Distinguishing Low and High Water Consumers-A Paradigm of Disease Risk

Lawrence E Armstrong, Colleen X Muñoz, Elizabeth M Armstrong, Lawrence E Armstrong, Colleen X Muñoz, Elizabeth M Armstrong

Abstract

A long-standing body of clinical observations associates low 24-h total water intake (TWI = water + beverages + food moisture) with acute renal disorders such as kidney stones and urinary tract infections. These findings prompted observational studies and experimental interventions comparing habitual low volume (LOW) and high volume (HIGH) drinkers. Investigators have learned that the TWI of LOW and HIGH differ by 1-2 L·d-1, their hematological values (e.g., plasma osmolality, plasma sodium) are similar and lie within the laboratory reference ranges of healthy adults and both groups appear to successfully maintain water-electrolyte homeostasis. However, LOW differs from HIGH in urinary biomarkers (e.g., reduced urine volume and increased osmolality or specific gravity), as well as higher plasma concentrations of arginine vasopressin (AVP) and cortisol. Further, evidence suggests that both a low daily TWI and/or elevated plasma AVP influence the development and progression of metabolic syndrome, diabetes, obesity, chronic kidney disease, hypertension and cardiovascular disease. Based on these studies, we propose a theory of increased disease risk in LOW that involves chronic release of fluid-electrolyte (i.e., AVP) and stress (i.e., cortisol) hormones. This narrative review describes small but important differences between LOW and HIGH, advises future investigations and provides practical dietary recommendations for LOW that are intended to decrease their risk of chronic diseases.

Keywords: arginine vasopressin; cortisol; dietary protein; dietary salt; plasma osmolality; thirst.

Conflict of interest statement

L.E.A. is a Trustee and occasional consultant for the Drinking Water Research Foundation, Alexandria, VA, USA and serves as an occasional consultant to Danone Research, France. L.E.A. and E.M.A. are the founders of Hydration & Nutrition, LLC, Newport News, VA, USA. C.X.M. has active research grants with the Drinking Water Research Foundation, Alexandria, VA, USA.

Figures

Figure 1
Figure 1
The hydration continuum. Perturbations of fluid-electrolyte variables initiate thirst and neuroendocrine responses to restore homeostasis and to maintain optimal health and function. The magnitude of a fluid-electrolyte deficit (DEFICIT) or fluid-electrolyte excess (EXCESS) determines the strength of responses that return volume, osmolality and pressure back to the encoded brain set point. Abbreviations: SNA, sympathetic nerve activity; AVP, arginine vasopressin; ANG II, angiotensin II; ALD, aldosterone; ANP, atrial natriuretic peptide. Revised from Armstrong & Johnson, 2018 [41].
Figure 2
Figure 2
The relationship between daily total water intake (all sources) and plasma AVP concentration, based on 11 published laboratory investigations. The plasma AVP threshold of 2 pg·mL−1 [41] occurs at a TWI of 1.8 L·24 h−1, which is approximately 64 total oz of water per day. Low volume drinkers and water-deprived adults appear as the 5 data points above the plasma AVP threshold. See text for details. The range of adequate intakes for women and men appear as zone A (European Food Safety Authority [10]) and zone B (U.S. National Academy of Medicine [11]).
Figure 3
Figure 3
Relationships of total water intake to urine volume (panel A) and urine osmolality (panel B), when low volume drinkers (LOW, n = 14–30 each symbol) and high volume drinkers (HIGH, n = 14–22) reversed their habitual 24-h TWI during two investigations. Open symbols represent study 1 [20] and closed symbols represent study 2 [21]. Arrows denote changes from baseline (pre-intervention) to day 3 or 4 of each modified TWI. The horizontal dashed line in Panel A and Panel B represent the urine values that exist when plasma AVP is 2.0 pg·mL−1. Experimental design details appear in the footnotes of Table 1 and Table 2.
Figure 3
Figure 3
Relationships of total water intake to urine volume (panel A) and urine osmolality (panel B), when low volume drinkers (LOW, n = 14–30 each symbol) and high volume drinkers (HIGH, n = 14–22) reversed their habitual 24-h TWI during two investigations. Open symbols represent study 1 [20] and closed symbols represent study 2 [21]. Arrows denote changes from baseline (pre-intervention) to day 3 or 4 of each modified TWI. The horizontal dashed line in Panel A and Panel B represent the urine values that exist when plasma AVP is 2.0 pg·mL−1. Experimental design details appear in the footnotes of Table 1 and Table 2.
