A randomised controlled trial evaluating arrhythmia burden, risk of sudden cardiac death and stroke in patients with Fabry disease: the role of implantable loop recorders (RaILRoAD) compared with current standard practice

Ravi Vijapurapu, Rebecca Kozor, Derralynn A Hughes, Peter Woolfson, Ana Jovanovic, Patrick Deegan, Rosemary Rusk, Gemma A Figtree, Michel Tchan, David Whalley, Dipak Kotecha, Francisco Leyva, James Moon, Tarekegn Geberhiwot, Richard P Steeds, Ravi Vijapurapu, Rebecca Kozor, Derralynn A Hughes, Peter Woolfson, Ana Jovanovic, Patrick Deegan, Rosemary Rusk, Gemma A Figtree, Michel Tchan, David Whalley, Dipak Kotecha, Francisco Leyva, James Moon, Tarekegn Geberhiwot, Richard P Steeds

Abstract

Background: Fabry disease (FD) is a genetic disorder caused by a deficiency in the enzyme alpha-galactosidase A, leading to an accumulation of glycosphingolipids in tissues across the body. Cardiac disease is the leading cause of morbidity and mortality. Advanced disease, characterised by extensive left ventricular hypertrophy, ventricular dysfunction and fibrosis, is known to be associated with an increase in arrhythmia. Data identifying risk factors for arrhythmia are limited, and no Fabry-specific risk stratification tool is available to select those who may benefit from initiation of medical or device therapy (implantable cardiac defibrillators). Current monitoring strategies have a limited diagnostic yield, and implantable loop recorders (ILRs) have the potential to change treatment and clinical outcomes.

Aim: The aim of this study is to determine whether ILRs can (1) improve arrhythmia detection in FD and (2) identify risk predictors of arrhythmia.

Methods: A prospective, 5-year, open-label, international, multi-centre randomised controlled trial of a minimum of 164 participants with genetically or enzymatically confirmed FD (or both) who have evidence of cardiac disease will be recruited from five centres: Queen Elizabeth Hospital, Birmingham, UK; Salford Royal Hospital, Salford, UK; Royal Free Hospital, London, UK; Addenbrookes Hospital, Cambridge, UK; and Westmead Hospital, Sydney, Australia. Participants will be block-randomised (1:1) to two study arms for cardiac monitoring (i) control arm: standard of care with annual 24 h or 5-day Holter monitor or (ii) treatment arm: continuous cardiac monitoring with ILR implantation plus standard of care. Participants will undergo multiple investigations-blood/urine biomarkers, 12-lead and advanced electrocardiogram (ECG) recording, echocardiography and cardiovascular magnetic resonance (CMR) imaging-at baseline and 6-12 monthly follow-up visits. The primary endpoint is identification of arrhythmia requiring initiation or alteration in therapy. Secondary outcome measures include characterising the risk factors associated with arrhythmia and outcome data in the form of imaging, ECG and blood biomarkers.

Discussion: This is the first study evaluating arrhythmia burden and the use of ILR across the spectrum of risk profiles in Fabry cardiomyopathy. This will enable detailed characterisation of arrhythmic risk predictors in FD and ultimately support formulation of Fabry-specific guidance in this high-risk population.

Trial registration: ClinicalTrials.gov ( NCT03305250 ). Registered on 9 October 2017.

Keywords: Arrhythmia; Cardiomyopathy; Fabry; ILR.

Conflict of interest statement

RK has received honoraria from Sanofi-Genzyme. DH has received honoraria from Shire, Sanofi-Genzyme and Amicus. The other authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study timeline. A minimum of 164 participants will undergo baseline investigation and randomisation to standard care with annual Holter monitoring or to intervention with an implantable loop recorder device for continued electrocardiogram (ECG) monitoring. All participants will be followed up at 12 monthly intervals (centre-dependent) for the entire 36-month study period, with investigations repeated at each time-point.
Fig. 2
Fig. 2
Block randomisation process. The high-risk features include LVH (MWT > 12 mm or elevated LVMi greater than two SD), LA dilatation (M-mode measurement > 40 mm or biplane volume > 34 mL on echo), elevated troponin (above centre specific reference ranges), prolonged QRS duration > 120 ms, presence of LGE on CMR imaging, a MSSI greater than 20. *There will be a variable number of patients from each high-risk feature group to ensure a variable risk profile within the study cohort (zero risk factors – 20 participants, one risk factor – 40 participants, two risk factors – 40 participants, three risk factors – 40 participants, four or five risk factors – 24 participants. Abbreviations: CMR cardiac magnetic resonance imaging, ECG electrocardiogram, ILR implantable loop recorder, LA left atrium, LGE late gadolinium enhancement, LVH left ventricular hypertrophy, LVMi indexed left ventricular mass, MSSI Mainz severity score index; MWT maximum wall thickness, SD standard deviation, TTE transthoracic echocardiography.
Fig. 3
Fig. 3
Summary demonstrating participant activity for the duration of the study. All study visits will occur during routine clinical follow-up visits for Fabry disease surveillance, with only two extra hospital visits for screening and implantable loop recorder (ILR) insertion. The shaded columns represent optional monitoring visits that will be centre-dependent. Adapted from SPIRIT (Standard Protocol Items Recommendations for Interventional Trials) figure (2013). Abbreviations: CMR cardiac magnetic resonance, ECG electrocardiogram, QOL quality of life.

