Detection of knockdown resistance (kdr) mutations in Anopheles gambiae: a comparison of two new high-throughput assays with existing methods

Chris Bass, Dimitra Nikou, Martin J Donnelly, Martin S Williamson, Hilary Ranson, Amanda Ball, John Vontas, Linda M Field, Chris Bass, Dimitra Nikou, Martin J Donnelly, Martin S Williamson, Hilary Ranson, Amanda Ball, John Vontas, Linda M Field

Abstract

Background: Knockdown resistance (kdr) is a well-characterized mechanism of resistance to pyrethroid insecticides in many insect species and is caused by point mutations of the pyrethroid target site the para-type sodium channel. The presence of kdr mutations in Anopheles gambiae, the most important malaria vector in Africa, has been monitored using a variety of molecular techniques. However, there are few reports comparing the performance of these different assays. In this study, two new high-throughput assays were developed and compared with four established techniques.

Methods: Fluorescence-based assays based on 1) TaqMan probes and 2) high resolution melt (HRM) analysis were developed to detect kdr alleles in An. gambiae. Four previously reported techniques for kdr detection, Allele Specific Polymerase Chain Reaction (AS-PCR), Heated Oligonucleotide Ligation Assay (HOLA), Sequence Specific Oligonucleotide Probe - Enzyme-Linked ImmunoSorbent Assay (SSOP-ELISA) and PCR-Dot Blot were also optimized. The sensitivity and specificity of all six assays was then compared in a blind genotyping trial of 96 single insect samples that included a variety of kdr genotypes and African Anopheline species. The relative merits of each assay was assessed based on the performance in the genotyping trial, the length/difficulty of each protocol, cost (both capital outlay and consumable cost), and safety (requirement for hazardous chemicals).

Results: The real-time TaqMan assay was both the most sensitive (with the lowest number of failed reactions) and the most specific (with the lowest number of incorrect scores). Adapting the TaqMan assay to use a PCR machine and endpoint measurement with a fluorimeter showed a slight reduction in sensitivity and specificity. HRM initially gave promising results but was more sensitive to both DNA quality and quantity and consequently showed a higher rate of failure and incorrect scores. The sensitivity and specificity of AS-PCR, SSOP-ELISA, PCR Dot Blot and HOLA was fairly similar with a small number of failures and incorrect scores.

Conclusion: The results of blind genotyping trials of each assay indicate that where maximum sensitivity and specificity are required the TaqMan real-time assay is the preferred method. However, the cost of this assay, particularly in terms of initial capital outlay, is higher than that of some of the other methods. TaqMan assays using a PCR machine and fluorimeter are nearly as sensitive as real-time assays and provide a cost saving in capital expenditure. If price is a primary factor in assay choice then the AS-PCR, SSOP-ELISA, and HOLA are all reasonable alternatives with the SSOP-ELISA approach having the highest throughput.