Figure 4
Figure 4
Relationships among total water intake, osmolality, AVP and four hydration biomarkers of LOW (○●) and HIGH (□■). A small blood osmolality difference (LOW versus HIGH; panels A and B) results in the subsequent responses illustrated in panels B–F. The plasma AVP threshold of 2 pg·ml-1 (see Section 3 above) is depicted as a dashed line in panels B-F. Open symbols represent study 1 [20] and closed symbols represent study 2 [21] baseline mean values (see columns 2 and 3 of Table 1). Arrows aid visual discrimination of LOW and HIGH values in studies 1 and 2. The blood osmolality reference range of laboratory values for healthy adults (panels A and B) is 285–295 mOsm·kg−1 [47]. (A): the influence of TWI on blood osmolality; (B): the influence of blood osmolality on plasma AVP concentration; (C): the influence of plasma AVP on urine volume; (D): the influence of plasma AVP on urine osmolality; (E): the influence of plasma AVP on urine specific gravity; (F): the influence of plasma AVP on the ratio of urine osmolality-to-plasma osmolality.
Figure 5
Figure 5
Proposed series of events that lead to the differential risk of chronic diseases in LOW and HIGH. Homeostatic neuroendocrine responses include increased plasma AVP and cortisol in LOW (see Section 5 above). Abbreviations: TRR, top half of the laboratory reference range; BRR, bottom half of the laboratory reference range [42]. This paradigm is based on eight source publications [7,9,18,42,61,90,91,92].
Figure 6
Figure 6
Frequency distribution of the plasma osmolality (POSM) threshold for the onset of thirst. The horizontal gray zone represents the laboratory reference range of POSM values (285–295 mOsm·kg−1) for healthy adults [47].
Figure 7
Figure 7
Relationships between 24-h renal osmolar excretion (ROE) and food energy, total water intake and urine volume. Each symbol represents a group mean (n = 14–682) from the six studies in Table 3. (A): the strong relationship between food energy and ROE; (B): the weak relationship between TWI and ROE; (C): as ROE increases, the obligatory urine volume increases.

References

    1. Thornton S.N. Thirst and hydration: Physiology and consequences of dysfunction. Physiol. Behav. 2010;100:15–21. doi: 10.1016/j.physbeh.2010.02.026.
    1. Cheuvront S.N., Kenefick R.W. Am I drinking enough? Yes, no, and maybe. J. Am. Coll. Nutr. 2016;35:185–192. doi: 10.1080/07315724.2015.1067872.
    1. Greenleaf J.E. Problem: Thirst, drinking behavior, and involuntary dehydration. Med. Sci. Sports Exerc. 1992;24:645–656. doi: 10.1249/00005768-199206000-00007.
    1. Fitzsimons J.T. The physiological basis of thirst. Kidney Int. 1976;10:3–11. doi: 10.1038/ki.1976.74.
    1. Galanth C., Hus-Citharel A., Li B., Llorens-Cortes C. Apelin in the control of body fluid homeostasis and cardiovascular functions. Curr. Pharm. Des. 2012;18:789–798. doi: 10.2174/138161212799277770.
    1. Azizi M., Iturrioz X., Blanchard A., Peyrard S., De Mota N., Chartrel N., Vaudry H., Corvol P., Llorens-Cortes C. Reciprocal regulation of plasma apelin and vasopressin by osmotic stimuli. J. Am. Soc. Nephrol. 2008;19:1015–1024. doi: 10.1681/ASN.2007070816.
    1. Melander O. Vasopressin, from regulator to disease predictor for diabetes and cardiometabolic risk. Ann. Nutr. Metab. 2016;68:24–28. doi: 10.1159/000446201.
    1. Muñoz C.X., Johnson E.C., McKenzie A.L., Guelinckx I., Graverholt G., Casa D.J., Maresh C.M., Armstrong L.E. Habitual total water intake and dimensions of mood in healthy young women. Appetite. 2015;92:81–86. doi: 10.1016/j.appet.2015.05.002.
    1. Perrier E., Vergne S., Klein A., Poupin M., Rondeau P., Le Bellego L., Armstrong L.E., Lang F., Stookey J., Tack I. Hydration biomarkers in free-living adults with different levels of habitual fluid consumption. Br. J. Nutr. 2013;109:1678–1687. doi: 10.1017/S0007114512003601.
    1. EFSA Panel on Dietic Products, Nutrition, and Allergies (NDA) Scientific opinion on dietary reference values for water. EFSA J. 2010;8:1459–1507.
    1. Institute of Medicine, Panel on Dietary Reference Intakes for Electrolytes and Water . Dietary Reference Intakes for Water, Potassium, Sodium, Chloride, and Sulfate. National Academy Press; Washington, DC, USA: 2005.
    1. Türk C., Knoll T., Petrik A. Guidelines on urolithiasis; Selection of procedure for active removal of kidney stones. In Proceedings of 26th European Association of Urology Congress; Vienna, Austria. 18–22 March 2011; pp. 18–22.
    1. Sontrop J.M., Dixon S.N., Garg A.X., Buendia-Jimenez I., Dohein O., Huang S.H., Clark W.F. Association between water intake, chronic kidney disease, and cardiovascular disease: A cross-sectional analysis of NHANES data. Am. J. Nephrol. 2013;37:434–442. doi: 10.1159/000350377.