References

    1. Van der Tol L, Smid BE, Poorthuis BJHM, Biegstraaten M, Deprez RHL, Linthorst GE, et al. A systematic review on screening for Fabry disease: prevalence of individuals with genetic variants of unknown significance. J Med Genet. 2014;51:1–9. doi: 10.1136/jmedgenet-2013-101857.
    1. Adalsteinsdottir B, Palsson R, Desnick RJ, Gardarsdottir M, Teekakirikul P, Maron M, et al. Fabry disease in families with hypertrophic cardiomyopathy: clinical manifestations in classic and later-onset phenotypes. Circ Cardiovasc Genet. 2017;10:1–10. doi: 10.1161/CIRCGENETICS.116.001639.
    1. Baig S, Vijapurapu R, Alharbi F, Nordin S, Kozor R, Moon J et al. Diagnosis and treatment of the cardiovascular consequences of Fabry disease. QJM. 2018; Epub ahead of print.
    1. Linhart A, Kampmann C, Zamorano JL, Sunder-Plassmann G, Beck M, Mehta A, et al. Cardiac manifestations of Anderson-Fabry disease: results from the international Fabry outcome survey. Eur Heart J. 2007;28:1228–1235. doi: 10.1093/eurheartj/ehm153.
    1. Seydelmann N, Wanner C, Störk S, Ertl G, Weidemann F. Fabry disease and the heart. Best Pract Res Clin Endocrinol Metab. 2015;29:195–204. doi: 10.1016/j.beem.2014.10.003.
    1. Baig S, Edwards N, Kotecha D, Liu B, Nordin S, Kozor R, et al. Ventricular arrhythmia and sudden cardiac death in Fabry disease: a systematic review of risk factors in clinical practice. Europace. 2017;0:1–9.
    1. O'Mahony C., Coats C., Cardona M., Garcia A., Calcagnino M., Murphy E., Lachmann R., Mehta A., Hughes D., Elliott P. M. Incidence and predictors of anti-bradycardia pacing in patients with Anderson-Fabry disease. Europace. 2011;13(12):1781–1788. doi: 10.1093/europace/eur267.
    1. Elliott PM, Anastasakis A, Borger MA, Borggrefe M, Cecchi F, Charron P et al. 2014 ESC Guidelines on diagnosis and management of hypertrophic cardiomyopathy: the Task Force for the diagnosis and management of hypertrophic cardiomyopathy of the European Society of Cardiology (ESC). Eur Heart J. 2014;35:2733–79.
    1. Douglas Pamela K., Batdorf Niles J., Evans Richard T., Feiveson Alan H., Arenare Brian, Schlegel Todd T. Temporal and postural variation of 12-lead high-frequency QRS electrocardiographic signals in asymptomatic individuals. Journal of Electrocardiology. 2006;39(3):259–265. doi: 10.1016/j.jelectrocard.2005.10.011.
    1. Starc V, Schlegel T. Real-time multichannel system for beat-to-beat QT interval variability. J Electrocardiol. 2006;39:358–367. doi: 10.1016/j.jelectrocard.2006.03.004.
    1. Gleeson Sarah, Liao Yi-Wen, Dugo Clementina, Cave Andrew, Zhou Lifeng, Ayar Zina, Christiansen Jonathan, Scott Tony, Dawson Liane, Gavin Andrew, Schlegel Todd T., Gladding Patrick. ECG-derived spatial QRS-T angle is associated with ICD implantation, mortality and heart failure admissions in patients with LV systolic dysfunction. PLOS ONE. 2017;12(3):e0171069. doi: 10.1371/journal.pone.0171069.
    1. Bacharova Ljuba, Estes Harvey E, Schocken Douglas D, Ugander Martin, Soliman Elsayed Z, Hill Joseph A, Bang Lia E, Schlegel Todd T. The 4th Report of the Working Group on ECG diagnosis of Left Ventricular Hypertrophy. Journal of Electrocardiology. 2017;50(1):11–15. doi: 10.1016/j.jelectrocard.2016.11.003.