Figures

Figure 1
Figure 1
Examples of AS-PCR products for kdr-e and kdr-w genotyping. Gels A to D show examples of AS-PCR results using four different protocols, A [29], B [11], C [12], D [20]. Gels E to G show the result of using different DNA polymerases on the AS-PCR method described by [20], E: Promega PCR master mix, F: Qiagen HotStar Taq G:Finzymes Dynazyme II Gel H is an example of results of using the protocol of [20] with the Promega PCR master mix to genotype samples using the kdr-e assay from the 96 reference plate and gel I for the kdr-w assay. The same DNA templates were used in PCRs shown in gels A to G and from left to right were 100 bp DNA Ladder (Fermentas), homozygous wildtype, homozygous wildtype, heterozygous, heterozygous, homozygous mutant, homozygous mutant.
Figure 2
Figure 2
Real-time TaqMan detection of the kdr-e and kdr-w alleles. A) and B) Detection of the kdr-w mutation. C) and D) Detection of the kdr-e mutation. A) Cycling of FAM-labelled probe specific for the kdr-w allele. C) Cycling of the FAM-labelled probe specific for the kdr-e allele. B) and D) cycling of the VIC labelled probe specific for the wild type allele. S: Wild type allele (L1014), Rw: Resistant allele, West African mutation (L1014F), Re: Resistant allele, East African mutation (L1014S).
Figure 3
Figure 3
Scatter plot analysis of TaqMan fluorescence data. In this example real time PCR was carried out using the east kdr assay on ~70 samples from the 96 samples reference plate then fluorescence values of the FAM labelled probe specific for the kdr-e mutation were plotted against the VIC labelled probe specific for the wild type allele.
Figure 4
Figure 4
Scatter plot analysis of TaqMan End point assay using a PCR machine+fluorimeter. In this example PCR was carried out using the west kdr assay from 48 samples of the 96 sample reference plate and the fluorescence of VIC and FAM was measured on a fluorimeter. The data was corrected for background and then plotted in a bi-directional scatter plot in Microsoft Excel. Values of X and Y axes are raw fluorescence values.
Figure 5
Figure 5
High Resolution Melt (HRM) for detection of kdr-e and kdr-w mutations. A) HRM detection of kdr-e allele. B) HRM detection of kdr-w allele. C) HRM detection for both kdr-e and kdr-w mutations. D) The melt curve profiles shown in C plotted as a difference plot as an aid to visual interpretation. In this case the difference in fluorescence of a sample to a selected control (in this case an S/Re genotype control) is plotted at each temperature transition. S: Wild type allele (L1014), Rw: Resistant allele, West African mutation (L1014F), Re: Resistant allele, East African mutation (L1014S).
Figure 6
Figure 6
PCR Dot blot for detection of kdr-e and kdr-w alleles. The same reactions are shown on a portion of three membranes each probed with a different sequence specific oligonucleotide probe, 104S specific for the kdr-e allele, 104L specific for the wild type allele or 104F specific for the kdr-w allele. Reaction products shown are, top row (left to right): no template control, homozygous wild type, homozygous kdr-e, homozygous kdr-e, bottom row (left to right): heterozygous kdr-w/wild type, heterozygous kdr-w/wild type, heterozygous kdr-w/wild type, heterozygous kdr-e/wild type.

