The Evaluation of Vitiligous lesions Repigmentation after the Administration of Atorvastatin calcium salt and Simvastatin-acid sodium salt in patients with active vitiligo (EVRAAS), a pilot study: study protocol for a randomized controlled trial

Anna Niezgoda, Andrzej Winnicki, Tomasz Kosmalski, Bogna Kowaliszyn, Jerzy Krysiński, Rafał Czajkowski, Anna Niezgoda, Andrzej Winnicki, Tomasz Kosmalski, Bogna Kowaliszyn, Jerzy Krysiński, Rafał Czajkowski

Abstract

Background: Vitiligo is a chronic skin disorder presenting with depigmentation, the pathogenesis of which is complex but the autoimmune theory is now preferred. Multiple immunologic processes, including stimulation of the T-helper (Th)1 response, formation of autoreactive melanocyte-specific CD8+ T lymphocytes, a decrease in the blood concentration of T regulatory (Treg) cells, and an increase in interleukin (IL)-17 and interferon (IFN) concentration, have been shown to contribute to vitiligo progression and maintenance. The aim of this study is to evaluate the influence of simvastatin and atorvastatin on vitiligous lesions in patients with nonsegmental vitiligo (NSV). According to available data, statins act through several immunological pathways, potentially reversing undesirable phenomena underlying autoimmune vitiligo pathogenesis.

Methods/design: A study has been designed as a single-center, randomized, double-blind, placebo-controlled pilot study with the enrollment of at least 24 active NSV patients presenting with vitiligous lesions on both upper and lower limbs. The clinical effects of ointments containing 1% simvastatin-acid sodium salt or 1% atorvastatin calcium salt applied on a preselected limb will be assessed in comparison with vehicle ointment applied on the opposite limb. All study participants will undergo clinical evaluation using body surface area (BSA) and Vitiligo Area Scoring Index (VASI) scales at baseline and at weeks 4, 8, and 12 time points. A precise assessment of skin lesions will be performed using photographic documentation obtained during each study visit and processed with NIS-Elements software.

Discussion: Currently available vitiligo topical therapeutic approaches including calcineurin inhibitors and corticosteroids remain poorly effective and are associated with either relatively high cost or potentially dangerous adverse effects. The clinical application of orally administrated statins, widely used as systemic cholesterol-lowering agents, in vitiligous patients has only been tested in two clinical trials; however, data on their potential usefulness is scarce. Moreover, due to a high risk of clinically significant toxicity, topical administration was recommended by researchers. This study is the first to evaluate safety and efficacy of the topical use of statins in patients presenting with NSV.

Trial registration: Clinicaltrials.gov, NCT03247400 . Registered on 05 August 2017.

Keywords: Atorvastatin; RCT; Repigmentation; Simvastatin; Statins; Topical; Treatment; Vitiligo.

Conflict of interest statement

Ethics approval and consent to participate

The study protocol has been approved by The Ethics Committee of Nicolaus Copernicus University in Toruń, Ludwik Rydygier Collegium Medicum in Bydgoszcz (approval number KB 597/2016). All study-related procedures can be performed only after obtaining written informed consent from the participants.

Consent for publication

Consent for publication is not applicable.

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
Ointment application scheme in the EVRAAS study
Fig. 2
Fig. 2
Patient flow chart through the EVRAAS study. BSA body surface area, VASI Vitiligo Area Scoring Index
Fig. 3
Fig. 3
SPIRIT checklist showing the EVRAAS study checklist. BSA body surface area, VASI Vitiligo Area Scoring Index, W week

