Cancer as a mitochondrial metabolic disease

Thomas N Seyfried, Thomas N Seyfried

Abstract

Cancer is widely considered a genetic disease involving nuclear mutations in oncogenes and tumor suppressor genes. This view persists despite the numerous inconsistencies associated with the somatic mutation theory. In contrast to the somatic mutation theory, emerging evidence suggests that cancer is a mitochondrial metabolic disease, according to the original theory of Otto Warburg. The findings are reviewed from nuclear cytoplasm transfer experiments that relate to the origin of cancer. The evidence from these experiments is difficult to reconcile with the somatic mutation theory, but is consistent with the notion that cancer is primarily a mitochondrial metabolic disease.

Keywords: Warburg effect; carcinogenesis; cybrids; fermentation; microenvironment; mitochondria; oxidative phosphorylation; tumorigenesis.

Figures

Figure 1
Figure 1
Nuclei from brain tumors support normal mouse embryonic development. (A) H&E staining of a mouse embryo (embryonic day, E-7.5) derived from a cell containing the transplanted “nucleus” from a medulloblastoma tumor. (B) the boxed area in (A) (at a higher magnification) showing the three germ layers; ecto-placental cone (pla); embryonic endoderm (end); embryonic mesoderm (mes,); embryonic ectoderm (ect), Scale bar, 20 μm. The cytoplasm will contain normal mitochondria. The results show that a nucleus derived from a brain tumor can direct normal embryonic development when implanted into normal cytoplasm. Reprinted with permission from Li et al. (2003).
Figure 2
Figure 2
Mouse embryo cloned from tumor cell nucleus. An E-9.5 mouse embryo cloned from a melanoma-derived R545-1 embryonic stem cell. The embryo expressed neural tube closure, a beating heart, and normal limb bud development consistent with regulated cell growth. The result shows that the nucleus of a malignant melanoma can direct early mouse development when placed into normal cytoplasm containing normal mitochondria. However, irreversible genetic alterations, from the melanoma donor genome, disrupted complete development similar to the situation found in Lucke frogs that were cloned from nuclei of renal tumors (McKinnell et al., 1969). Reprinted from in this figure (Hochedlinger et al., 2004) with permission.
Figure 3
Figure 3
Role of the nucleus and mitochondria in the origin of tumors. Summary of a role of the mitochondria in the origin of tumorigenesis, as we previously described (Seyfried, ; Seyfried et al., 2014). Normal cells are shown in green with nuclear and mitochondrial morphology indicative of normal gene expression and respiration, respectively. Tumor cells are shown in red with abnormal nuclear and mitochondrial morphology indicative of genomic instability and abnormal respiration, respectively. “(1) Normal cells beget normal cells. (2) Tumor cells beget tumor cells. (3) Transfer of a tumor cell nucleus into a normal cytoplasm begets normal cells, despite the presence of the tumor-associated genomic abnormalities. (4) Transfer of a normal cell nucleus into a tumor cell cytoplasm begets dead cells or tumor cells, but not normal cells. The results suggest that nuclear genomic defects alone cannot account for the origin of tumors, and that normal mitochondria can suppress tumorigenesis” (Seyfried, 2012d). Original diagram from Jeffrey Ling and Thomas N. Seyfried, with permission.

References

    1. Ackermann W. W., Kurtz H. (1952). The relation of herpes virus to host cell mitochondria. J. Exp. Med. 96, 151–157. 10.1084/jem.96.2.151
    1. Akimoto M., Niikura M., Ichikawa M., Yonekawa H., Nakada K., Honma Y., et al. . (2005). Nuclear DNA but not mtDNA controls tumor phenotypes in mouse cells. Biochem. Biophys. Res. Commun. 327, 1028–1035. 10.1016/j.bbrc.2004.12.105
    1. Allen N. J., Karadottir R., Attwell D. (2005). A preferential role for glycolysis in preventing the anoxic depolarization of rat hippocampal area CA1 pyramidal cells. J. Neurosci. 25, 848–859. 10.1523/JNEUROSCI.4157-04.2005
    1. Al Mamun A. A., Lombardo M. J., Shee C., Lisewski A. M., Gonzalez C., Lin D., et al. . (2012). Identity and function of a large gene network underlying mutagenic repair of DNA breaks. Science 338, 1344–1348. 10.1126/science.1226683
    1. Baker S. G., Kramer B. S. (2007). Paradoxes in carcinogenesis: new opportunities for research directions. BMC Cancer 7:151. 10.1186/1471-2407-7-151
    1. Bartesaghi S., Graziano V., Galavotti S., Henriquez N. V., Betts J., Saxena J., et al. . (2015). Inhibition of oxidative metabolism leads to p53 genetic inactivation and transformation in neural stem cells. Proc. Natl. Acad. Sci. U.S.A. 112, 1059–1064. 10.1073/pnas.1413165112
    1. Bissell M. J., Hines W. C. (2011). Why don't we get more cancer? A proposed role of the microenvironment in restraining cancer progression. Nat. Med. 17, 320–329. 10.1073/pnas.1413165112
    1. Burgio E., Migliore L. (2015). Towards a systemic paradigm in carcinogenesis: linking epigenetics and genetics. Mol. Biol. Rep. 42, 777–790. 10.1007/s11033-014-3804-3
