Fourteen-Day Bactericidal Activity, Safety, and Pharmacokinetics of Linezolid in Adults with Drug-Sensitive Pulmonary Tuberculosis

Andreas H Diacon, Veronique R De Jager, Rodney Dawson, Kim Narunsky, Naadira Vanker, Divan A Burger, Daniel Everitt, Frances Pappas, Jerry Nedelman, Carl M Mendel, Andreas H Diacon, Veronique R De Jager, Rodney Dawson, Kim Narunsky, Naadira Vanker, Divan A Burger, Daniel Everitt, Frances Pappas, Jerry Nedelman, Carl M Mendel

Abstract

Linezolid is increasingly used for the treatment of tuberculosis resistant to first-line agents, but the most effective dosing strategy is yet unknown. From November 2014 to November 2016, we randomized 114 drug-sensitive treatment-naive pulmonary tuberculosis patients from Cape Town, South Africa, to one of six 14-day treatment arms containing linezolid at 300 mg once daily (QD), 300 mg twice daily (BD), 600 mg QD, 600 mg BD, 1,200 mg QD, 1,200 mg three times per week (TIW), or a combination of isoniazid, rifampin, pyrazinamide, and ethambutol. Sixteen-hour sputum samples were collected overnight, and bactericidal activity was characterized by the daily percentage change in time to positivity (TTP) and the daily rate of change in log10(CFU). We also assessed the safety and pharmacokinetics of the study treatments. We found that bactericidal activity increased with increasing doses of linezolid. Based on the daily percentage change in TTP, activity was highest for 1,200 mg QD (4.5%; 95% Bayesian confidence interval [BCI], 3.3 to 5.6), followed by 600 mg BD (4.1%; BCI, 2.5 to 5.7), 600 mg QD (4.1%; BCI, 2.9 to 5.3), 300 mg BD (3.3%; BCI, 1.9 to 4.7), 300 mg QD (2.3%; BCI, 1.1 to 3.5), and 1,200 mg TIW (2.2%; BCI, 1.1 to 3.3). Similar results were seen with bactericidal activity characterized by the daily rate of change in CFU count. Antimycobacterial activity correlated positively with plasma drug exposure and percentage time over MIC. There were no unexpected adverse events. All linezolid doses showed bactericidal activity. For the same total daily dose, once-daily dosing proved to be at least as effective as a divided twice-daily dose. An intermittent dosing regimen, with 1,200 mg given three times weekly, showed the least activity. (This study has been registered at ClinicalTrials.gov under identifier NCT02279875.).

Keywords: Mycobacterium tuberculosis; bactericidal activity; linezolid.

Copyright © 2020 Diacon et al.

Figures

FIG 1
FIG 1
Participant disposition. One participant (receiving linezolid at 1,200 mg TIW) died from massive hemoptysis (not related to study treatment). Four participants (one each receiving 300 mg QD, 600 mg QD, 600 mg BD, and 1200 mg TIW) were withdrawn for elevations in liver enzymes (alanine aminotransferase [ALT] and/or aspartate aminotransferase [AST]) that reached grade 4 in two cases and grade 3 in another two cases. Two participants withdrew consent from further study participation (1,200 mg QD and 600 mg QD) for personal reasons not related to an adverse event. LIN, linezolid; QD, once daily; BID, twice daily; TIW, three times weekly; AE, adverse event. HRZE is a fixed-dose combination of isoniazid, rifampin, pyrazinamide, and ethambutol.
FIG 2
FIG 2
Posterior estimates of mean log10(TTP) over 14 treatment days. Abbreviations are as described for Fig. 1.
FIG 3
FIG 3
Posterior estimates of mean log10(CFU) count over 14 treatment days. Abbreviations are as described for Fig. 1.

