Quantitative comparison of contrast and imaging depth of ultrahigh-resolution optical coherence tomography images in 800-1700 nm wavelength region

Shutaro Ishida, Norihiko Nishizawa, Shutaro Ishida, Norihiko Nishizawa

Abstract

We investigated the wavelength dependence of imaging depth and clearness of structure in ultrahigh-resolution optical coherence tomography over a wide wavelength range. We quantitatively compared the optical properties of samples using supercontinuum sources at five wavelengths, 800 nm, 1060 nm, 1300 nm, 1550 nm, and 1700 nm, with the same system architecture. For samples of industrially used homogeneous materials with low water absorption, the attenuation coefficients of the samples were fitted using Rayleigh scattering theory. We confirmed that the systems with the longer-wavelength sources had lower scattering coefficients and less dependence on the sample materials. For a biomedical sample, we observed wavelength dependence of the attenuation coefficient, which can be explained by absorption by water and hemoglobin.

Keywords: (110.4500) Optical coherence tomography; (170.3880) Medical and biological imaging.

Figures

Fig. 1
Fig. 1
(a) Output spectra of supercontinuum sources together with water absorption spectrum and (b) corresponding theoretical longitudinal resolutions at all wavelengths as a function of bandwidth.
Fig. 2
Fig. 2
Experimental setup for time-domain optical coherence tomography.
Fig. 3
Fig. 3
(a–e) Interference signals with mirror as sample at (a) 800 nm, (b) 1060 nm, (c) 1300 nm, (d) 1550 nm, and (e) 1700 nm UHR-OCT in air. (f) Observed longitudinal resolutions (circles) together with theoretical predictions (solid lines).
Fig. 4
Fig. 4
Observed spatial beam profiles at the top of surface of the sample at all wavelengths.
Fig. 5
Fig. 5
(a) Photograph of semiconductor memory card with plastic cover. (b, c) OCT images obtained at (b) 0.8 μm and (c) 1.7 μm. (d–h) Depth profiles averaged over 250 A-line scans and more than 50 iterative measurements at (d) 800 nm, (e) 1060 nm, (f) 1300 nm, (g) 1550 nm, and (h) 1700 nm. The slopes shown by the red lines were used to determine the total attenuation coefficients.
Fig. 6
Fig. 6
(a) Photograph of eraser. (b–f) Depth profiles averaged over 250 A-lines and more than 50 iterative measurements at (b) 800 nm, (c) 1060 nm, (d) 1300 nm, (e) 1550 nm, and (f) 1700 nm. The slopes shown by the red lines were used to determine the total attenuation coefficients.
Fig. 7
Fig. 7
(a) Photograph of magnet. (b–f) Depth profiles averaged over 250 A-lines and more than 50 iterative measurements at (b) 800 nm, (c) 1060 nm, (d) 1300 nm, (e) 1550 nm, and (f) 1700 nm. The slopes shown by the red lines were used to determine the total attenuation coefficients.
Fig. 8
Fig. 8
Wavelength dependence of total attenuation coefficient for industrially used materials
Fig. 9
Fig. 9
(a) Photograph of human tooth sample. (b–f) OCT images at red line in (a) and depth profiles obtained at red dashed line in each of the OCT images at (b) 800 nm, (c) 1060 nm, (d) 1300 nm, (e) 1550 nm, and (f) 1700 nm. The slopes shown by the red and blue solid lines were used to determine the total attenuation coefficients. (g) Wavelength dependence of total attenuation coefficients of enamel and dentine layers in the sample. Important features inside the sample can be distinguished, such as the enamel layer (en) and the dentin layer (d).
Fig. 10
Fig. 10
(a) Photograph of pig trachea sample. (b–f) OCT images and depth profiles at the red dashed line in each OCT image at (b) 800 nm, (c) 1060 nm, (d) 1300 nm, (e) 1550 nm and (f) 1700 nm . The slopes shown by the solid red lines were used to determine the total attenuation coefficients. (g) Wavelength dependence of total attenuation coefficients of mucosa in trachea. (h) Three-dimensional (3D) image at 1700 nm (Media 1). A 3D image at 800 nm is also shown as a movie in Media 2. Important features inside the sample can be distinguished, such as the epithelium layer (ep), the mucosa layer (m), and cartilage (ca).
Fig. 11
Fig. 11
Total attenuation coefficients of (a) industrially used materials and (b) biomedical samples. The absorption coefficients of water [27] and hemoglobin [28] are shown in blue and red lines with arbitrary unit.

