Inhibition of merozoite invasion and transient de-sequestration by sevuparin in humans with Plasmodium falciparum malaria

Anna M Leitgeb, Prakaykaew Charunwatthana, Ronnatrai Rueangveerayut, Chirapong Uthaisin, Kamolrat Silamut, Kesinee Chotivanich, Patima Sila, Kirsten Moll, Sue J Lee, Maria Lindgren, Erik Holmer, Anna Färnert, Mpungu S Kiwuwa, Jens Kristensen, Christina Herder, Joel Tarning, Mats Wahlgren, Arjen M Dondorp, Anna M Leitgeb, Prakaykaew Charunwatthana, Ronnatrai Rueangveerayut, Chirapong Uthaisin, Kamolrat Silamut, Kesinee Chotivanich, Patima Sila, Kirsten Moll, Sue J Lee, Maria Lindgren, Erik Holmer, Anna Färnert, Mpungu S Kiwuwa, Jens Kristensen, Christina Herder, Joel Tarning, Mats Wahlgren, Arjen M Dondorp

Abstract

Severe malaria: Even with the best available treatment, the mortality from severe Plasmodium falciparum malaria remains high. Typical features at death are high parasite loads and obstructed micro- vasculature. Infected erythrocytes (IE) containing mature parasites bind to the host receptor heparan sulfate, which is also an important receptor for merozoite invasion. To block merozoite invasion has not previously been proposed as an adjunctive therapeutic approach but it may preclude the early expansion of an infection that else leads to exacerbated sequestration and death.

Sevuparin in phase i study: The drug sevuparin was developed from heparin because heparan sulfate and heparin are nearly identical, so the rationale was that sevuparin would act as a decoy receptor during malaria infection. A phase I study was performed in healthy male volunteers and sevuparin was found safe and well tolerated.

Sevuparin in phase i/ii clinical study: A phase I/II clinical study was performed in which sevuparin was administered via short intravenous infusions to malaria patients with uncomplicated malaria who were also receiving atovaquone/proguanil treatment. This was a Phase I/II, randomized, open label, active control, parallel assignment study. Sevuparin was safe and well tolerated in the malaria patients. The mean relative numbers of ring-stage IEs decreased after a single sevuparin infusion and mature parasite IEs appeared transiently in the circulation. The effects observed on numbers of merozoites and throphozoites in the circulation, were detected already one hour after the first sevuparin injection. Here we report the development of a candidate drug named sevuparin that both blocks merozoite invasion and transiently de-sequesters IE in humans with P. falciparum malaria.

Trial registration: ClinicalTrials.gov NCT01442168.

Conflict of interest statement

Competing Interests: MW holds shares in and is a director of the board of Modus Therapeutics AB, a company of the Karolinska Development AB involved in the development of adjunct treatment for severe malaria. The authors declare no other competing financial interests. This does not alter our adherence to PLOS ONE policies on sharing data and materials.