    1. Burk D., Schade A. L. (1956). On respiratory impairment in cancer cells. Science 124, 270–272.
    1. Burk D., Woods M., Hunter J. (1967). On the significance of glucolysis for cancer growth, with special reference to Morris rat hepatomas. J. Natl. Cancer Inst. 38, 839–863.
    1. Cairns J. (1981). The origin of human cancers. Nature 289, 353–357. 10.1038/289353a0
    1. Carlson D. L., Sauerbier W., Rollins-Smith L. A., Mckinnell R. G. (1994). Fate of herpesvirus DNA in embryos and tadpoles cloned from Lucke renal carcinoma nuclei. J. Comp. Pathol. 111, 197–204. 10.1016/S0021-9975(05)80051-9
    1. Chandra D., Singh K. K. (2011). Genetic insights into OXPHOS defect and its role in cancer. Biochim. Biophys. Acta 1807, 620–625. 10.1016/j.bbabio.2010.10.023
    1. Chernet B. T., Fields C., Levin M. (2014). Long-range gap junctional signaling controls oncogene-mediated tumorigenesis in Xenopus laevis embryos. Front. Physiol 5:519. 10.3389/fphys.2014.00519
    1. Chernet B. T., Levin M. (2014). Transmembrane voltage potential of somatic cells controls oncogene-mediated tumorigenesis at long-range. Oncotarget 5, 3287–3306.
    1. Christofferson T. (2014). Tripping Over the Truth: The Metabolic Theory of Cancer North Charleston, SC: Createspace.
    1. Clarke S. L., Bowron A., Gonzalez I. L., Groves S. J., Newbury-Ecob R., Clayton N., et al. . (2013). Barth syndrome. Orphanet J. Rare Dis 8:23. 10.1186/1750-1172-8-23
    1. Claypool S. M., Koehler C. M. (2012). The complexity of cardiolipin in health and disease. Trends Biochem. Sci. 37, 32–41. 10.1016/j.tibs.2011.09.003
    1. Coleman W. B., Wennerberg A. E., Smith G. J., Grisham J. W. (1993). Regulation of the differentiation of diploid and some aneuploid rat liver epithelial (stemlike) cells by the hepatic microenvironment. Am. J. Pathol. 142, 1373–1382.
    1. Cruz-Bermúdez A., Vallejo C. G., Vicente-Blanco R. J., Gallardo M. E., Fernández-Moreno M. A., Quintanilla M., et al. . (2015). Enhanced tumorigenicity by mitochondrial DNA mild mutations. Oncotarget 6, 13628–13643.
