in women with type 2 diabetes in relation to levels of parathyroid hormone levels. The dashed line represents upper tertile and the continuous line the risk in patients with levels in the lower tertile of parathyroid hormone levels after adjustments for levels of vitamin D, HbA1c, waist circumference, age, 24-h systolic ambulatory blood pressure, serum-apoB, carotid-femoral PWV and carotid IMT

References

    1. Pourshahidi LK. Vitamin D and obesity: current perspectives and future directions. Proc Nutr Soc. 2015;74:115–24. doi: 10.1017/S0029665114001578.
    1. Forouhi NG, Luan J, Cooper A, Boucher BJ, Wareham NJ. Baseline serum 25-hydroxy vitamin d is predictive of future glycemic status and insulin resistance: the Medical Research Council Ely Prospective Study 1990-2000. Diabetes. 2008;57:2619–25. doi: 10.2337/db08-0593.
    1. Knekt P, Laaksonen M, Mattila C, Harkanen T, Marniemi J, Heliovaara M, et al. Serum vitamin D and subsequent occurrence of type 2 diabetes. Epidemiology. 2008;19:666–71. doi: 10.1097/EDE.0b013e318176b8ad.
    1. Afzal S, Bojesen SE, Nordestgaard BG. Low 25-hydroxyvitamin D and risk of type 2 diabetes: a prospective cohort study and metaanalysis. Clin Chem. 2013;59:381–91. doi: 10.1373/clinchem.2012.193003.
    1. Schottker B, Herder C, Rothenbacher D, Perna L, Muller H, Brenner H. Serum 25-hydroxyvitamin D levels and incident diabetes mellitus type 2: a competing risk analysis in a large population-based cohort of older adults. Eur J Epidemiol. 2013;28:267–75. doi: 10.1007/s10654-013-9769-z.
    1. Saliba W, Barnett O, Rennert HS, Rennert G. The risk of all-cause mortality is inversely related to serum 25(OH)D levels. J Clin Endocrinol Metab. 2012;97:2792–8. doi: 10.1210/jc.2012-1747.
    1. Kramer H, Sempos C, Cao G, Luke A, Shoham D, Cooper R, et al. Mortality rates across 25-hydroxyvitamin D (25[OH]D) levels among adults with and without estimated glomerular filtration rate <60 ml/min/1.73 m2: the third national health and nutrition examination survey. PLoS One. 2012;7:e47458. doi: 10.1371/journal.pone.0047458.
    1. Zhou C, Lu F, Cao K, Xu D, Goltzman D, Miao D. Calcium-independent and 1,25(OH)2D3-dependent regulation of the renin-angiotensin system in 1alpha-hydroxylase knockout mice. Kidney Int. 2008;74:170–9. doi: 10.1038/ki.2008.101.
    1. Guillot X, Semerano L, Saidenberg-Kermanac'h N, Falgarone G, Boissier MC. Vitamin D and inflammation. Joint Bone Spine. 2010;77:552–7. doi: 10.1016/j.jbspin.2010.09.018.
    1. Shab-Bidar S, Neyestani TR, Djazayery A, Eshraghian MR, Houshiarrad A, Kalayi A, et al. Improvement of vitamin D status resulted in amelioration of biomarkers of systemic inflammation in the subjects with type 2 diabetes. Diabetes Metab Res Rev. 2012;28:424–30. doi: 10.1002/dmrr.2290.
    1. Durup D, Jorgensen HL, Christensen J, Schwarz P, Heegaard AM, Lind B. A reverse J-shaped association of all-cause mortality with serum 25-hydroxyvitamin D in general practice: the CopD study. J Clin Endocrinol Metab. 2012;97:2644–52. doi: 10.1210/jc.2012-1176.
    1. Sempos CT, Durazo-Arvizu RA, Dawson-Hughes B, Yetley EA, Looker AC, Schleicher RL, et al. Is there a reverse J-shaped association between 25-hydroxyvitamin D and all-cause mortality? Results from the U.S. nationally representative NHANES. J Clin Endocrinol Metab. 2013;98:3001–9. doi: 10.1210/jc.2013-1333.
    1. Hagstrom E, Hellman P, Larsson TE, Ingelsson E, Berglund L, Sundstrom J, et al. Plasma parathyroid hormone and the risk of cardiovascular mortality in the community. Circulation. 2009;119:2765–71. doi: 10.1161/CIRCULATIONAHA.108.808733.
    1. Natoli JL, Boer R, Nathanson BH, Miller RM, Chiroli S, Goodman WG, et al. Is there an association between elevated or low serum levels of phosphorus, parathyroid hormone, and calcium and mortality in patients with end stage renal disease? A meta-analysis. BMC Nephrol. 2013;14:88. doi: 10.1186/1471-2369-14-88.
    1. Joergensen C, Gall MA, Schmedes A, Tarnow L, Parving HH, Rossing P. Vitamin D levels and mortality in type 2 diabetes. Diabetes Care. 2010;33:2238–43. doi: 10.2337/dc10-0582.
    1. Joergensen C, Hovind P, Schmedes A, Parving HH, Rossing P. Vitamin D levels, microvascular complications, and mortality in type 1 diabetes. Diabetes Care. 2011;34:1081–5. doi: 10.2337/dc10-2459.
    1. Cruickshank K, Riste L, Anderson SG, Wright JS, Dunn G, Gosling RG. Aortic pulse-wave velocity and its relationship to mortality in diabetes and glucose intolerance: an integrated index of vascular function? Circulation. 2002;106:2085–90. doi: 10.1161/01.CIR.0000033824.02722.F7.