References

    1. Huang D., Swanson E. A., Lin C. P., Schuman J. S., Stinson W. G., Chang W., Hee M. R., Flotte T., Gregory K., Puliafito C. A., Fujimoto J. G., “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991).10.1126/science.1957169
    1. Schmitt J. M., “Optical coherence tomography (OCT): a review,” IEEE J. Sel. Top. Quantum Electron. 5(4), 1205–1215 (1999).10.1109/2944.796348
    1. Zysk A. M., Nguyen F. T., Oldenburg A. L., Marks D. L., Boppart S. A., “Optical coherence tomography: a review of clinical development from bench to bedside,” J. Biomed. Opt. 12(5), 051403 (2007).10.1117/1.2793736
    1. Costa R. A., Skaf M., Melo L. A. S., Jr, Calucci D., Cardillo J. A., Castro J. C., Huang D., Wojtkowski M., “Retinal assessment using optical coherence tomography,” Prog. Retin. Eye Res. 25(3), 325–353 (2006).10.1016/j.preteyeres.2006.03.001
    1. Mujat M., Chan R. C., Cense B., Park B. H., Joo C., Akkin T., Chen T. C., de Boer J. F., “Retinal nerve fiber layer thickness map determined from optical coherence tomography images,” Opt. Express 13(23), 9480–9491 (2005).10.1364/OPEX.13.009480
    1. B. E. Bouma and G. J. Tearney, Handbook of Optical Coherence Tomography (Informa Healthcare, New York, 2001).
    1. Bouma B. E., Tearney G. J., “Clinical imaging with optical coherence tomography,” Acad. Radiol. 9(8), 942–953 (2002).10.1016/S1076-6332(03)80465-8
    1. Fujimoto J. G., Boppart S. A., Tearney G. J., Bouma B. E., Pitris C., Brezinski M. E., “High resolution in vivo intra-arterial imaging with optical coherence tomography,” Heart 82(2), 128–133 (1999).
    1. Tearney G. J., Yabushita H., Houser S. L., Aretz H. T., Jang I. K., Schlendorf K. H., Kauffman C. R., Shishkov M., Halpern E. F., Bouma B. E., “Quantification of macrophage content in atherosclerotic plaques by optical coherence tomography,” Circulation 107(1), 113–119 (2003).10.1161/01.CIR.0000044384.41037.43
    1. Boppart S. A., Luo W., Marks D. L., Singletary K. W., “Optical coherence tomography: feasibility for basic research and image-guided surgery of breast cancer,” Breast Cancer Res. Treat. 84(2), 85–97 (2004).10.1023/B:BREA.0000018401.13609.54
    1. Zuluaga A. F., Follen M., Boiko I., Malpica A., Richards-Kortum R., “Optical coherence tomography: a pilot study of a new imaging technique for noninvasive examination of cervical tissue,” Am. J. Obstet. Gynecol. 193(1), 83–88 (2005).10.1016/j.ajog.2004.11.054
    1. Colston B. W., Jr, Everett M. J., Da Silva L. B., Otis L. L., Stroeve P., Nathel H., “Imaging of hard- and soft-tissue structure in the oral cavity by optical coherence tomography,” Appl. Opt. 37(16), 3582–3585 (1998).10.1364/AO.37.003582
    1. Otis L. L., Colston B. W., Jr, Everett M. J., Nathel H., “Dental optical coherence tomography: a comparison of two in vitro systems,” Dentomaxillofac. Radiol. 29(2), 85–89 (2000).10.1038/sj.dmfr.4600507
    1. Freitas A. Z., Zezell D. M., Vieira N. D., Ribeiro A. C., Gomes A. S. L., “Imaging carious human dental tissue with optical coherence tomography,” J. Appl. Phys. 99(2), 024906 (2006).10.1063/1.2160716