    1. Strippoli G.F., Craig J.C., Rochtchina E., Flood V.M., Wang J.J., Mitchell P. Fluid and nutrient intake and risk of chronic kidney disease. Nephrology. 2011;16:326–334. doi: 10.1111/j.1440-1797.2010.01415.x.
    1. Finkielstein V.A., Goldfarb D.S. Strategies for preventing calcium oxalate stones. CMAJ. 2006;174:1407–1409. doi: 10.1503/cmaj.051517.
    1. Hooton T.M., Vecchio M., Iroz A., Tack I., Dornic Q., Seksek I., Lotan Y. Effect of increased daily water intake in premenopausal women with recurrent urinary tract infections: A randomized clinical trial. JAMA Intern. Med. 2018;178:1509–1515. doi: 10.1001/jamainternmed.2018.4204.
    1. Pross N., Demazières A., Girard N., Barnouin R., Metzger D., Klein A., Perrier E., Guelinckx I. Effects of changes in water intake on mood of high and low drinkers. PLoS ONE. 2014;9:e94754. doi: 10.1371/journal.pone.0094754.
    1. Johnson E.C., Muñoz C.X., Jimenez L., Le Bellego L., Kupchak B.R., Kraemer W.J., Casa D.J., Maresh C.M., Armstrong L.E. Hormonal and thirst modulated maintenance of fluid balance in young women with different levels of habitual fluid consumption. Nutrients. 2016;8:302. doi: 10.3390/nu8050302.
    1. Manz F. Hydration and disease. J. Am. Coll. Nutr. 2007;26:535S–541S. doi: 10.1080/07315724.2007.10719655.
    1. Perrier E., Demazières A., Girard N., Pross N., Osbild D., Metzger D., Guelinckx I., Klein A. Circadian variation and responsiveness of hydration biomarkers to changes in daily water intake. Eur. J. Appl. Physiol. 2013;113:2143–2151. doi: 10.1007/s00421-013-2649-0.
    1. Johnson E.C., Muñoz C.X., Le Bellego L., Klein A., Casa D.J., Maresh C.M., Armstrong L.E. Markers of the hydration process during fluid volume modification in women with habitual high or low daily fluid intakes. Eur. J. Appl. Physiol. 2015;115:1067–1074. doi: 10.1007/s00421-014-3088-2.
    1. Adolph E.F. Physiology of Man in the Desert. Interscience Publishers; Cummings Park, MA, USA: 1947.
    1. Ashcroft F.M. Life at the Extremes. University of California Press; Oakland, CA, USA: 2002.
    1. Armstrong L.E., Johnson E.C., Ganio M.S., Judelson D.A., Vingren J.L., Kupchak B.R., Kunces L.J., Muñoz C.X., McKenzie A.L., Williamson K.H. Effective body water and body mass changes during summer ultra-endurance road cycling. J. Sports Sci. 2015;33:125–135. doi: 10.1080/02640414.2014.932918.
    1. Ganio M.S., Armstrong L.E., Kavouras S.A. Hydration. In: Casa D.J., editor. Sport and Physical Activity in the Heat. Springer International Publishing; Cham, Switzerland: 2018. pp. 83–100.
    1. Negoianu D., Goldfarb S. Just add water. J. Am. Soc. Nephrol. 2008;19:1041–1043. doi: 10.1681/ASN.2008030274.
    1. Armstrong L.E. The challenges of linking chronic dehydration and fluid consumption to health outcomes. Nutr. Rev. 2012;70:S121–S127. doi: 10.1111/j.1753-4887.2012.00539.x.
    1. Bankir L., Bouby N., Ritz E. Vasopressin: A novel target for the prevention and retardation of kidney disease? Nat. Rev. Nephrol. 2013;9:223–239. doi: 10.1038/nrneph.2013.22.
    1. Enhörning S., Wang T.J., Nilsson P.M., Almgren P., Hedblad B., Berglund G., Struck J., Morgenthaler N.G., Bergmann A., Lindholm E., et al. Plasma copeptin and the risk of diabetes mellitus. Circulation. 2010;121:2102–2108. doi: 10.1161/CIRCULATIONAHA.109.909663.
    1. Abbasi A., Corpeleijn E., Meijer E., Postmus D., Gansevoort R.T., Gans R.O., Struck J., Hillege H.L., Stolk R.P., Navis G., et al. Sex differences in the association between plasma copeptin and incident type 2 diabetes: The Prevention of Renal and Vascular Endstage Disease (PREVEND) study. Diabetologia. 2012;55:1963–1970. doi: 10.1007/s00125-012-2545-x.
    1. Wannamethee S.G., Welsh P., Papacosta O., Lennon L., Whincup P.H., Sattar N. Copeptin, insulin resistance and risk of incident diabetes in older men. J. Clin. Endocrinol. Metab. 2015;100:3332–3339. doi: 10.1210/JC.2015-2362.