Figures

Fig 1. Sevuparin is an acidic, negatively…
Fig 1. Sevuparin is an acidic, negatively charged, antiadhesive polysaccharide drug.
The predominant structure of sevuparin with the main monosaccharide constituents. The weight average molecular weight of sevuparin is 6.5–9.5 kDa.
Fig 2. Study design of phase I/II…
Fig 2. Study design of phase I/II study in patients with uncomplicated falciparum malaria-TSM02.
a, Overview of study design and dosing regimen for all patients in part 1. b, Overview of study design and dosing regimen for patients in part 2 randomized to the anti-malarial regimen (atovaquone and proguanil) alone or sevuparin plus anti-malarial regimen (atovaquone/proguanil).
Fig 3. CONSORT flow diagram.
Fig 3. CONSORT flow diagram.
Flow diagram of the progress through the phases of TSM02 randomized trial with two groups for Part and Part 2. a, Part 1 enrolment, intervention allocation, follow-up, and data analysis. b, Part 2 enrolment, intervention allocation, follow-up, and data analysis.
Fig 4. Sevuparin lowers the relative mean…
Fig 4. Sevuparin lowers the relative mean number of ring-stage IEs after a single sevuparin infusion in P. falciparum infected patients.
A total of 44 patients were included in the efficacy part of the trial (part 2) and were treated with oral atovaquone/proguanil with or without adjunctive treatment in the form of i.v. infusions of sevuparin. The relative numbers were calculated from the number of ring IEs at one time point related to the baseline value of ring IEs at time point 0 h (immediately prior to the first dose of sevuparin), and the mean was measured based on all subjects in one group. a, The mean relative numbers (mean ± SD) of ring stage parasites in the two study groups from 0 h to 30 h. The numbers of ring-stage IEs were estimated in peripheral blood samples on thin and thick films that were taken at time points 0, 1, 2, 3, 4, 6, 8, 10, and 11 h and thereafter every 6 h until two consecutive blood samples were parasite negative. The red dotted line represents the patients treated with sevuparin (3 mg/kg) and oral atovaquone/proguanil, and the blue line represents the control patients who were given only oral atovaquone/proguanil, a logarithmic y-axis is used. Significantly lower levels of ring stage IEs were found in the sevuparin treated patients at time points 1 h (p = 0.0223), 2 h (p = 0.0246), 3 h (p = 0.0027), 4 h (p = 0.0278), and 6 h (p = 0.0346). (An outlier appears in the data but does not drive the difference as the statistical significant difference between the two groups remains even if data from this patient is excluded from the analysis since the tests used are non-parametric which are thus very robust against divergent.) b, Detailed mean relative changes in the number (mean ± SD) of ring stage parasites during the first 12 hours after the first injection of sevuparin. c, Numbers of ring-stage IEs levels in the individual patients. Oragne arrow indicate an outlier. Grey arrows indicate the short i.v. sevuparin infusions over five minutes.
Fig 5. The de-sequestering capacity of sevuparin…
Fig 5. The de-sequestering capacity of sevuparin in P. falciparum infected patients.
A total of 44 patients were included in the efficacy part of the trial and were treated with oral atovaquone/proguanil with or without adjunctive treatment in the form of short i.v. infusions of sevuparin. The numbers of trophozoite and schizont IEs were estimated in the peripheral blood samples on thin and thick films that were taken at time points 0, 1, 2, 3, 4, 6, 8, 10, and 11 h and thereafter every 6 h until two consecutive blood samples were parasite negative. The relative numbers were calculated from the number of trophozoite and schizont IEs at one time point related to the baseline number of trophozoite and schizont IEs at time point 0 h (immediately prior to the first dose of sevuparin), and the mean was measured based on all subjects in one group. The red dotted line represents the sevuparin treated patients, and the blue line represents the control patients. Logarithmic y- axis is used. Significantly (p

Fig 6. Sevuparin inhibits merozoite invasion of…

Fig 6. Sevuparin inhibits merozoite invasion of P . falciparum clones, strains and fresh isolates…

Fig 6. Sevuparin inhibits merozoite invasion of P. falciparum clones, strains and fresh isolates in vitro at low concentrations, independently of parasite origin or phenotype.
The invasion blocking capacity of sevuparin in 34 in vitro propagated P. falciparum isolates expressed as IC50. The inhibitory capacity of sevuparin was titrated in double dilution steps between 0.125 μg/mL and 1 mg sevuparin/mL culture. Ten laboratory isolates were either sensitive (3D7, 3D7PG12, Dd2, HB3) or resistant (R29, TM180, TM284, F32, 7G8, FCR3S1.2) to chloroquine. Three parasites of the W2mef background carried disrupted genes for EBA 140, EBA 175 or EBA 181 (EBA-KO). W2mef is a cloned line of parasites derived from the Indochina III-CDC strain. Of the fresh primary isolates 11 were from Ugandan children with either severe (dot) or uncomplicated (square) malaria and six isolates were from adults infected in Ethiopia/Eritrea, Kenya or Niger. Four Cambodian isolates were sensitive or resistant to artemisinin (red-circled square; IPC-4884, Pursut, artemisinin resistant (RSA 0-3h: 6,5%) and IPC 4912 artemisinin resistant (red circled square; RSA 0–3 h: 49%). ICP 5188 Rattanakiri and IPC 3663 Pailin were artemisinin sensitive (square).
Fig 6. Sevuparin inhibits merozoite invasion of…
Fig 6. Sevuparin inhibits merozoite invasion of P. falciparum clones, strains and fresh isolates in vitro at low concentrations, independently of parasite origin or phenotype.
The invasion blocking capacity of sevuparin in 34 in vitro propagated P. falciparum isolates expressed as IC50. The inhibitory capacity of sevuparin was titrated in double dilution steps between 0.125 μg/mL and 1 mg sevuparin/mL culture. Ten laboratory isolates were either sensitive (3D7, 3D7PG12, Dd2, HB3) or resistant (R29, TM180, TM284, F32, 7G8, FCR3S1.2) to chloroquine. Three parasites of the W2mef background carried disrupted genes for EBA 140, EBA 175 or EBA 181 (EBA-KO). W2mef is a cloned line of parasites derived from the Indochina III-CDC strain. Of the fresh primary isolates 11 were from Ugandan children with either severe (dot) or uncomplicated (square) malaria and six isolates were from adults infected in Ethiopia/Eritrea, Kenya or Niger. Four Cambodian isolates were sensitive or resistant to artemisinin (red-circled square; IPC-4884, Pursut, artemisinin resistant (RSA 0-3h: 6,5%) and IPC 4912 artemisinin resistant (red circled square; RSA 0–3 h: 49%). ICP 5188 Rattanakiri and IPC 3663 Pailin were artemisinin sensitive (square).