References

    1. Phillips-Howard PA, Nahlen BL, Kolczak MS, Hightower AW, ter Kuile FO, Alaii JA, Gimnig JE, Arudo J, Vulule JM, Odhacha A, Kachur SP, Schoute E, Rosen DH, Sexton JD, Oloo AJ, Hawley WA. Efficacy of permethrin-treated bed nets in the prevention of mortality in young children in an area of high perennial malaria transmission in western Kenya. Am J Trop Med Hyg. 2003;68:23–29.
    1. Binka FN, Kubaje A, Adjuik M, Williams LA, Lengeler C, Maude GH, Armah GE, Kajihara B, Adiamah JH, Smith PG. Impact of permethrin impregnated bednets on child mortality in Kassena-Nankana district, Ghana: A randomized controlled trial. Trop Med Int Health. 1996;1:147–154.
    1. Choi HW, Breman JG, Teutsch SM, Liu SM, Hightower AW, Sexton JD. The effectiveness of insecticide-impregnated bed nets in reducing cases of malaria infection: A meta-analysis of published results. Am J Trop Med Hyg. 1995;52:377–382.
    1. D'Alessandro U, Olaleye BO, McGuire W, Langerock P, Bennett S, Aikins MK, Thomson MC, Cham MK, Cham BA, Greenwood BM. Mortality and morbidity from malaria in Gambian children after introduction of an impregnated bednet program. Lancet. 1995;345:479–483. doi: 10.1016/S0140-6736(95)90582-0.
    1. Vulule JM, Beach RF, Atieli FK, Roberts JM, Mount DL, Mwangi RW. Reduced susceptibility of Anopheles gambiae to permethrin associated with the use of permethrin-impregnated bednets and curtains in Kenya. Med Vet Entomol. 1994;8:71–75.
    1. N'Guessan R, Corbel V, Akogbeto M, Rowland M. Reduced efficacy of insecticide-treated nets and indoor residual spraying for malaria control in pyrethroid resistance area, Benin. Emerg Inf Dis. 2007;13:199–206.
    1. Narahashi T. Nerve membrane Na+ channels as targets of insecticides. Trends Pharmacol Sci. 1992;13:236–241. doi: 10.1016/0165-6147(92)90075-H.
    1. Soderlund DM, Bloomquist JR. Neurotoxic actions of pyrethroid insecticides. Annu Rev Entomol. 1989;34:77–96. doi: 10.1146/annurev.en.34.010189.000453.
    1. Busvine JR. Mechanisms of resistance to insecticides in house-flies. Nature. 1951;168:193–195. doi: 10.1038/168193a0.
    1. Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Mol Gen Genet. 1996;252:51–60. doi: 10.1007/BF02173204.
    1. Ranson H, Jensen B, Vulule JM, Wang X, Hemingway J, Collins FH. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Mol Biol. 2000;9:491–497. doi: 10.1046/j.1365-2583.2000.00209.x.
    1. Martinez-Torres D, Chandre F, Williamson MS, Darriet F, Berge JB, Devonshire AL, Guillet P, Pasteur N, Pauron D. Molecular characterization of pyrethroid knockdown resistance (kdr) in the major malaria vector Anopheles gambiae s.s. Insect Mol Biol. 1998;7:179–184. doi: 10.1046/j.1365-2583.1998.72062.x.
    1. Diabate A, Baldet T, Chandre E, Dabire KR, Simard F, Ouedraogo JB, Guillet P, Hougard JM. First report of a kdr mutation in Anopheles arabiensis from Burkina Faso, West Africa. J Am Mosq Control Assoc. 2004;20:195–196.
    1. Stump AD, Atieli FK, Vulule JM, Besansky NJ. Dynamics of the pyrethroid knockdown resistance allele in western Kenyan populations of Anopheles gambiae in response to insecticide-treated bed net trials. Am J Trop Med Hyg. 2004;70:591–596.
    1. Awolola TS, Oyewole IO, Amajoh CN, Idowu ET, Ajayi MB, Oduola A, Manafa OU, Ibrahim K, Koekemoer LL, Coetzee M. Distribution of the molecular forms of Anopheles gambiae and pyrethroid knock down resistance gene in Nigeria. Acta Trop. 2005;95:204–209. doi: 10.1016/j.actatropica.2005.06.002.
    1. Yawson AE, McCall PJ, Wilson MD, Donnelly MJ. Species abundance and insecticide resistance of Anopheles gambiae in selected areas of Ghana and Burkina Faso. Med Vet Entomol. 2004;18:372–377. doi: 10.1111/j.0269-283X.2004.00519.x.
    1. Fanello C, Petrarca V, della Torre A, Santolamazza F, Dolo G, Coulibaly M, Alloueche A, Curtis CF, Toure YT, Coluzzi M. The pyrethroid knock-down resistance gene in the Anopheles gambiae complex in Mali and further indication of incipient speciation within An. gambiae s.s. Insect Mol Biol. 2003;12:241–245. doi: 10.1046/j.1365-2583.2003.00407.x.
    1. della Torre A, Fanello C, Akogbeto M, Dossou-yovo J, Favia G, Petrarca V, Coluzzi M. Molecular evidence of incipient speciation within Anopheles gambiae s.s. in West Africa. Insect Mol Biol. 2001;10:9–18. doi: 10.1046/j.1365-2583.2001.00235.x.
    1. Diabate A, Brengues C, Baldet T, Dabire KR, Hougard JM, Akogbeto M, Kengne P, Simard F, Guillet P, Hemingway J, Chandre F. The spread of the Leu-Phe kdr mutation through Anopheles gambiae complex in Burkina Faso: genetic introgression and de novo phenomena. Trop Med Int Health. 2004;9:1267–1273. doi: 10.1111/j.1365-3156.2004.01336.x.
