Biological Aspect of Pathophysiology for Frozen Shoulder

Chul-Hyun Cho, Kwang-Soon Song, Beom-Soo Kim, Du Hwan Kim, Yun-Mee Lho, Chul-Hyun Cho, Kwang-Soon Song, Beom-Soo Kim, Du Hwan Kim, Yun-Mee Lho

Abstract

It is fairly well understood that frozen shoulder involves several stages, which reflect the series of process from capsular inflammation and fibrosis to spontaneous resolution of this fibrosis. However, the underlying pathophysiologic process remains poorly determined. For this reason, management of frozen shoulder remains controversial. Determining the pathophysiological processes of frozen shoulder is a pivotal milestone in the development of novel treatment for patients with frozen shoulder. This article reviews what is known to date about the biological pathophysiology of frozen shoulder. Although articles for the pathophysiology of frozen shoulder provide inconsistent and inconclusive results, they have suggested both inflammation and fibrosis mediated by cytokines, growth factors, matrix metalloproteinases, and immune cells. Proinflammatory cytokines and growth factors released from immune cells control the action of fibroblast and matrix remodeling is regulated by the matrix metalloproteinases and their inhibitors. To improve our understanding of the disease continuum, better characterizing the biology of these processes at clearly defined stages will be needed. Further basic studies that use standardized protocols are required to more narrowly identify the role of cytokines, growth factors, matrix metalloproteinases, and immune cells. The results of these studies will provide needed clarity into the control mechanism of the pathogenesis of frozen shoulder and help identify new therapeutic targets for its treatment.