    1. Cuezva J. M., Ortega A. D., Willers I., Sanchez-Cenizo L., Aldea M., Sanchez-Arago M. (2009). The tumor suppressor function of mitochondria: translation into the clinics. Biochim. Biophys. Acta 1792, 1145–1158. 10.1016/j.bbadis.2009.01.006
    1. D'agostino D. M., Bernardi P., Chieco-Bianchi L., Ciminale V. (2005). Mitochondria as functional targets of proteins coded by human tumor viruses. Adv. Cancer Res. 94, 87–142. 10.1016/s0065-230x(05)94003-7
    1. Dai Z., Yin J., He H., Li W., Hou C., Qian X., et al. . (2010). Mitochondrial comparative proteomics of human ovarian cancer cells and their platinum-resistant sublines. Proteomics 10, 3789–3799. 10.1002/pmic.200900685
    1. Darlington C. D. (1948). The plasmagene theory of the origin of cancer. Br. J. Cancer 2, 118–126. 10.1038/bjc.1948.17
    1. Deighton R. F., Le Bihan T., Martin S. F., Gerth A. M., McCulloch M., Edgar J. M., et al. . (2014). Interactions among mitochondrial proteins altered in glioblastoma. J. Neurooncol. 118, 247–256. 10.1007/s11060-014-1430-5
    1. Dupuis L., Gonzalez de Aguilar J. L., Oudart H., de Tapia M., Barbeito L., Loeffler J. P. (2004a). Mitochondria in amyotrophic lateral sclerosis: a trigger and a target. Neurodegener. Dis. 1, 245–254. 10.1159/000085063
    1. Dupuis L., Oudart H., Rene F., Gonzalez De Aguilar J. L., Loeffler J. P. (2004b). Evidence for defective energy homeostasis in amyotrophic lateral sclerosis: benefit of a high-energy diet in a transgenic mouse model. Proc. Natl. Acad. Sci. U.S.A. 101, 11159–11164. 10.1073/pnas.0402026101
    1. Dvorak H. F. (1986). Tumors: wounds that do not heal. Similarities between tumor stroma generation and wound healing. N. Engl. J. Med 315, 1650–1659. 10.1056/NEJM198612253152606
    1. Elliott R. L., Jiang X. P., Head J. F. (2012). Mitochondria organelle transplantation: introduction of normal epithelial mitochondria into human cancer cells inhibits proliferation and increases drug sensitivity. Breast Cancer Res. Treat. 136, 347–354. 10.1007/s10549-012-2283-2
    1. Eng C., Kiuru M., Fernandez M. J., Aaltonen L. A. (2003). A role for mitochondrial enzymes in inherited neoplasia and beyond. Nat. Rev. Cancer 3, 193–202. 10.1038/nrc1013
    1. Faggioli F., Sacco M. G., Susani L., Montagna C., Vezzoni P. (2008). Cell fusion is a physiological process in mouse liver. Hepatology 48, 1655–1664. 10.1002/hep.22488
    1. Fosslien E. (2008). Cancer morphogenesis: role of mitochondrial failure. Ann Clin Lab Sci 38, 307–329.
    1. Gatenby R. A., Gillies R. J. (2004). Why do cancers have high aerobic glycolysis? Nat. Rev. Cancer 4, 891–899. 10.1038/nrc1478
    1. Gurdon J. B., Wilmut I. (2011). Nuclear transfer to eggs and oocytes. Cold Spring Harb. Perspect. Biol. 3, 1–14. 10.1101/cshperspect.a002659
    1. Hanahan D., Weinberg R. A. (2011). Hallmarks of cancer: the next generation. Cell 144, 646–674. 10.1016/j.cell.2011.02.013
    1. Harris H. (1988). The analysis of malignancy by cell fusion: the position in 1988. Cancer Res. 48, 3302–3306.
    1. Hochedlinger K., Blelloch R., Brennan C., Yamada Y., Kim M., Chin L., et al. . (2004). Reprogramming of a melanoma genome by nuclear transplantation. Genes Dev. 18, 1875–1885. 10.1101/gad.1213504
    1. Holliday R. (2006). Epigenetics: a historical overview. Epigenetics 1, 76–80. 10.4161/epi.1.2.2762
    1. Holme E., Larsson N. G., Oldfors A., Tulinius M., Sahlin P., Stenman G. (1993). Multiple symmetric lipomas with high levels of mtDNA with the tRNA(Lys) A–>G(8344) mutation as the only manifestation of disease in a carrier of myoclonus epilepsy and ragged-red fibers (MERRF) syndrome. Am. J. Hum. Genet. 52, 551–556.
    1. Hou J. P., Ma J. (2014). DawnRank: discovering personalized driver genes in cancer. Genome Med. 6, 56. 10.1186/s13073-014-0056-8
    1. Howell A. N., Sager R. (1978). Tumorigenicity and its suppression in cybrids of mouse and Chinese hamster cell lines. Proc. Natl. Acad. Sci. U.S.A. 75, 2358–2362. 10.1073/pnas.75.5.2358
    1. Hu Y., Lu W., Chen G., Wang P., Chen Z., Zhou Y., et al. . (2012). K-ras(G12V) transformation leads to mitochondrial dysfunction and a metabolic switch from oxidative phosphorylation to glycolysis. Cell Res. 22, 399–412. 10.1038/cr.2011.145
    1. Huysentruyt L. C., Seyfried T. N. (2010). Perspectives on the mesenchymal origin of metastatic cancer. Cancer Metastasis Rev. 29, 695–707. 10.1007/s10555-010-9254-z
    1. Israel B. A., Schaeffer W. I. (1987). Cytoplasmic suppression of malignancy. In Vitro Cell. Dev. Biol. 23, 627–632. 10.1007/BF02621071
    1. Israel B. A., Schaeffer W. I. (1988). Cytoplasmic mediation of malignancy. In Vitro Cell. Dev. Biol. 24, 487–490. 10.1007/BF02628504
    1. Jonasson J., Harris H. (1977). The analysis of malignancy by cell fusion. VIII. Evidence for the intervention of an extra-chromosomal element. J. Cell Sci 24, 255–263.