    1. Schmitt J. M., Knüttel A., Yadlowsky M., Eckhaus M. A., “Optical-coherence tomography of a dense tissue: statistics of attenuation and backscattering,” Phys. Med. Biol. 39(10), 1705–1720 (1994).10.1088/0031-9155/39/10/013
    1. Pan Y., Farkas D. L., “Nonivasive imaging of living human skin with dual-wavelength optical coherence tomography in two and three dimensions,” J. Biomed. Opt. 3(4), 446–455 (1998).10.1117/1.429897
    1. Radhakrishnan S., Rollins A. M., Roth J. E., Yazdanfar S., Westphal V., Bardenstein D. S., Izatt J. A., “Real-time optical coherence tomography of the anterior segment at 1310 nm,” Arch. Ophthalmol. 119(8), 1179–1185 (2001).
    1. Aguirre A., Nishizawa N., Fujimoto J. G., Seitz W., Lederer M., Kopf D., “Continuum generation in a novel photonic crystal fiber for ultrahigh resolution optical coherence tomography at 800 nm and 1300 nm,” Opt. Express 14(3), 1145–1160 (2006).10.1364/OE.14.001145
    1. Sharma U., Chang E. W., Yun S. H., “Long-wavelength optical coherence tomography at 1.7 microm for enhanced imaging depth,” Opt. Express 16(24), 19712–19723 (2008).10.1364/OE.16.019712
    1. Kodach V. M., Kalkman J., Faber D. J., van Leeuwen T. G., “Quantitative comparison of the OCT imaging depth at 1300 nm and 1600 nm,” Biomed. Opt. Express 1(1), 176–185 (2010).10.1364/BOE.1.000176
    1. Nishiura M., Kobayashi T., Adachi M., Nakanishi J., Ueno T., Ito Y., Nishizawa N., “In vivo ultrahigh-resolution ophthalmic optical coherence tomography using Gaussian-shaped supercontinuum,” Jpn. J. Appl. Phys. 49(1), 012701 (2010).10.1143/JJAP.49.012701
    1. Bourquin S., Aguirre A. D., Hartl I., Hsiung P., Ko T. H., Fujimoto J. G., Birks T. A., Wadsworth W. J., Bünting U., Kopf D., “Ultrahigh resolution real time OCT imaging using a compact femtosecond Nd:glass laser and nonlinear fiber,” Opt. Express 11(24), 3290–3297 (2003).10.1364/OE.11.003290
    1. Ishida S., Nishizawa N., Ohta T., Itoh K., “Ultrahigh-resolution optical coherence tomography in 1.7 μm region with fiber laser supercontinuum in low water absorption samples,” Appl. Phys. Express 4(5), 052501 (2011).10.1143/APEX.4.052501
    1. Nishizawa N., Chen Y., Hsiung P., Ippen E. P., Fujimoto J. G., “Real-time, ultrahigh-resolution, optical coherence tomography with an all-fiber, femtosecond fiber laser continuum at 1.5 microm,” Opt. Lett. 29(24), 2846–2848 (2004).10.1364/OL.29.002846
    1. Schmitt J. M., Knüttel A., Bonner R. F., “Measurement of optical properties of biological tissues by low-coherence reflectometry,” Appl. Opt. 32(30), 6032–6042 (1993).10.1364/AO.32.006032
    1. Faber D. J., van der Meer F. J., Aalders M. C. G., van Leeuwen T., “Quantitative measurement of attenuation coefficients of weakly scattering media using optical coherence tomography,” Opt. Express 12(19), 4353–4365 (2004).10.1364/OPEX.12.004353
    1. Hale G. M., Querry M. R., “Optical constants of water in the 200 nm to 200 µm wavelength region,” Appl. Opt. 12(3), 555–563 (1973).10.1364/AO.12.000555
    1. S. Prahl, “Optical absorption of hemoglobin” (Oregon Medical Laser Center, Portland, Oreg., September 22, 2010),

Source: PubMed

3
Se inscrever