    1. Djaberi R, Beishuizen ED, Pereira AM, Rabelink TJ, Smit JW, Tamsma JT, et al. Non-invasive cardiac imaging techniques and vascular tools for the assessment of cardiovascular disease in type 2 diabetes mellitus. Diabetologia. 2008;51:1581–93. doi: 10.1007/s00125-008-1062-4.
    1. Jennersjo P, Ludvigsson J, Lanne T, Nystrom FH, Ernerudh J, Ostgren CJ. Pedometer-determined physical activity is linked to low systemic inflammation and low arterial stiffness in Type 2 diabetes. Diabet Med. 2012;29:1119–25. doi: 10.1111/j.1464-5491.2012.03621.x.
    1. Wijkman M, Lanne T, Engvall J, Lindstrom T, Ostgren CJ, Nystrom FH. Masked nocturnal hypertension–a novel marker of risk in type 2 diabetes. Diabetologia. 2009;52:1258–64. doi: 10.1007/s00125-009-1369-9.
    1. Spangeus A, Wijkman M, Lindstrom T, Engvall JE, Ostgren CJ, Nystrom FH, et al. Toe brachial index in middle aged patients with diabetes mellitus type 2: not just a peripheral issue. Diabetes Res Clin Pract. 2013;100:195–202. doi: 10.1016/j.diabres.2013.03.004.
    1. Sjoblom P, Nystrom FH, Lanne T, Engvall J, Ostgren CJ. Microalbuminuria, but not reduced eGFR, is associated with cardiovascular subclinical organ damage in type 2 diabetes. Diabetes Metab. 2014;40:49–55. doi: 10.1016/j.diabet.2013.09.008.
    1. Hallan S, Asberg A, Lindberg M, Johnsen H. Validation of the Modification of Diet in Renal Disease formula for estimating GFR with special emphasis on calibration of the serum creatinine assay. Am J Kidney Dis. 2004;44:84–93. doi: 10.1053/j.ajkd.2004.03.027.
    1. Lee P. PTH-Vitamin D-Glycemia Interactions Reloaded. Diabetes. 2014;63:3593–5. doi: 10.2337/db14-0956.
    1. Wu SH, Ho SC, Zhong L. Effects of vitamin D supplementation on blood pressure. South Med J. 2010;103:729–37. doi: 10.1097/SMJ.0b013e3181e6d389.
    1. Forman JP, Scott JB, Ng K, Drake BF, Suarez EG, Hayden DL, et al. Effect of vitamin D supplementation on blood pressure in blacks. Hypertension. 2013;61:779–85. doi: 10.1161/HYPERTENSIONAHA.111.00659.
    1. Gepner AD, Ramamurthy R, Krueger DC, Korcarz CE, Binkley N, Stein JH. A prospective randomized controlled trial of the effects of vitamin D supplementation on cardiovascular disease risk. PLoS One. 2012;7:e36617. doi: 10.1371/journal.pone.0036617.
    1. Wood AD, Secombes KR, Thies F, Aucott L, Black AJ, Mavroeidi A, et al. Vitamin D3 supplementation has no effect on conventional cardiovascular risk factors: a parallel-group, double-blind, placebo-controlled RCT. J Clin Endocrinol Metab. 2012;97:3557–68. doi: 10.1210/jc.2012-2126.
    1. Bolland MJ, Grey A, Gamble GD, Reid IR. The effect of vitamin D supplementation on skeletal, vascular, or cancer outcomes: a trial sequential meta-analysis. The Lancet Diabetes & Endocrinology 2014;doi:10.1016/S2213-8587(13)70212-2
    1. Schierbeck LL, Rejnmark L, Tofteng CL, Stilgren L, Eiken P, Mosekilde L, et al. Vitamin D deficiency in postmenopausal, healthy women predicts increased cardiovascular events: a 16-year follow-up study. Eur J Endocrinol. 2012;167:553–60. doi: 10.1530/EJE-12-0283.
    1. Brock KE, Huang WY, Fraser DR, Ke L, Tseng M, Mason RS, et al. Diabetes prevalence is associated with serum 25-hydroxyvitamin D and 1,25-dihydroxyvitamin D in US middle-aged Caucasian men and women: a cross-sectional analysis within the Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial. Br J Nutr. 2011;106:339–44. doi: 10.1017/S0007114511001590.
    1. Lee JI, Oh SJ, Ha WC, Kwon HS, Sohn TS, Son HS, et al. Serum 25-hydroxyvitamin D concentration and arterial stiffness among type 2 diabetes. Diabetes Res Clin Pract. 2012;95:42–7. doi: 10.1016/j.diabres.2011.09.006.
    1. Quarles LD. Role of FGF23 in vitamin D and phosphate metabolism: implications in chronic kidney disease. Exp Cell Res. 2012;318:1040–8. doi: 10.1016/j.yexcr.2012.02.027.
    1. Kaseda R, Hosojima M, Sato H, Saito A. Role of megalin and cubilin in the metabolism of vitamin D(3) Ther Apher Dial. 2011;15(Suppl 1):14–7. doi: 10.1111/j.1744-9987.2011.00920.x.
    1. Hilpert J, Wogensen L, Thykjaer T, Wellner M, Schlichting U, Orntoft TF, et al. Expression profiling confirms the role of endocytic receptor megalin in renal vitamin D3 metabolism. Kidney Int. 2002;62:1672–81. doi: 10.1046/j.1523-1755.2002.00634.x.
    1. Yavuz B, Ertugrul DT, Cil H, Ata N, Akin KO, Yalcin AA, et al. Increased levels of 25 hydroxyvitamin D and 1,25-dihydroxyvitamin D after rosuvastatin treatment: a novel pleiotropic effect of statins? Cardiovasc Drugs Ther. 2009;23:295–9. doi: 10.1007/s10557-009-6181-8.

Source: PubMed

3
Se inscrever