References

    1. World Health Organization. Guidelines for the treatment of malaria World Health Organization, Geneva, Switzerland, 3rd ed. , WHO Press; 2015.
    1. David PH, Hommel M, Miller LH, Udeinya IJ, Oligino LD. Parasite sequestration in Plasmodium falciparum malaria: spleen and antibody modulation of cytoadherence of infected erythrocytes Proc Natl Acad Sci (USA) 1983;80: 5075–9.
    1. Grau GE, Piguet PF, Engers HD, Louis JA, Vassalli P, Lambert PH. L3T4+ T lymphocytes play a major role in the pathogenesis of murine cerebral malaria. J Immunol. 1986;137: 2348–54.
    1. Serghides L, Kim H, Lu Z, Kain DC, Miller C, Francis RC, et al. Inhaled nitric oxide reduces endothelial activation and parasite accumulation in the brain, and enhances survival in experimental cerebral malaria. PLoS One. 2011;6:e27714 doi:
    1. Taylor TE, Molyneux ME, Wirima JJ, Borgstein A, Goldring JD, Hommel M. Intravenous immunoglobulin in the treatment of paediatric cerebral malaria. Clin Exp Immunol 1992;90: 357–62.
    1. Boele van Hensbroek M, Palmer A, Onyiorah E, Schneider G, Jaffar S, Dolan G, el al. The Effect of a Monoclonal Antibody to Tumor Necrosis Factor on Survival from Childhood Cerebral Malaria. J Infect Dis 1996; 174:1091–109. doi:
    1. Hawkes MT, Conroy AL, Opoka RO, Hermann L, Thorpe KE, McDonald C, et al. Inhaled nitric oxide as adjunctive therapy for severe malaria: a randomized controlled trial. Malar J 2015;14: 421–431. doi:
    1. White NJ, Turner GD, Medana IM, Dondorp AM, Day NP. The murine cerebral malaria phenomenon. Trends Parasitol 2010;26: 11–15. doi:
    1. Maitland K. Management of severe paediatric malaria in resource-limited settings. BMC Med 2015;3:1–27. doi:
    1. Dondorp AM, Desakorn V, Pongtavornpinyo W, Sahassananda D, Silamut K, Chotivanich K, et al. Estimation of the total parasite biomass in acute falciparum malaria from plasma PfHRP2. PLoS Med 2005;2(8):e204 Erratum in: PLoS Med 2005;2: 390. doi:
    1. Dondorp AM, Ince C, Charunwatthana P, Hanson J, van Kuijen A, Faiz MA, et al. Direct in vivo assessment of microcirculatory dysfunction in severe falciparum malaria. J Infect Dis 2008;197: 79–84. doi:
    1. Ponsford MJ, Medana IM, Prapansilp P, Hien TT, Lee SJ, Dondorp AM, et al. Sequestration and microvascular congestion are associated with coma in human cerebral malaria. J Infect Dis 2011;15: 663–671. doi:
    1. Dondorp AM, Lee SJ, Faiz MA, Mishra S, Price R, et al. The relationship between age and the manifestations of and mortality associated with severe malaria. Clin Infect Dis 2008;47: 151–157. doi:
    1. World Health Organization. Severe and complicated malaria. Trans R Soc Trop Med Hy 1986;80 (Suppl): 1–50.
    1. Munir M, Rampengan TH, Mustadjab I, Wulur FH. Heparin in the treatment of cerebral malaria (a preliminary report). Paediatr Indones 1976;11–12: 489–495.
    1. Munir M, Tjandra H, Rampengan TH, Mustad JABI, Wulur FH. Heparin in the treatment of cerebral malaria. Paediatr Indones 1980;20: 47–50.
    1. Udomsangpetch R, Wåhlin B, Carlson J, Berzins K, Torii M, Aikawa M, et al. Plasmodium falciparum-infected erythrocytes form spontaneous erythrocyte rosettes. J Exp Med 1989;169: 1835–1840.