    1. Schlegel T, Kulecz W, Feiveson A, Greco E, Depalma J, Starc V et al. Accuracy of advanced verses strictly conventional 12-lead ECG for detection and screening of coronary artery disease, left ventricular hypertrophy and left ventricular systolic dysfunction. BMC Cardiovasc Disord. 2010;10:28.
    1. Schmied Christian, Nowak Albina, Gruner Christiane, Olinger Eric, Debaix Huguette, Brauchlin Andreas, Frank Michelle, Reidt Saskia, Monney Pierre, Barbey Frédéric, Shah Dipen, Namdar Mehdi. The value of ECG parameters as markers of treatment response in Fabry cardiomyopathy. Heart. 2016;102(16):1309–1314. doi: 10.1136/heartjnl-2015-308897.
    1. Namdar M. Electrocardiographic changes and arrhythmia in Fabry disease. Front Cardiovasc Med. 2016;3:7. doi: 10.3389/fcvm.2016.00007.
    1. Issac TT, Dokainish H, Lakkis NM. Role of inflammation in initiation and perpetuation of atrial fibrillation. A systematic review of the published data. J Am Coll Cardiol. 2007;50:2021–2028. doi: 10.1016/j.jacc.2007.06.054.
    1. Li Jie, Solus Joseph, Chen Qingxia, Rho Young Hee, Milne Ginger, Stein C. Michael, Darbar Dawood. Role of inflammation and oxidative stress in atrial fibrillation. Heart Rhythm. 2010;7(4):438–444. doi: 10.1016/j.hrthm.2009.12.009.
    1. Nordin Sabrina, Kozor Rebecca, Bulluck Heerajnarain, Castelletti Silvia, Rosmini Stefania, Abdel-Gadir Amna, Baig Shanat, Mehta Atul, Hughes Derralynn, Moon James C. Cardiac Fabry Disease With Late Gadolinium Enhancement Is a Chronic Inflammatory Cardiomyopathy. Journal of the American College of Cardiology. 2016;68(15):1707–1708. doi: 10.1016/j.jacc.2016.07.741.
    1. Beck M. The Mainz Severity Score Index (MSSI): development and validation of a system for scoring the signs and symptoms of Fabry disease. Acta Paediatr Suppl. 2006;95:43–46. doi: 10.1080/08035320600618825.
    1. Harris PA, Taylor R, Thielke R, Payne J, Gonzalez N, Conde JG. Research electronic data capture (REDCap) – a metadata-driven methodology and workflow process for providing translational research informatics support. J Biomed Inform. 2009;42:377–381. doi: 10.1016/j.jbi.2008.08.010.
    1. Wharton G, Steeds R, Allen J, Phillips H, Jones R, Kanagala P, et al. A minimum dataset for ta standard adult transthoracic echocardiogram: a guideline protocol from the British Society of Echocardiography. Echo Res Pract. 2015;2:G9–G24. doi: 10.1530/ERP-14-0079.
    1. Yeung DF, Sirrs S, Tsang MYC, Gin K, Luong C, Jue J, et al. Echocardiographic assessment of patients with Fabry disease. J Am Soc Echocardiogr. 2018;31:639–649. doi: 10.1016/j.echo.2018.01.016.
    1. Nagueh A, Smiseth O, Appleton C, Byrd B, Dokainish H, Edvardsen T et al. ASE/EACVI Guidelines and Standards. Recommendations for the evaluation of left ventricular diastolic function by echocardiography: An update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr. 2016;29:277–314.
    1. Mor-Avi V, Lang RM, Badano LP, Belohlavek M, Cardim NM, Derumeaux G, et al. Current and evolving echocardiographic techniques for the quantitative evaluation of cardiac mechanics: ASE/EAE consensus statement on methodology and indications. Endorsed by the Japanese Society of echocardiography. J Am Soc Echocardiogr. 2011;24:277–313. doi: 10.1016/j.echo.2011.01.015.
    1. Kozor R, Callaghan F, Tchan M, Hamilton-Craig C, Figtree GA, Grieve SM. A disproportionate contribution of papillary muscles and trabeculations to total left ventricular mass makes choice of cardiovascular magnetic resonance analysis technique critical in Fabry disease. JCMR. 2015;17:22.