References

    1. WHO. Global tuberculosis report. 2018. World Health Organization, Geneva, Switzerland.
    1. Lee M, Lee J, Carroll MW, Choi H, Min S, Song T, Via LE, Goldfeder LC, Kang E, Jin B, Park H, Kwak H, Kim H, Jeon HS, Jeong I, Joh JS, Chen RY, Olivier KN, Shaw PA, Follmann D, Song SD, Lee JK, Lee D, Kim CT, Dartois V, Park SK, Cho SN, Barry CE III. 2012. Linezolid for treatment of chronic extensively drug-resistant tuberculosis. N Engl J Med 367:1508–1518. doi:10.1056/NEJMoa1201964.
    1. WHO. 2019. WHO consolidated guidelines on drug-resistant tuberculosis treatment. World Health Organization, Geneva, Switzerland.
    1. Pfizer. 2018. ZYVOX (linezolid) injection, tablets and oral suspension. Highlights of prescribing information. Pfizer, New York, NY.
    1. Koh WJ, Kwon OJ, Gwak H, Chung JW, Cho SN, Kim WS, Shim TS. 2009. Daily 300 mg dose of linezolid for the treatment of intractable multidrug-resistant and extensively drug-resistant tuberculosis. J Antimicrob Chemother 64:388–391. doi:10.1093/jac/dkp171.
    1. Schecter GF, Scott C, True L, Raftery A, Flood J, Mase S. 2010. Linezolid in the treatment of multidrug-resistant tuberculosis. Clin Infect Dis 50:49–55. doi:10.1086/648675.
    1. Von der Lippe B, Sandven P, Brubakk O. 2006. Efficacy and safety of linezolid in multidrug resistant tuberculosis (MDR-TB): a report of ten cases. J Infect 52:92–96. doi:10.1016/j.jinf.2005.04.007.
    1. Roongruangpitayakul C, Chuchottaworn C. 2013. Outcomes of MDR/XDR-TB patients treated with linezolid: experience in Thailand. J Med Assoc Thai 96:1273–1282.
    1. Agyeman AA, Ofori-Asenso R. 2016. Efficacy and safety profile of linezolid in the treatment of multidrug-resistant (MDR) and extensively drug-resistant (XDR) tuberculosis: a systematic review and meta-analysis. Ann Clin Microbiol Antimicrob 15:41. doi:10.1186/s12941-016-0156-y.
    1. Williams KN, Stover CK, Zhu T, Tasneen R, Tyagi S, Grosset JH, Nuermberger E. 2009. Promising antituberculosis activity of the oxazolidinone PNU-100480 relative to that of linezolid in a murine model. Antimicrob Agents Chemother 53:1314–1319. doi:10.1128/AAC.01182-08.
    1. McGee B, Dietze R, Hadad DJ, Molino LP, Maciel EL, Boom WH, Palaci M, Johnson JL, Peloquin CA. 2009. Population pharmacokinetics of linezolid in adults with pulmonary tuberculosis. Antimicrob Agents Chemother 53:3981–3984. doi:10.1128/AAC.01378-08.
    1. Meagher AK, Forrest A, Rayner CR, Birmingham MC, Schentag JJ. 2003. Population pharmacokinetics of linezolid in patients treated in a compassionate-use program. Antimicrob Agents Chemother 47:548–553. doi:10.1128/aac.47.2.548-553.2003.
    1. Plock N, Buerger C, Joukhadar C, Kljucar S, Kloft C. 2007. Does linezolid inhibit its own metabolism? Population pharmacokinetics as a tool to explain the observed nonlinearity in both healthy volunteers and septic patients. Drug Metab Dispos 35:1816–1823. doi:10.1124/dmd.106.013755.
    1. Stalker DJ, Jungbluth GL. 2003. Clinical pharmacokinetics of linezolid, a novel oxazolidinone antibacterial. Clin Pharmacokinet 42:1129–1140. doi:10.2165/00003088-200342130-00004.
    1. Abe S, Chiba K, Cirincione B, Grasela TH, Ito K, Suwa T. 2009. Population pharmacokinetic analysis of linezolid in patients with infectious disease: application to lower body weight and elderly patients. J Clin Pharmacol 49:1071–1078. doi:10.1177/0091270009337947.