    1. Carlson J, Helmby H, Hill AV, Brewster D, Greenwood BM, Wahlgren M. Human cerebral malaria: association with erythrocyte rosetting and lack of anti-rosetting antibodies. Lancet 1990;336: 1457–1460.
    1. Carlson J, Ekre HP, Helmby H, Gysin J, Greenwood BM, Wahlgren M. Standard heparin and heparin devoid of anti-coagulant activity disrupt Plasmodium falciparum erythrocyte rosettes. Am J Trop Med Hyg 1992;46: 595–602.
    1. Kulane A, Ekre HP, Perlmann P, Rombo L, Wahlgren M, Wahlin B. The effect of different heparin fractions on Plasmodium falciparum merozoite invasion in vitro. Am J Trop Med Hyg 1992;46: 589–594.
    1. Chen Q, Barragan A, Fernandez V, Sundström A, Schlichtherle M, Sahlén A, et al. Identification of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) as the rosetting ligand of the malaria parasite P. falciparum. J Exp Med 1998;187: 15–23.
    1. Barragan A, Fernandez V, Chen Q, von Euler A, Wahlgren M, Spillmann D. The duffy-binding- like domain 1 of Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) is a heparan sulfate ligand that requires 12 mers for binding. Blood 2000;95: 3594–3599.
    1. Vogt AM, Barragan A, Chen Q, Kironde F, Spillmann D, Wahlgren M. Heparan sulfate as endothelial receptor for P. falciparum-infected erythrocytes in malaria. Blood 2003;101: 1–7.
    1. Vogt AM, Winter G, Wahlgren M, Spillmann D. Heparan sulphate identified on human erythrocytes: a P. falciparum receptor. Biochem J 2004;381: 593–597. doi:
    1. Vogt AM, Pettersson F, Moll K, Jonsson C, Normark J, Ribacke U, et al. Release of sequestered malaria parasites upon injection of a glycosaminoglycan. PLoS Pathog 2006;2 doi:
    1. Leitgeb AM1, Blomqvist K, Cho-Ngwa F, Samje M, Nde P, Titanji V, et al. Low anticoagulant heparin disrupts Plasmodium falciparum rosettes in fresh clinical isolates. Am J Trop Med Hyg 2011;84: 390–396. doi:
    1. Patent PCT 64734PC2.
    1. Angeletti D, Sandalova T, Wahlgren M, Achour A. Binding of Subdomains 1/2 of PfEMP1- DBL1α to Heparan Sulfate or Heparin Mediates Plasmodium falciparum Rosetting. PLoSONE 2015;10(3):e0118898 doi:
    1. Lindahl U, Backström G, Thunberg L, Leder IG. Evidence for a 3-O-sulfated D-glucosamine residue in the antithrombin-binding sequence of heparin. Proc Natl Acad Sci USA 1980;77: 6551–6555
    1. European pharmacopoeia. Heparin Antihrombin dependent Anti-Xa Assay HAEM/056 (s/n 2698)
    1. European pharmacopoeia. Heparin Antihrombin dependent Anti-IIa Assay HAEM/057 (s/n 2725)
    1. World Health Association Declaration of Helsinki. Recommendations guiding physicians in biomedical research involving human subjects. Adopted by the 18th WMA General Assembly, Helsinki, Finland, June 1964, and amended by the 29th WMA General Assembly, Tokyo, Japan, October 1975 35th WMA General Assembly, Venice, Italy, October 1983 41st WMA General Assembly, Hong Kong, September 1989 48th WMA General Assembly, Somerset West, Republic of South Africa, October 1996.
    1. Clinical study protocol TMS02—A phase I/II, randomized, open label, active control, parallel assignment, safety/efficacy study of sevuparin as an adjunctive therapy in subjects affected with uncomplicated Plasmodium falciparum malaria.