    1. Roussel R., Fezeu L., Bouby N., Balkau B., Lantieri O., Alhenc-Gelas F., Marre M., Bankir L. Low water intake and risk for new-onset hyperglycemia. Diabetes Care. 2011;34:2551–2554. doi: 10.2337/dc11-0652.
    1. Saleem U., Khaleghi M., Morgenthaler N.G., Bergmann A., Struck J., Mosley T.H., Jr., Kullo I.J. Plasma carboxy-terminal provasopressin (copeptin): A novel marker of insulin resistance and metabolic syndrome. J. Clin. Endocrinol. Metab. 2009;94:2558–2564. doi: 10.1210/jc.2008-2278.
    1. Enhörning S., Struck J., Wirfält E., Hedblad B., Morgenthaler N.G., Melander O. Plasma copeptin, a unifying factor behind the metabolic syndrome. J. Clin. Endocrinol. Metab. 2011;96:E1065–E1072. doi: 10.1210/jc.2010-2981.
    1. Enhörning S., Bankir L., Bouby N., Struck J., Hedblad B., Persson M., Morgenthaler N.G., Nilsson P.M., Melander O. Copeptin, a marker of vasopressin, in abdominal obesity, diabetes and microalbuminuria: The prospective Malmö Diet and Cancer Study cardiovascular cohort. Int. J. Obes. 2013;37:598–603. doi: 10.1038/ijo.2012.88.
    1. Fenske W.K., Schnyder I., Koch G., Walti C., Pfister M., Kopp P., Fassnacht M., Strauss K., Christ-Crain M. Release and decay kinetics of copeptin vs AVP in response to osmotic alterations in healthy volunteers. J. Clin. Endocrinol. Metab. 2018;103:505–513. doi: 10.1210/jc.2017-01891.
    1. Riphagen I.J., Boertien W.E., Alkhalaf A., Kleefstra N., Gansevoort R.T., Groenier K.H., Van Hateren K.J., Struck J., Navis G., Bilo H.J., et al. Copeptin, a surrogate marker for arginine vasopressin, is associated with cardiovascular and all-cause mortality in patients with type 2 diabetes (ZODIAC-31) Diabetes Care. 2013;36:3201–3207. doi: 10.2337/dc12-2165.
    1. Velho G., Ragot S., El Boustany R., Saulnier P.J., Fraty M., Mohammedi K., Fumeron F., Potier L., Marre M., Hadjadj S., et al. Plasma copeptin, kidney disease, and risk for cardiovascular morbidity and mortality in two cohorts of type 2 diabetes. Cardiovasc. Diabetol. 2018;17:110. doi: 10.1186/s12933-018-0753-5.
    1. Tasevska I., Enhörning S., Christensson A., Persson M., Nilsson P.M., Melander O. Increased levels of copeptin, a surrogate marker of arginine vasopressin, are associated with an increased risk of chronic kidney disease in a general population. Am. J. Nephrol. 2016;44:22–28. doi: 10.1159/000447522.
    1. Boertien W.E., Riphagen I.J., Drion I., Alkhalaf A., Bakker S.J., Groenier K.H., Struck J., de Jong P.E., Bilo H.J., Kleefstra N., et al. Copeptin, a surrogate marker for arginine vasopressin, is associated with declining glomerular filtration in patients with diabetes mellitus (ZODIAC-33) Diabetologia. 2013;56:1680–1688. doi: 10.1007/s00125-013-2922-0.
    1. Armstrong L.E., Johnson E.C. Water intake, water balance, and the elusive daily water requirement. Nutrients. 2018;10:1928. doi: 10.3390/nu10121928.
    1. Allen M.D., Springer D.A., Burg M.B., Boehm M., Dmitrieva N.I. Suboptimal hydration remodels metabolism, promotes degenerative diseases, and shortens life. JCI Insight. 2019;4 doi: 10.1172/jci.insight.130949.
    1. Taveau C., Chollet C., Waeckel L., Desposito D., Bichet D.G., Arthus M.F., Magnan C., Philippe E., Paradis V., Foufelle F., et al. Vasopressin and hydration play a major role in the development of glucose intolerance and hepatic steatosis in obese rats. Diabetologia. 2015;58:1081–1090. doi: 10.1007/s00125-015-3496-9.
    1. Kavouras S.A. Hydration, dehydration, underhydration, optimal hydration: Are we barking up the wrong tree? Eur. J. Nutr. 2019;58:471–473. doi: 10.1007/s00394-018-01889-z.
    1. Perrier E.T., Armstrong L.E., Daudon M., Kavouras S., Lafontan M., Lang F., Péronnet F., Stookey J.D., Tack I., Klein A. From state to process: Defining hydration. Obes. Facts. 2014;7:6–12. doi: 10.1159/000360611.
    1. Armstrong L.E. Assessing hydration status: The elusive gold standard. J. Am. Coll. Nutr. 2007;26:575S–584S. doi: 10.1080/07315724.2007.10719661.
    1. Kratz A., Ferraro M., Sluss P.M., Lewandrowski K.B. Laboratory reference values. N. Engl. J. Med. 2004;351:1548–1564. doi: 10.1056/NEJMcpc049016.