    1. Boak LM, Rayner CR, Grayson ML, Paterson DL, Spelman D, Khumra S, Capitano B, Forrest A, Li J, Nation RL, Bulitta JB. 2014. Clinical population pharmacokinetics and toxicodynamics of linezolid. Antimicrob Agents Chemother 58:2334–2343. doi:10.1128/AAC.01885-13.
    1. Tato M, de la Pedrosa EG, Cantón R, Gómez-García I, Fortún J, Martín-Davila P, Baquero F, Gomez-Mampaso E. 2006. In vitro activity of linezolid against Mycobacterium tuberculosis complex, including multidrug-resistant Mycobacterium bovis isolates. Int J Antimicrob Agents 28:75–78. doi:10.1016/j.ijantimicag.2006.02.011.
    1. Jindani A, Aber VR, Edwards EA, Mitchison DA. 1980. The early bactericidal activity of drugs in patients with pulmonary tuberculosis. Am Rev Respir Dis 121:939–949.
    1. Diacon AH, Dawson R, von Groote-Bidlingmaier F, Symons G, Venter A, Donald PR, van Niekerk C, Everitt D, Winter H, Becker P, Mendel CM, Spigelman MK. 2012. 14-day bactericidal activity of PA-824, bedaquiline, pyrazinamide, and moxifloxacin combinations: a randomised trial. Lancet 380:986–993. doi:10.1016/S0140-6736(12)61080-0.
    1. Diacon AH, Dawson R, Hanekom M, Narunsky K, Maritz SJ, Venter A, Donald PR, van Niekerk C, Whitney K, Rouse DJ, Laurenzi MW, Ginsberg AM, Spigelman MK. 2010. Early bactericidal activity and pharmacokinetics of PA-824 in smear-positive tuberculosis patients. Antimicrob Agents Chemother 54:3402–3407. doi:10.1128/AAC.01354-09.
    1. Diacon AH, Dawson R, Du Bois J, Narunsky K, Venter A, Donald PR, van Niekerk C, Erondu N, Ginsberg AM, Becker P, Spigelman MK. 2012. Phase II dose-ranging trial of the early bactericidal activity of PA-824. Antimicrob Agents Chemother 56:3027–3031. doi:10.1128/AAC.06125-11.
    1. Diacon AH, van der Merwe L, Barnard M, von Groote-Bidlingmaier F, Lange C, García-Basteiro AL, Sevene E, Ballell L, Barros-Aguirre D. 2016. β-Lactams against tuberculosis: new trick for an old dog? N Engl J Med 375:393–394. doi:10.1056/NEJMc1513236.
    1. Wallis RS, Dawson R, Friedrich SO, Venter A, Paige D, Zhu T, Silvia A, Gobey J, Ellery C, Zhang Y, Eisenach K, Miller P, Diacon AH. 2014. Mycobactericidal activity of sutezolid (PNU-100480) in sputum (EBA) and blood (WBA) of patients with pulmonary tuberculosis. PLoS One 9:e94462. doi:10.1371/journal.pone.0094462.
    1. TB Alliance. 2019. Pretomanid and BPaL regimen for treatment of highly resistant tuberculosis. Oral presentation, Antimicrobial Drugs Advisory Committee, 6 June, Silver Spring, MD.
    1. Burger DA, Schall R. 2018. Robust fit of Bayesian mixed effects regression models with application to colony forming unit count in tuberculosis research. Stat Med 37:544–552. doi:10.1002/sim.7529.
    1. Burger DA, Schall R, Chen DG. 2018. Robust Bayesian nonlinear mixed‐effects modeling of time to positivity in tuberculosis trials. Pharm Stat 17:615–628. doi:10.1002/pst.1877.
    1. De Jager V, van der Merwe L, Venter A, Donald PR, Diacon AH. 2017. Time trends in sputum mycobacterial load and two-day bactericidal activity of isoniazid-containing antituberculosis therapies. Antimicrob Agents Chemother 61:e02088-16. doi:10.1128/AAC.02088-16.
    1. Pirie W. 1983. Jonckheere tests for ordered alternatives, p 315–318. In Kotz S, Johnson NL, Read CB (ed), Encyclopedia of statistical sciences, vol 4 John Wiley and Sons, New York, NY.

Source: PubMed

3
Se inscrever