    1. Kaipparettu B. A., Ma Y., Park J. H., Lee T. L., Zhang Y., Yotnda P., et al. . (2013). Crosstalk from non-cancerous mitochondria can inhibit tumor properties of metastatic cells by suppressing oncogenic pathways. PLoS ONE 8:e61747. 10.1371/journal.pone.0061747
    1. Kiebish M. A., Han X., Cheng H., Chuang J. H., Seyfried T. N. (2008). Cardiolipin and electron transport chain abnormalities in mouse brain tumor mitochondria: lipidomic evidence supporting the Warburg theory of cancer. J. Lipid Res. 49, 2545–2556. 10.1194/jlr.M800319-JLR200
    1. Kiebish M. A., Han X., Cheng H., Seyfried T. N. (2009). In vitro growth environment produces lipidomic and electron transport chain abnormalities in mitochondria from non-tumorigenic astrocytes and brain tumours. ASN Neuro 1:e00011. 10.1042/AN20090011
    1. Kiebish M. A., Seyfried T. N. (2005). Absence of pathogenic mitochondrial DNA mutations in mouse brain tumors. BMC Cancer 5:102. 10.1186/1471-2407-5-102
    1. King M. P., Attardi G. (1988). Injection of mitochondria into human cells leads to a rapid replacement of the endogenous mitochondrial DNA. Cell 52, 811–819. 10.1016/0092-8674(88)90423-0
    1. King M. P., Attardi G. (1989). Human cells lacking mtDNA: repopulation with exogenous mitochondria by complementation. Science 246, 500–503. 10.1126/science.2814477
    1. Klaunig J. E., Kamendulis L. M., Hocevar B. A. (2010). Oxidative stress and oxidative damage in carcinogenesis. Toxicol. Pathol. 38, 96–109. 10.1177/0192623309356453
    1. Koura M., Isaka H., Yoshida M. C., Tosu M., Sekiguchi T. (1982). Suppression of tumorigenicity in interspecific reconstituted cells and cybrids. Gann 73, 574–580.
    1. Li L., Connelly M. C., Wetmore C., Curran T., Morgan J. I. (2003). Mouse embryos cloned from brain tumors. Cancer Res. 63, 2733–2736.
    1. McKinnell R. G., Deggins B. A., Labat D. D. (1969). Transplantation of pluripotential nuclei from triploid frog tumors. Science 165, 394–396. 10.1126/science.165.3891.394
    1. McLeod H. L. (2013). Cancer pharmacogenomics: early promise, but concerted effort needed. Science 339, 1563–1566. 10.1126/science.1234139
    1. McNutt M. (2014). Journals unite for reproducibility. Science 346, 679. 10.1126/science.1250475
    1. Minocherhomji S., Tollefsbol T. O., Singh K. K. (2012). Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics 7, 326–334. 10.4161/epi.19547
    1. Mintz B., Illmensee K. (1975). Normal genetically mosaic mice produced from malignant teratocarcinoma cells. Proc. Natl. Acad. Sci. U.S.A. 72, 3585–3589.
    1. Nanney D. L. (1958). Epigenetic Control Systems. Proc. Natl. Acad. Sci. U.S.A. 44, 712–717. 10.1073/pnas.44.7.712
    1. Pavlides S., Whitaker-Menezes D., Castello-Cros R., Flomenberg N., Witkiewicz A. K., Frank P. G., et al. . (2009). The reverse Warburg effect: aerobic glycolysis in cancer associated fibroblasts and the tumor stroma. Cell Cycle 8, 3984–4001. 10.4161/cc.8.23.10238
    1. Pedersen P. L. (1978). Tumor mitochondria and the bioenergetics of cancer cells. Prog. Exp. Tumor Res. 22, 190–274. 10.1159/000401202
    1. Petros J. A., Baumann A. K., Ruiz-Pesini E., Amin M. B., Sun C. Q., Hall J., et al. . (2005). mtDNA mutations increase tumorigenicity in prostate cancer. Proc. Natl. Acad. Sci. U.S.A 102, 719–724. 10.1073/pnas.0408894102
    1. Rebbeck C. A., Leroi A. M., Burt A. (2011). Mitochondrial capture by a transmissible cancer. Science 331, 303. 10.1126/science.1197696
    1. Ristow M. (2006). Oxidative metabolism in cancer growth. Curr. Opin. Clin. Nutr. Metab. Care 9, 339–345. 10.1097/01.mco.0000232892.43921.98
    1. Ristow M., Cuezva J. M. (2009). Oxidative phosphorylation and cancer: the ongoingwarburg hypothesis, in Cellular Respiration and Carcinogenesis, eds Sarangarajan R., Apte S. (New York, NY: Humana Press; ), 1–18.