    1. Armstrong L.E., Pumerantz A.C., Fiala K.A., Roti M.W., Kavouras S.A., Casa D.J., Maresh C.M. Human hydration indices: Acute and longitudinal reference values. Int. J. Sport Nutr. Exerc. Metab. 2010;20:145–153. doi: 10.1123/ijsnem.20.2.145.
    1. Armstrong L.E., Johnson E.C., Muñoz C.X., Swokla B., Le Bellego L., Jimenez L., Casa D.J., Maresh C.M. Hydration biomarkers and dietary fluid consumption of women. J. Acad. Nutr. Diet. 2012;112:1056–1061. doi: 10.1016/j.jand.2012.03.036.
    1. Shore A.C., Markandu N.D., Sagnella G.A., Singer D.R., Forsling M.L., Buckley M.G., Sugden A.L., MacGregor G.A. Endocrine and renal response to water loading and water restriction in normal man. Clin. Sci. 1988;75:171–177. doi: 10.1042/cs0750171.
    1. Robertson G.L., Mahr E.A., Athar S., Sinha T. Development and clinical application of a new method for the radioimmunoassay of arginine vasopressin in human plasma. J. Clin. Investig. 1973;52:2340–2352. doi: 10.1172/JCI107423.
    1. Robertson G.L., Athar S. The interaction of blood osmolality and blood volume in regulating plasma vasopressin in man. J. Clin. Endocrinol. Metab. 1976;42:613–620. doi: 10.1210/jcem-42-4-613.
    1. Thompson C.J., Bland J., Burd J., Baylis P.H. The osmotic thresholds for thirst and vasopressin release are similar in healthy man. Clin. Sci. 1986;71:651–656. doi: 10.1042/cs0710651.
    1. Thompson C.J., Edwards C.R., Baylis P.H. Osmotic and non-osmotic regulation of thirst and vasopressin secretion in patients with compulsive water drinking. Clin. Endocrinol. 1991;35:221–228. doi: 10.1111/j.1365-2265.1991.tb03526.x.
    1. Sagawa S., Miki K., Tajima F., Tanaka H., Choi J.K., Keil L.C., Shiraki K., Greenleaf J.E. Effect of dehydration on thirst and drinking during immersion in men. J. Appl. Physiol. 1992;72:128–134. doi: 10.1152/jappl.1992.72.1.128.
    1. Montain S.J., Laird J.E., Latzka W.A., Sawka M.N. Aldosterone and vasopressin responses in the heat: Hydration level and exercise intensity effects. Med. Sci. Sports Exerc. 1997;29:661–668. doi: 10.1097/00005768-199705000-00012.
    1. Figaro M.K., Mack G.W. Regulation of fluid intake in dehydrated humans: Role of oropharyngeal stimulation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1997;272:R1740–R1746. doi: 10.1152/ajpregu.1997.272.6.R1740.
    1. Jamison R.L., Gehrig J.J. Handbook of Physiology, Renal Physiology. American Physiological Society; Bethesda, MD, USA: 1992. Urinary concentration and dilution: Physiology; pp. 1219–1279.
    1. Hammer M., Ladefoged J., Olgaard K. Relationship between plasma osmolality and plasma vasopressin in human subjects. Am. J. Physiol. Endocrinol. Metab. 1980;238:E313–E317. doi: 10.1152/ajpendo.1980.238.4.E313.
    1. Inder W.J., Hellemans J., Swanney M.P., Prickett T.C.R., Donald R.A. Prolonged exercise increases peripheral plasma ACTH, CRH, and AVP in male athletes. J. Appl. Physiol. 1998;85:835–841. doi: 10.1152/jappl.1998.85.3.835.
    1. Robertson G.L., Shelton R.L., Athar S. The osmoregulation of vasopressin. Kidney Int. 1976;10:25–37. doi: 10.1038/ki.1976.76.
    1. Szczepanska-Sadowska E., Zera T., Sosnowski P., Cudnoch-Jedrzejewska A., Puszko A., Misicka A. Vasopressin and related peptides; potential value in diagnosis, prognosis and treatment of clinical disorders. Curr. Drug Metab. 2017;18:306–345. doi: 10.2174/1389200218666170119145900.
    1. Singh A., Petrides J.S., Gold P.W., Chrousos G.P., Deuster P.A. Differential hypothalamic-pituitary-adrenal axis reactivity to psychological and physical stress. J. Clin. Endocrinol. Metab. 1999;84:1944–1948. doi: 10.1210/jc.84.6.1944.
    1. Katan M., Christ-Crain M. The stress hormone copeptin: A new prognostic biomarker in acute illness. Swiss Med. Wkly. 2010;140 doi: 10.4414/smw.2010.13101.
    1. Katan M., Morgenthaler N., Widmer I., Puder J.J., Konig C., Muller B., Christ-Crain M. Copeptin, a stable peptide derived from the vasopressin precursor, correlates with the individual stress level. Neuro Endocrinol. Lett. 2008;29:341–346.