References

    1. Binder A. I., Bulgen D. Y., Hazleman B. L., Roberts S. Frozen shoulder: A long-term prospective study. Annals of the Rheumatic Diseases. 1984;43(3):361–364. doi: 10.1136/ard.43.3.361.
    1. Lho Y.-M., Ha E., Cho C.-H., et al. Inflammatory cytokines are overexpressed in the subacromial bursa of frozen shoulder. Journal of Shoulder and Elbow Surgery. 2013;22(5):666–672. doi: 10.1016/j.jse.2012.06.014.
    1. Sheridan M. A., Hannafin J. A. Upper Extremity: Emphasis on Frozen Shoulder. Orthopedic Clinics of North America. 2006;37(4):531–539. doi: 10.1016/j.ocl.2006.09.009.
    1. Zuckerman J. D., Rokito A. Frozen shoulder: A consensus definition. Journal of Shoulder and Elbow Surgery. 2011;20(2):322–325. doi: 10.1016/j.jse.2010.07.008.
    1. Hand G. C. R., Athanasou N. A., Matthews T., Carr A. J. The pathology of frozen shoulder. The Journal of Bone & Joint Surgery (British Volume) 2007;89(7):928–932. doi: 10.1302/0301-620X.89B7.19097.
    1. Hannafin J. A., Chiaia T. A. Adhesive capsulitis: A treatment approach. Clinical Orthopaedics and Related Research. 2000;(372):95–109. doi: 10.1097/00003086-200003000-00012.
    1. Saccomanni B. Inflammation and shoulder pain - A perspective on rotator cuff disease, adhesive capsulitis, and osteoarthritis: Conservative treatment. Clinical Rheumatology. 2009;28(5):495–500. doi: 10.1007/s10067-009-1109-z.
    1. Tamai K., Akutsu M., Yano Y. Primary frozen shoulder: brief review of pathology and imaging abnormalities. Journal of Orthopaedic Science. 2014;19(1):1–5. doi: 10.1007/s00776-013-0495-x.
    1. Carrillon Y., Noel E., Fantino O., Perrin-Fayolle O., Tran-Minh V. A. Magnetic resonance imaging findings in idiopathic adhesive capsulitis of the shoulder. Revue du Rhumatisme. 1999;66(4):201–206.
    1. Zhao W., Zheng X., Liu Y., et al. An MRI Study of Symptomatic Adhesive Capsulitis. PLoS ONE. 2012;7(10) doi: 10.1371/journal.pone.0047277.e47277
    1. Rodeo S. A., Hannafin J. A., Tom J., Warren R. F., Wickiewicz T. L. Immunolocalization of cytokines and their receptors in adhesive capsulitis of the shoulder. Journal of Orthopaedic Research. 1997;15(3):427–436. doi: 10.1002/jor.1100150316.
    1. Ryan V., Brown H., Minns Lowe C. J., Lewis J. S. The pathophysiology associated with primary (idiopathic) frozen shoulder: A systematic review. BMC Musculoskeletal Disorders. 2016;17(1, article no. 340) doi: 10.1186/s12891-016-1190-9.
    1. Robinson C. M., Seah K. T. M., Chee Y. H., Hindle P., Murray I. R. Frozen shoulder. The Journal of Bone & Joint Surgery (British Volume) 2012;94(1):1–9. doi: 10.1302/0301-620X.94B1.27093.
    1. Bunker T. D., Reilly J., Baird K. S., Hamblen D. L. Expression of growth factors, cytokines and matrix metalloproteinases in frozen shoulder. The Journal of Bone & Joint Surgery (British Volume) 2000;82(5):768–773. doi: 10.1302/0301-620X.82B5.9888.
    1. Ryu J.-D., Kirpalani P. A., Kim J.-M., Nam K.-H., Han C.-W., Han S.-H. Expression of vascular endothelial growth factor and angiogenesis in the diabetic frozen shoulder. Journal of Shoulder and Elbow Surgery. 2006;15(6):679–685. doi: 10.1016/j.jse.2006.01.002.
    1. Kanbe K., Inoue K., Inoue Y., Chen Q. Inducement of mitogen-activated protein kinases in frozen shoulders. Journal of Orthopaedic Science. 2009;14(1):56–61. doi: 10.1007/s00776-008-1295-6.
    1. Kabbabe B., Ramkumar S., Richardson M. Cytogenetic analysis of the pathology of frozen shoulder. International Journal of Shoulder Surgery. 2010;4(3):75–78. doi: 10.4103/0973-6042.76966.
    1. Lubis A. M. T., Lubis V. K. Matrix metalloproteinase, tissue inhibitor of metalloproteinase and transforming growth factor-beta 1 in frozen shoulder, and their changes as response to intensive stretching and supervised neglect exercise. Journal of Orthopaedic Science. 2013;18(4):519–527. doi: 10.1007/s00776-013-0387-0.
    1. Brown I., Kelly I., McInnes P. I. Detection of matrix metall oproteinases in primary frozen shoulders. The Journal of Bone and Joint Surgery. British Volume. 2008;90-B(supplement II):p. 364.
    1. Kilian O., Pfeil U., Wenisch S., Heiss C., Kraus R., Schnettler R. Enhanced alpha1(I) mRNA expression in frozen shoulder and dupuytren tissue. European Journal of Medical Research. 2007;12(12):585–590.
    1. Kim Y.-S., Kim J.-M., Lee Y.-G., Hong O.-K., Kwon H.-S., Ji J.-H. Intercellular adhesion molecule-1 (ICAM-1, CD54) is increased in adhesive capsulitis. The Journal of Bone & Joint Surgery. 2013;95(4):e181–e188. doi: 10.2106/JBJS.K.00525.
    1. Mullett H., Byrne D., Colville J. Adhesive capsulitis: Human fibroblast response to shoulder joint aspirate from patients with stage II disease. Journal of Shoulder and Elbow Surgery. 2007;16(3):290–294. doi: 10.1016/j.jse.2006.08.001.
    1. Uhthoff H. K., Boileau P. Primary frozen shoulder: Global capsular stiffness versus localized contracture. Clinical Orthopaedics and Related Research. 2007;(456):79–84. doi: 10.1097/BLO.0b013e318030846d.
    1. Xu Y., Bonar F., Murrell G. A. C. Enhanced expression of neuronal proteins in idiopathic frozen shoulder. Journal of Shoulder and Elbow Surgery. 2012;21(10):1391–1397. doi: 10.1016/j.jse.2011.08.046.
    1. Cohen C., Leal M. F., Belangero P. S., et al. The roles of tenascin C and fibronectin 1 in adhesive capsulitis: A pilot gene expression study. Clinics. 2016;71(6):325–331. doi: 10.6061/clinics/2016(06)07.
    1. Bunker T. D. Frozen shoulder: unravelling the enigma. Annals of the Royal College of Surgeons of England. 1997;79(3):210–213.
    1. Bunker T. D., Anthony P. P. The pathology of frozen shoulder. A dupuytren-like disease. The Journal of Bone & Joint Surgery (British Volume) 1995;77(5):677–683.
    1. Challa A. A., Stefanovic B. A novel role of vimentin filaments: Binding and stabilization of collagen mRNAs. Molecular and Cellular Biology. 2011;31(18):3773–3789. doi: 10.1128/MCB.05263-11.
    1. Dallas S. L., Sivakumar P., Jones C. J., et al. Fibronectin Regulates Latent Transforming Growth Factor-β (TGFβ) by Controlling Matrix Assembly of Latent TGFβ-binding Protein-1. The Journal of Biological Chemistry. 2005;280(19):18871–18880. doi: 10.1074/jbc.M410762200.
    1. Vakonakis I., Campbell I. D. Extracellular matrix: from atomic resolution to ultrastructure. Current Opinion in Cell Biology. 2007;19(5):578–583. doi: 10.1016/j.ceb.2007.09.005.
    1. Carey W. A., Taylor G. D., Dean W. B., Bristow J. D. Tenascin-C deficiency attenuates TGF-β-mediated fibrosis following murine lung injury. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2010;299(6):L785–L793. doi: 10.1152/ajplung.00385.2009.
    1. Chiquet-Ehrismann R., Tucker R. P. Tenascins and the importance of adhesion modulation. Cold Spring Harbor Perspectives in Biology. 2011;3(5)
    1. LeRoy E. C., Trojanowska M. I., Smith E. A. Cytokines and human fibrosis. European Cytokine Network. 1990;1(4):215–219.
    1. Hutchinson J. W., Tierney G. M., Parsons S. L., Davis T. R. C. Dupuytren's disease and frozen shoulder induced by treatment with a matrix metalloproteinase inhibitor. The Journal of Bone & Joint Surgery (British Volume) 1998;80(5):907–908. doi: 10.1302/0301-620X.80B5.8464.
    1. Xu Q., Gai P. Y., Lv H. L., Li G. R., Liu X. Y. Association of MMP3 genotype with susceptibility to frozen shoulder: A case-control study in a Chinese Han population. Genetics and Molecular Research. 2016;15(1) doi: 10.4238/gmr.15017228.
    1. Lal H., Verma S., Smith M., et al. Stretch-induced MAP kinase activation in cardiac myocytes: Differential regulation through β1-integrin and focal adhesion kinase. Journal of Molecular and Cellular Cardiology. 2007;43(2):137–147. doi: 10.1016/j.yjmcc.2007.05.012.

Source: PubMed

3
Se inscrever