    1. Rosen D. R. (1993). Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 364, 362. 10.1038/362059a0
    1. Roskelley R. C., Mayer N., Horwitt B. N., Salter W. T. (1943). Studies in cancer. Vii. enzyme deficiency in human and experimental cancer. J. Clin. Invest 22, 743–751. 10.1172/JCI101447
    1. Rous P. (1959). Surmise and fact on the nature of cancer. Nature 183, 1357–1361. 10.1038/1831357a0
    1. Rubin H. (1985). Cancer as a dynamic developmental disorder. Cancer Res. 45, 2935–2942.
    1. Salas A., Yao Y. G., Macaulay V., Vega A., Carracedo A., Bandelt H. J. (2005). A critical reassessment of the role of mitochondria in tumorigenesis. PLoS Med 2:e296. 10.1371/journal.pmed.0020296
    1. Saxon P. J., Srivatsan E. S., Stanbridge E. J. (1986). Introduction of human chromosome 11 via microcell transfer controls tumorigenic expression of HeLa cells. EMBO J. 5, 3461–3466.
    1. Schon E. A., Dimauro S., Hirano M. (2012). Human mitochondrial DNA: roles of inherited and somatic mutations. Nat. Rev. Genet. 13, 878–890. 10.1038/nrg3275
    1. Seoane M., Mosquera-Miguel A., Gonzalez T., Fraga M., Salas A., Costoya J. A. (2011). The mitochondrial genome is a “genetic sanctuary” during the oncogenic process. PLoS ONE 6:e23327. 10.1371/journal.pone.0023327
    1. Seyfried T. N. (2001). Perspectives on brain tumor formation involving macrophages, glia, and neural stem cells. Perspect. Biol. Med. 44, 263–282. 10.1353/pbm.2001.0035
    1. Seyfried T. N. (2012a). Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. Hoboken, NJ: John Wiley & Sons.
    1. Seyfried T. N. (2012b). Cancer prevention, in Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. (Hoboken, NJ: John Wiley & Sons; ), 375–386.
    1. Seyfried T. N. (2012c). Genes, respiration, viruses, and cancer, in Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. (Hoboken, NJ: John Wiley & Sons; ), 145–176.
    1. Seyfried T. N. (2012d). Mitochondria: the ultimate tumor suppressor, in Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. (Hoboken, NJ: John Wiley & Sons; ), 195–205.
    1. Seyfried T. N. (2012e). Respiratory insufficiency, the retrograde response, and the origin of cancer, in Cancer as a Metabolic Disease: On the Origin, Management, and Prevention of Cancer. (Hoboken, NJ: John Wiley & Sons; ), 177–194.
    1. Seyfried T. N., Flores R. E., Poff A. M., D'agostino D. P. (2014). Cancer as a metabolic disease: implications for novel therapeutics. Carcinogenesis 35, 515–527. 10.1093/carcin/bgt480
    1. Seyfried T. N., Huysentruyt L. C. (2013). On the origin of cancer metastasis. Crit. Rev. Oncog. 18, 43–73. 10.1615/CritRevOncog.v18.i1-2.40
    1. Seyfried T. N., Mukherjee P. (2005). Targeting energy metabolism in brain cancer: review and hypothesis. Nutr. Metab. (Lond.) 2:30. 10.1186/1743-7075-2-30
    1. Seyfried T. N., Shelton L. M. (2010). Cancer as a metabolic disease. Nutr. Metab. (Lond.) 7:7. 10.1186/1743-7075-7-7
    1. Shay J. W., Liu Y. N., Werbin H. (1988). Cytoplasmic suppression of tumor progression in reconstituted cells. Somat. Cell Mol. Genet. 14, 345–350. 10.1007/BF01534642
    1. Shay J. W., Werbin H. (1988). Cytoplasmic suppression of tumorigenicity in reconstructed mouse cells. Cancer Res. 48, 830–833.