    1. Dinan T.G., Scott L.V. Anatomy of melancholia: Focus on hypothalamic-pituitary-adrenal axis overactivity and the role of vasopressin. J. Anat. 2005;207:259–264. doi: 10.1111/j.1469-7580.2005.00443.x.
    1. Thunhorst R.L., Beltz T.G., Johnson A.K. Glucocorticoids increase salt appetite by promoting water and sodium excretion. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;293:R1444–R1451. doi: 10.1152/ajpregu.00294.2007.
    1. Pivonello R., De Martino M.C., Iacuaniello D., Simeoli C., Muscogiuri G., Carlomagno F., De Leo M., Cozzolino A., Colao A. Metabolic alterations and cardiovascular outcomes of cortisol excess. In: Arvat F., Florni A., editors. Cortisol Excess and Insufficiency. Volume 46. Karger; Basel, Switzerland: 2016. pp. 54–65.
    1. Hunter A., Syed A. Obesity, cortisol excess, and the hypothalamic-pituitary-adrenal axis. In: Weaver J., editor. Practical Guide to Obesity Medicine. Elsevier; Cambridge, MA, USA: 2018. pp. 37–48.
    1. Anagnostis P., Athyros V.G., Tziomalos K., Karagiannis A., Mikhailidis D.P. The pathogenetic role of cortisol in the metabolic syndrome: A hypothesis. J. Clin. Endocrinol. Metab. 2009;94:2692–2701. doi: 10.1210/jc.2009-0370.
    1. De Winter R.F., van Hemert A.M., DeRijk R.H., Zwinderman K.H., Frankhuijzen-Sierevogel A.C., Wiegant V.M., Goekoop J.G. Anxious-retarded depression: Relation with plasma vasopressin and cortisol. Neuropsychopharmacology. 2003;28:140–147. doi: 10.1038/sj.npp.1300002.
    1. Ganio M.S., Armstrong L.E., Casa D.J., McDermott B.P., Lee E.C., Yamamoto L.M., Marzano S., Lopez R.M., Jimenez L., Le Bellego L., et al. Mild dehydration impairs cognitive performance and mood of men. Br. J. Nutr. 2011;106:1535–1543. doi: 10.1017/S0007114511002005.
    1. Armstrong L.E., Ganio M.S., Casa D.J., Lee E.C., McDermott B.P., Klau J.F., Jimenez L., Le Bellego L., Chevillotte E., Lieberman H.R. Mild dehydration affects mood in healthy young women. J. Nutr. 2012;142:382–388. doi: 10.3945/jn.111.142000.
    1. Sapolsky R.M., Krey L.C., McEwen B.S. The neuroendocrinology of stress and aging: The glucocorticoid cascade hypothesis. Endocr. Rev. 1986;7:284–301. doi: 10.1210/edrv-7-3-284.
    1. Aguilera G., Subburaju S., Young S., Chen J. The parvocellular vasopressinergic system and responsiveness of the hypothalamic pituitary adrenal axis during chronic stress. Prog. Brain Res. 2008;170:29–39.
    1. Stookey J.D., Klein A., Hamer J., Chi C., Higa A., Ng V., Arieff A., Kuypers F.A., Larkin S., Perrier E., et al. RBC deformability and amino acid concentrations after hypo-osmotic challenge may reflect chronic cell hydration status in healthy young men. Physiol. Rep. 2013;1:e00117. doi: 10.1002/phy2.117.
    1. Kirk C.J., Rodrigues L.M., Hems D.A. The influence of vasopressin and related peptides on glycogen phosphorylase activity and phosphatidylinositol metabolism in hepatocytes. Biochem. J. 1979;178:493–496. doi: 10.1042/bj1780493.
    1. Oshikawa S., Tanoue A., Koshimizu T.A., Kitagawa Y., Tsujimoto G. Vasopressin stimulates insulin release from islet cells through V1b receptors: A combined pharmacological/knockout approach. Mol. Pharmacol. 2004;65:623–629. doi: 10.1124/mol.65.3.623.
    1. Fujiwara Y., Hiroyama M., Sanbe A., Aoyagi T., Birumachi J.I., Yamauchi J., Tsujimoto G., Tanoue A. Insulin hypersensitivity in mice lacking the V1b vasopressin receptor. J. Physiol. 2007;584:235–244. doi: 10.1113/jphysiol.2007.136481.
    1. Stachenfeld N.S., Splenser A.E., Calzone W.L., Taylor M.P., Keefe D.L. Sex differences in osmotic regulation of AVP and renal sodium handling. J. Appl. Physiol. 2001;91:1893–1901. doi: 10.1152/jappl.2001.91.4.1893.
    1. Robertson G.L. Antidiuretic hormone. Normal and disordered function. Endocrinol. Metab. Clin. N. Am. 2001;30:671–694. doi: 10.1016/S0889-8529(05)70207-3.