References

    1. Solak B, Dikicier BS, Cosansu NC, et al. Neutrophil to lymphocyte ratio in patients with vitiligo. Postepy Dermatol Alergol. 2017;34:468–70.
    1. Karagün E, Ergin C, Baysak S, et al. The role of serum vitamin D levels in vitiligo. Postepy Dermatol Alergol. 2016;33:300–302. doi: 10.5114/pdia.2016.59507.
    1. Ogg GS, Rod Dunbar P, Romero P, et al. High frequency of skin-homing melanocyte-specific cytotoxic T lymphocytes in autoimmune vitiligo. J Exp Med. 1998;188:1203–1208. doi: 10.1084/jem.188.6.1203.
    1. van den Boorn JG, Melief CJ, Luiten RM. Monobenzone-induced depigmentation: from enzymatic blockade to autoimmunity. Pigm Cell Melanoma R. 2011;24:673–679. doi: 10.1111/j.1755-148X.2011.00878.x.
    1. Harris JE, Harris TH, Weninger W, et al. A mouse model of vitiligo with focused epidermal depigmentation requires IFN-gamma for autoreactive CD8(+) T-cell accumulation in the skin. J Invest Dermatol. 2012;132:1869–1876. doi: 10.1038/jid.2011.463.
    1. Rashighi M, Agarwal P, Richmond JM, et al. CXCL10 is critical for the progression and maintenance of depigmentation in a mouse model of vitiligo. Sci Transl Med. 2014;6:223.
    1. Agarwal P, Rashighi M, Essien KI, et al. Simvastatin prevents and reverses depigmentation in a mouse model of vitiligo. J Invest Dermatol. 2015;135:1080–1088. doi: 10.1038/jid.2014.529.
    1. Lee SJ, Qin H, Benveniste EN. The IFN-gamma-induced transcriptional program of the CIITA gene is inhibited by statins. Eur J Immunol. 2008;38:2325–2336. doi: 10.1002/eji.200838189.
    1. Iannella G, Greco A, Didona D, et al. Vitiligo: pathogenesis, clinical variants and treatment approaches. Autoimmun Rev. 2016;15:335–343. doi: 10.1016/j.autrev.2015.12.006.
    1. Taher ZA, Lauzon G, Maguiness S, et al. Analysis of interleukin-10 levels in lesions of vitiligo following treatment with topical tacrolimus. Br J Dermatol. 2009;161:654–659. doi: 10.1111/j.1365-2133.2009.09217.x.
    1. Grip O, Janciauskiene S, Lindgren S. Pravastatin down-regulates inflammatory mediators in human monocytes in vitro. Eur J Pharmacol. 2000;410:83–92. doi: 10.1016/S0014-2999(00)00870-0.
    1. Rosenson RS, Tangney CC, Casey LC. Inhibition of proinflammatory cytokine production by pravastatin. Lancet. 1999;353:983–984. doi: 10.1016/S0140-6736(98)05917-0.
    1. Bassiouny DA, Shaker O. Role of interleukin-17 in the pathogenesis of vitiligo. Clin Exp Dermatol. 2011;36:292–297. doi: 10.1111/j.1365-2230.2010.03972.x.
    1. Kotyla PJ. Plejotropowe działanie inhibitorów 3-hydroksy-3-metylo-glutarylo-koenzymu A (statyn). Potencjał leczniczy w układowych chorobach tkanki łącznej. Annales Academiae Medicae Stetinensis, Rocznik Pomorskiej Akademii Medycznej w Szczecinie. 2014;60:39–46.
    1. Zhangm X, Markovic-Plese S. Statins’ immunomodulatory potential against Th17 cell-mediated autoimmune response. Immunol Res. 2008;41:165–174. doi: 10.1007/s12026-008-8019-z.
    1. Ghittoni R, Patrussi L, Pirozzi K, et al. Simvastatin inhibits T-cell activation by selectively impairing the function of Ras superfamily GTPases. FASEB J. 2005;19:605–607. doi: 10.1096/fj.04-2702fje.
    1. Vicente-Manzanares M, Sánchez-Madrid F. Role of the cytoskeleton during leukocyte responses. Nat Rev Immunol. 2004;4:110–122. doi: 10.1038/nri1268.
    1. Lin SK, Kok SH, Lee YL, et al. Simvastatin as a novel strategy to alleviate periapical lesions. J Endodontics. 2009;35:657–662. doi: 10.1016/j.joen.2009.02.004.
    1. Zhang Y, Mooneyan-Ramchurn JS, Zuo N, et al. Vitiligo nonsurgical treatment: a review of latest treatment researches. Dermatol Ther. 2014;27:298–303. doi: 10.1111/dth.12143.
    1. Wong R, Lin AN. Efficacy of topical calcineurin inhibitors in vitiligo. Int J Dermatol. 2013;52:491–496. doi: 10.1111/j.1365-4632.2012.05697.x.
    1. Asai J, Takenaka H, Hirakawa S, et al. Topical simvastatin accelerates wound healing in diabetes by enhancing angiogenesis and lymphangiogenesis. Am J Pathol. 2012;181:2217–2224. doi: 10.1016/j.ajpath.2012.08.023.
    1. Ooi KG, Wakefield D, Billson FA, et al. Efficacy and safety of topical atorvastatin for the treatment of dry eye associated with blepharitis: a pilot study. Ophthalmic Res. 2015;54:26–33. doi: 10.1159/000367851.
    1. Farsaei S, Khalili H, Farboud ES, et al. Efficacy of topical atorvastatin for the treatment of pressure ulcers: a randomized clinical trial. Pharmacotherapy. 2014;34:19–27. doi: 10.1002/phar.1339.
    1. Grover HS, Kapoor S, Singh A. Effect of topical simvastatin (1.2 mg) on gingival crevicular fluid interleukin-6, interleukin-8 and interleukin-10 levels in chronic periodontitis—a clinicobiochemical study. J Oral Biol Craniofac Res. 2016;6:85–92. doi: 10.1016/j.jobcr.2015.11.003.
    1. Vanderweil SG, Amano S, Ko WC, et al. A double-blind, placebo-controlled, phase-II clinical trial to evaluate oral simvastatin as a treatment for vitiligo. J Am Acad Dermatol. 2017;76:150–151. doi: 10.1016/j.jaad.2016.06.015.

Source: PubMed

3
Se inscrever