    1. Singh K. K., Kulawiec M., Still I., Desouki M. M., Geradts J., Matsui S. (2005). Inter-genomic cross talk between mitochondria and the nucleus plays an important role in tumorigenesis. Gene 354, 140–146. 10.1016/j.gene.2005.03.027
    1. Sonnenschein C., Soto A. M. (1999). The Society of Cells: Cancer and the Control of Cell Proliferation New York, NY: Springer-Verlag.
    1. Sonnenschein C., Soto A. M. (2000). Somatic mutation theory of carcinogenesis: why it should be dropped and replaced. Mol. Carcinog. 29, 205–211.
    1. Sonnenschein C., Soto A. M. (2008). Theories of carcinogenesis: an emerging perspective. Semin. Cancer Biol. 18, 372–377. 10.1016/j.semcancer.2008.03.012
    1. Soto A. M., Sonnenschein C. (2004). The somatic mutation theory of cancer: growing problems with the paradigm? Bioessays 26, 1097–1107. 10.1002/bies.20087
    1. Szent-Gyorgyi A. (1977). The living state and cancer. Proc. Natl. Acad. Sci. U.S.A. 74, 2844–2847. 10.1073/pnas.74.7.2844
    1. Tan A. S., Baty J. W., Dong L. F., Bezawork-Geleta A., Endaya B., Goodwin J., et al. . (2015). Mitochondrial Genome Acquisition Restores Respiratory Function and Tumorigenic Potential of Cancer Cells without Mitochondrial DNA. Cell Metab. 21, 81–94. 10.1016/j.cmet.2014.12.003
    1. Tomasetti C., Vogelstein B. (2015). Cancer etiology. Variation in cancer risk among tissues can be explained by the number of stem cell divisions. Science 347, 78–81. 10.1126/science.1260825
    1. Unwin R. D., Craven R. A., Harnden P., Hanrahan S., Totty N., Knowles M., et al. . (2003). Proteomic changes in renal cancer and co-ordinate demonstration of both the glycolytic and mitochondrial aspects of the Warburg effect. Proteomics 3, 1620–1632. 10.1002/pmic.200300464
    1. Vaux D. L. (2011). In defense of the somatic mutation theory of cancer. Bioessays 33, 341–343. 10.1002/bies.201100022
    1. Veech R. L. (2004). The therapeutic implications of ketone bodies: the effects of ketone bodies in pathological conditions: ketosis, ketogenic diet, redox states, insulin resistance, and mitochondrial metabolism. Prostaglandins Leukot. Essent. Fatty Acids 70, 309–319. 10.1016/j.plefa.2003.09.007
    1. Verschoor M. L., Ungard R., Harbottle A., Jakupciak J. P., Parr R. L., Singh G. (2013). Mitochondria and cancer: past, present, and future. Biomed Res. Int 2013:612369. 10.1155/2013/612369
    1. Vigliani M. C., Polo P., Chio A., Giometto B., Mazzini L., Schiffer D. (2000). Patients with amyotrophic lateral sclerosis and cancer do not differ clinically from patients with sporadic amyotrophic lateral sclerosis. J. Neurol. 247, 778–782. 10.1007/s004150070092
    1. Vogelstein B., Papadopoulos N., Velculescu V. E., Zhou S., Diaz L. A., Jr., Kinzler K. W., et al. . (2013). Cancer genome landscapes. Science 339, 1546–1558. 10.1126/science.1235122
    1. Warburg O. (1956a). On the origin of cancer cells. Science 123, 309–314. 10.1126/science.123.3191.309
    1. Warburg O. (1956b). On the respiratory impairment in cancer cells. Science 124, 269–270.
    1. Warburg O. (1969). Revised lindau lectures: the prime cause of cancer and prevention—Parts 1 & 2, in Meeting of the Nobel-Laureates, ed Burk D. (Lindau: K.Triltsch), 1–9. Available online at:
    1. Waris G., Ahsan H. (2006). Reactive oxygen species: role in the development of cancer and various chronic conditions. J. Carcinog 5:14. 10.1186/1477-3163-5-14
    1. Woods M. W., Du Buy H. G. (1945). Cytoplasmic diseases and cancer. Science 102, 591–593. 10.1126/science.102.2658.591

Source: PubMed

3
Se inscrever