    1. Perucca J., Bouby N., Valeix P., Bankir L. Sex difference in urine concentration across differing ages, sodium intake, and level of kidney disease. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2007;292:R700–R705. doi: 10.1152/ajpregu.00500.2006.
    1. Robertson G.L., Berl T. The Kidney. WB Saunders; Philadelphia, PA, USA: 1986. Water metabolism; pp. 385–432.
    1. Verney E.B. Croonian lecture-the antidiuretic hormone and the factors which determine its release. Proc. R. Soc. Lond. B Biol. Sci. 1947;135:25–106.
    1. Robertson G.L. Proceedings of the 1976 Laurentian Hormone Conference. Academic Press; New York, NY, USA: 1977. The regulation of vasopressin function in health and disease; pp. 333–385.
    1. Feig P.U., McCurdy D.K. The hypertonic state. N. Engl. J. Med. 1977;297:1444–1454. doi: 10.1056/NEJM197712292972608.
    1. Perrier E.T., Buendia-Jimenez I., Vecchio M., Armstrong L.E., Tack I., Klein A. Twenty-four-hour urine osmolality as a physiological index of adequate water intake. Dis. Markers. 2015;2015:231063. doi: 10.1155/2015/231063.
    1. Armstrong L.E., Johnson E.C., McKenzie A.L., Muñoz C.X. An empirical method to determine inadequacy of dietary water. Nutrition. 2016;32:79–82. doi: 10.1016/j.nut.2015.07.013.
    1. Ganong W.F. Review of Medical Physiology. 10th ed. Lange Medical Publications; Los Altos, CA, USA: 1981. pp. 18–20.
    1. Sterns R.H. Disorders of plasma sodium—Causes, consequences, and correction. N. Engl. J. Med. 2015;372:55–65. doi: 10.1056/NEJMra1404489.
    1. Gao S., Cui X., Wang X., Burg M.B., Dmitrieva N.I. Cross-sectional positive association of serum lipids and blood pressure with serum sodium within the normal reference range of 135–145 mmol/L. Arterioscler. Thromb. Vasc. Biol. 2017;37:598–606. doi: 10.1161/ATVBAHA.116.308413.
    1. Zerbe R.L., Robertson G.L. Osmoregulation of thirst and vasopressin secretion in human subjects: Effect of various solutes. Am. J. Physiol. Endocrinol. Metab. 1983;244:E607–E614. doi: 10.1152/ajpendo.1983.244.6.E607.
    1. Qian Q. Dietary influence on body fluid acid-base and volume balance: The deleterious “norm” furthers and cloaks subclinical pathophysiology. Nutrients. 2018;10:778. doi: 10.3390/nu10060778.
    1. Rolls B.J., Rolls E.T. Thirst. Cambridge University Press; Cambridge, UK: 1982. The control of normal drinking; pp. 152–166.
    1. Zerbe R.L., Miller J.Z., Robertson G.L. The reproducibility and heritability of individual differences in osmoregulatory function in normal human subjects. J. Lab. Clin. Med. 1991;117:51–59.
    1. Baylis P.H. Osmoregulation and control of vasopressin secretion in healthy humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1987;253:R671–R678. doi: 10.1152/ajpregu.1987.253.5.R671.
    1. Fitzsimons J.T. Angiotensin, thirst, and sodium appetite. Physiol. Rev. 1998;78:583–686. doi: 10.1152/physrev.1998.78.3.583.
    1. Stricker E.M., Sved A.F. Thirst. Nutrition. 2000;16:821–826. doi: 10.1016/S0899-9007(00)00412-3.
    1. Wojszel Z.B. What serum sodium concentration is suggestive for underhydration in geriatric patients? Nutrients. 2020;12:496. doi: 10.3390/nu12020496.
    1. National Research Council . Recommended Dietary Allowances. 10th ed. National Academy Press; Washington, DC, USA: 1989.
    1. Manz F., Wentz A. Hydration status in the United States and Germany. Nutr. Rev. 2005;63:S55–S62. doi: 10.1111/j.1753-4887.2005.tb00154.x.
    1. Manz F., Johner S.A., Wentz A., Boeing H., Remer T. Water balance throughout the adult life span in a German population. Br. J. Nutr. 2012;107:1673–1681. doi: 10.1017/S0007114511004776.
    1. Geelen G., Keil L.C., Kravik S.E., Wade C.E., Thrasher T.N., Barnes P.R., Pyka G., Nesvig C., Greenleaf J.E. Inhibition of plasma vasopressin after drinking in dehydrated humans. Am. J. Physiol. 1984;247:R968–R971. doi: 10.1152/ajpregu.1984.247.6.R968.
    1. Thompson C.J., Burd J.M., Baylis P.H. Acute suppression of plasma vasopressin and thirst after drinking in hypernatremic humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1987;252:R1138–R1142. doi: 10.1152/ajpregu.1987.252.6.R1138.