    1. Schlegel T, Kulecz W, Feiveson A, Greco E, DePalma J, Starc V, et al. Accuracy of advanced versus strictly conventional 12-lead ECG for detection and screening of coronary artery disease, left ventricular hypertrophy and left ventricular systolic dysfunction. BMC Cardiovasc Dis. 2010;10:28–39. doi: 10.1186/1471-2261-10-28.
    1. Kirchhof P, Benussi S, Kotecha D, Ahlsson A, Atar D, Casadei B et al. 2016 ESC Guidelines for the management of atrial fibrillation developed in collaboration with EACTS. The Task Force for the management of atrial fibrillation of the European Society of Cardiology (ESC). Developed with the special contribution of the European Heart Rhythm Association (EHRA) of the ESC Endorsed by the European Stroke Organisation (ESO) 2016.
    1. Brignole M, Auricchio A, Baron-Esquivias G, Bordachar P, Boriani G, Breithardt O et al. 2013 ESC Guidelines on cardiac pacing and cardiac resynchronization therapy: the Task Force on cardiac pacing and resynchronization therapy of the European Society of Cardiology (ESC). Developed in collaboration with the European Heart Rhythm Association (EHRA). Eur Heart J. 2013;34:2281–329.
    1. Shah Jaymin S., Hughes Derralynn A., Sachdev Bhavesh, Tome Maite, Ward Deirdre, Lee Philip, Mehta Atul B., Elliott Perry M. Prevalence and Clinical Significance of Cardiac Arrhythmia in Anderson-Fabry Disease. The American Journal of Cardiology. 2005;96(6):842–846. doi: 10.1016/j.amjcard.2005.05.033.
    1. Patel Vimal, O'Mahony Constantinos, Hughes Derralynn, Rahman Mohammad Shafiqur, Coats Caroline, Murphy Elaine, Lachmann Robin, Mehta Atul, Elliott Perry M. Clinical and genetic predictors of major cardiac events in patients with Anderson–Fabry Disease. Heart. 2015;101(12):961–966. doi: 10.1136/heartjnl-2014-306782.
    1. Krämer Johannes, Niemann Markus, Störk Stefan, Frantz Stefan, Beer Meinrad, Ertl Georg, Wanner Christoph, Weidemann Frank. Relation of Burden of Myocardial Fibrosis to Malignant Ventricular Arrhythmias and Outcomes in Fabry Disease. The American Journal of Cardiology. 2014;114(6):895–900. doi: 10.1016/j.amjcard.2014.06.019.
    1. Galli A, Ambrosini F, Lombardi F. Holter monitoring and loop recorders: from research to clinical practice. Arrhyth Electrophysiol Rev. 2016;5:136–143. doi: 10.15420/AER.2016.17.2.
    1. Weidemann F., Niemann M., Störk S., Breunig F., Beer M., Sommer C., Herrmann S., Ertl G., Wanner C. Long-term outcome of enzyme-replacement therapy in advanced Fabry disease: evidence for disease progression towards serious complications. Journal of Internal Medicine. 2013;274(4):331–341. doi: 10.1111/joim.12077.
    1. Weidemann Frank, Maier Sebastian K.G., Störk Stefan, Brunner Thomas, Liu Dan, Hu Kai, Seydelmann Nora, Schneider Andreas, Becher Jan, Canan-Kühl Sima, Blaschke Daniela, Bijnens Bart, Ertl Georg, Wanner Christoph, Nordbeck Peter. Usefulness of an Implantable Loop Recorder to Detect Clinically Relevant Arrhythmias in Patients With Advanced Fabry Cardiomyopathy. The American Journal of Cardiology. 2016;118(2):264–274. doi: 10.1016/j.amjcard.2016.04.033.
    1. Vijapurapu R, Baig S, Wheeldon N, Hughes D, Jovanovic A, Woolfson P, et al. A national study evaluating cardiac device implantation and usage in patients with Fabry disease. Eur Heart J. 2018;39(Suppl 1):ehy564.P1017.

Source: PubMed

3
Se inscrever