    1. Verhaeghen K, Van Bortel W, Roelants P, Backeljau T, Coosemans M. Detection of the East and West African kdr mutation in Anopheles gambiae and Anopheles arabiensis from Uganda using a new assay based on FRET/Melt Curve analysis. Malar J. 2006;5:16. doi: 10.1186/1475-2875-5-16.
    1. Etang J, Fondjo E, Chandre F, Morlais I, Brengues C, Nwane P, Chouaibou M, Ndjemai H, Simard F. Short report: First report of knockdown mutations in the malaria vector Anopheles gambiae from Cameroon. Am J Trop Med Hyg. 2006;74:795–797.
    1. Lynd A, Ranson H, McCall PJ, Randle NP, Black WC, Walker ED, Donnelly MJ. A simplified high-throughput method for pyrethroid knock-down resistance (kdr) detection in Anopheles gambiae. Malar J. 2005;4:16. doi: 10.1186/1475-2875-4-16.
    1. Kulkarni MA, Rowland M, Alifrangis M, Mosha FW, Matowo J, Malima R, Peter J, Kweka E, Lyimo I, Magesa S, Salanti A, Rau ME, Drakeley C. Occurrence of the leucine-to-phenylalanine knockdown resistance (kdr) mutation in Anopheles arabiensis populations in Tanzania, detected by a simplified high-throughput SSOP-ELISA method. Malar J. 2006;5:56. doi: 10.1186/1475-2875-5-56.
    1. Kolaczinski JH, Fanello C, Herve JP, Conway DJ, Carnevale P, Curtis CF. Experimental and molecular genetic analysis of the impact of pyrethroid and non-pyrethroid insecticide impregnated bednets for mosquito control in an area of pyrethroid resistance. Bull Entomol Res. 2000;90:125–132.
    1. Tripet F, Wright J, Lanzaro G. A new high-performance PCR diagnostic for the detection of pyrethroid knockdown resistance kdr in Anopheles gambiae. Am J Trop Med Hyg. 2006;74:658–662.
    1. Livak KJ. Organization and mapping of a sequence on the Drosophila melanogaster X-chromosome and Y-chromosome that is transcribed during spermatogenesis. Genetics. 1984;107:611–634.
    1. Ballinger-Crabtree ME, Black WC, Miller BR. Use of genetic polymorphisms detected by the Random-Amplified Polymorphic DNA-Polymerase Chain Reaction (RAPD-PCR) for differentiation and identification of Aedes aegypti subspecies and populations. Am J Trop Med Hyg. 1992;47:893–901.
    1. Scott JA, Brogdon WG, Collins FH. Identification of single specimens of the Anopheles gambiae complex by the polymerase chain reaction. Am J Trop Med Hyg. 1993;49:520–529.
    1. Pinto J, Lynd A, Elissa N, Donnelly MJ, Costa C, Gentile G, Caccone A, Do Rosario VE. Co-occurrence of East and West African kdr mutations suggests high levels of resistance to pyrethroid insecticides in Anopheles gambiae from Libreville, Gabon. Med Vet Entomol. 2006;20:27–32. doi: 10.1111/j.1365-2915.2006.00611.x.
    1. Afonina I, Zivarts M, Kutyavin I, Lukhtanov E, Gamper H, Meyer RB. Efficient priming of PCR with short oligonucleotides conjugated to a minor groove binder. Nucleic Acids Res. 1997;25:2657–2660. doi: 10.1093/nar/25.13.2657.
    1. High Resolution Melt Assay Design and Analysis. CorProtocol 6000-1-July06.
    1. Krypuy M, Newnham GM, Thomas DM, Conron M, Dobrovic A. High resolution melting analysis for the rapid and sensitive detection of mutations in clinical samples: KRAS codon 12 and 13 mutations in non-small cell lung cancer. BMC Cancer. 2006;6:295. doi: 10.1186/1471-2407-6-295.
    1. Liew M, Pryor R, Palais R, Meadows C, Erali M, Lyon E, Wittwer C. Genotyping of single-nucleotide polymorphisms by high-resolution melting of small amplicons. Clin Chem. 2004;50:1156–1164. doi: 10.1373/clinchem.2004.032136.
    1. Liu Q, Thorland EC, Heit JA, Sommer SS. Overlapping PCR for bidirectional PCR amplification of specific alleles: A rapid one-tube method for simultaneously differentiating homozygotes and heterozygotes. Genome Res. 1997;7:389–398.
    1. Livak KJ. Allelic discrimination using fluorogenic probes and the 5' nuclease assay. Genetic Anal. 1999;14:143–149.
    1. Alifrangis M, Enosse S, Pearce R, Drakeley C, Roper C, Khalil IF, Nkya W, Ronn AM, Theander TG, Bygjerg IBC. A simple, high-throughput method to detect Plasmodium falciparum single nucleotide polymorphisms in the dihydrofolate reductase, dihydropteroate synthase, and P. falciparum chloroquine resistance transporter genes using polymerase chain reaction- and enzyme-linked immunosorbent assay-based technology. Am J Trop Med Hyg. 2005;72:155–162.
    1. Abdel-Muhsin AMA, Ranford-Cartwright LC, Medani AR, Ahmed S, Suleiman S, Khan B, Hunt P, Walliker D, Babiker HA. Detection of mutations in the Plasmodium falciparum dihydrofolate reductase (dhfr) gene by dot-blot hybridization. Am J Trop Med Hyg. 2002;67:24–27.
    1. Black WC, Gorrochotegui-Escalante N, Duteau NM. Heated oligonucleotide ligation assay (HOLA): An affordable single nucleotide polymorphism assay. J Med Entomol. 2006;43:238–247. doi: 10.1603/0022-2585(2006)043[0238:HOLAHA];2.

Source: PubMed

3
Se inscrever