    1. Carrara VI, Lwin KM, Phyo AP, Ashley E, Wiladphaingern J, Sriprawat K, et al. Malaria Burden and Artemisinin Resistance in the Mobile and Migrant Population on the Thai–Myanmar Border, 1999–2011: An Observational study. Plos One March 5, 2013,
    1. World Health Organization. Severe and complicated malaria. Trans R Soc Trop Med Hyg 200;94 (Suppl):51–90
    1. Desakorn V, Dondorp AM, Silamut K, Pongtavornpinyo W, Sahassananda D, Chotivanich K, et al. Stage-dependent production and release of histidine-rich protein 2 by plasmodium falciparum. Transaction of the Royal Society of tropical Medicine and Hygiene 2005. 99: 517–524. 15.
    1. Silamut K, Phu NH, Whitty C, Turner GD, Louwrier K, Mai NT, et al. A quantitative analysis of the microvascular sequestration of malaria parasites in the human brain. American Journal of Pathology, 1999. Vol 155, No 2: 395–410. doi:
    1. Moll, K, Kaneko, A, Scherf, A, Wahlgren, M. Methods in Malaria Research (ed 6th) 2014.
    1. Kiwuwa MS, Ribacke U, Moll K, et al. Genetic diversity of Plasmodium falciparum infections in mild and severe malaria of children from Kampala, Uganda. Parasitol Res 2013;112:1691–700. doi:
    1. Ribacke U, Moll K, Albrecht L, et al. Improved in vitro culture of Plasmodium falciparum permits establishment of clinical isolates with preserved multiplication, invasion and rosetting phenotypes. PLoS One 2013;8:1691–1700.
    1. Harrill AH, Roach J, Fier I, et al. The effects of heparins on the liver: application of mechanistic serum biomarkers in a randomized study in healthy volunteers. Clin Pharmacol Ther. 2012;92; 214–20. doi:
    1. Malanil® SPC.
    1. Weiss GE, Gilson PR, Taechalertpaisarn T, Tham WH4 de Jong NW, Harvey KL, et al. Revealing the sequence and resulting cellular morphology of receptor-ligand interactions during Plasmodium falciparum invasion of erythrocytes. PLoS Pathog 2015;11: doi:
    1. Ribacke U, Mok BW, Wirta V, Normark J, Lundeberg J, Kironde F, et al. Genome wide gene amplifications and deletions in Plasmodium falciparum. Mol Biochem Parasito 2007;155: 33–44.
    1. Boyle MJ, Richards JS, Gilson PR, Chai W, Beeson JG. Interactions with heparin-like molecules during erythrocyte invasion by Plasmodium falciparum merozoites. Blood 2010;115: 4559–4568 doi:
    1. Zhang Y, Jiang N, Lu H, Hou N, Piao X, Cai P, et al. Analysis of Plasmodium falciparum schizonts reveals heparin- binding merozoite proteins. J Proteome Res 2013;3;2185–93 doi:
    1. Kobayashi K, Takano R, Takemae H, Sugi T, Ishiwa A, Gong H, et al. Analyses of interactions between heparin and the apical surface proteins of Plasmodium falciparum. Sci Rep 2014;3: 3178 doi: Erratum in: Sci Rep 2014;4: 4349.
    1. Bruneel F, Tubach F, Corne P. Severe imported falciparum malaria: a cohort study in 400 critically ill adults. PLoS One. 8 doi: Erratum in: PLoS One 2010;5.
    1. Klonis N1, Xie SC, McCaw JM, Crespo-Ortiz MP, Zaloumis SG, Simpson JA, et al. Altered temporal response of malaria parasites determines differential sensitivity to artemisinin. Proc Natl Acad Sci U S A 2013;26: 5157–5162. doi:

Source: PubMed

3
Se inscrever