    1. Zimmerman C.A., Lin Y.C., Leib D.E., Guo L., Huey E.L., Daly G.E., Chen Y., Knight Z.A. Thirst neurons anticipate the homeostatic consequences of eating and drinking. Nature. 2016;537:680–684. doi: 10.1038/nature18950.
    1. Montgomery M.F. The role of the salivary glands in the thirst mechanism. Am. J. Physiol. 1931;96:221–227. doi: 10.1152/ajplegacy.1931.96.1.221.
    1. Armstrong L.E., Herrera Soto J.A., Hacker F.T., Casa D.J., Kavouras S.A., Maresh C.M. Urinary indices during dehydration, exercise, and rehydration. Int. J. Sport Nutr. 1998;8:345–355. doi: 10.1123/ijsn.8.4.345.
    1. Geelen G., Greenleaf J.E., Keil L.C. Drinking-induced plasma vasopressin and norepinephrine changes in dehydrated humans. J. Clin. Endocrinol. Metab. 1996;81:2131–2135.
    1. Kovacs E.M., Senden J.M., Brouns F.J. Urine color, osmolality and specific electrical conductance are not accurate measures of hydration status during postexercise rehydration. Sports Med. Phys. Fit. 1999;39:47–53.
    1. Popowski L.A., Oppliger R.A., Lambert G.P., Johnson R.F., Johnson A.K., Gisolfi C.V. Blood and urinary measures of hydration status during progressive acute dehydration. Med. Sci. Sports Exerc. 2001;33:747–753. doi: 10.1097/00005768-200105000-00011.
    1. Williams T.D., Seckl J.R., Lightman S.L. Dependent effect of drinking volume on vasopressin but not atrial peptide in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1989;257:R762–R764. doi: 10.1152/ajpregu.1989.257.4.R762.
    1. Brunstrom J.M., Macrae A.W. Effects of temperature and volume on measures of mouth dryness, thirst and stomach fullness in males and females. Appetite. 1997;29:31–42. doi: 10.1006/appe.1997.0089.
    1. Kanbay M., Yilmaz S., Dincer N., Ortiz A., Sag A.A., Covic A., Sánchez-Lozada L.G., Lanaspa M.A., Cherney D.Z., Johnson R.J., et al. Antidiuretic hormone and serum osmolarity physiology and related outcomes: What is old, what is new, and what is unknown? J. Clin. Endocrinol. Metab. 2019;104:5406–5420. doi: 10.1210/jc.2019-01049.
    1. Veilleux J.C., Caldwell A.R., Johnson E.C., Kavouras S., McDermott B.P., Ganio M.S. Examining the links between hydration knowledge, attitudes and behavior. Eur. J. Nutr. 2019;3 doi: 10.1007/s00394-019-01958-x.
    1. Booth D.A. Influences on human fluid consumption. In: Ramsay D.J., Booth D., editors. Thirst: Physiological and Psychological Aspects. Springer; London, UK: 1991. pp. 53–75.
    1. Holland P.C. Learning, thirst and drinking. In: Ramsay D.J., Booth D., editors. Thirst: Physiological and Psychological Aspects. Springer; London, UK: 1991. pp. 291–295.
    1. Guelinckx I., Tavoularis G., König J., Morin C., Gharbi H., Gandy J. Contribution of water from food and fluids to total water intake: Analysis of a French and UK population surveys. Nutrients. 2016;8:630. doi: 10.3390/nu8100630.
    1. Gebhardt S.E., Thomas R.G. Nutritive Value of Foods. U.S. Government Printing Office; Washington, DC, USA: 2002.
    1. Ferdowsian H.R., Barnard N.D. Effects of plant-based diets on plasma lipids. Am. J. Cardiol. 2009;104:947–956. doi: 10.1016/j.amjcard.2009.05.032.
    1. Satija A., Bhupathiraju S.N., Spiegelman D., Chiuve S.E., Manson J.E., Willett W., Rexrode K.M., Rimm E.B., Hu F.B. Healthful and unhealthful plant-based diets and the risk of coronary heart disease in US adults. J. Am. Coll. Cardiol. 2017;70:411–422. doi: 10.1016/j.jacc.2017.05.047.
    1. Bhanu C., Avgerinou C., Kharicha K., Bauernfreund Y., Croker H., Liljas A., Rea J., Kirby-Barr M., Hopkins J., Walters K. ‘I’ve never drunk very much water and I still don’t, and I see no reason to do so’: A qualitative study of the views of community-dwelling older people and carers on hydration in later life. Age Ageing. 2019;49:111–118. doi: 10.1093/ageing/afz141.
    1. Wojszel Z.B. Impending low intake dehydration at admission to a geriatric ward- prevalence and correlates in a cross-sectional study. Nutrients. 2020;12:398. doi: 10.3390/nu12020398.
    1. Stookey J.D., Hamer J., Killilea D.W. Change in hydration indices associated with an increase in total water intake of more than 0.5 L/day, sustained over 4 weeks, in healthy young men with initial total water intake below 2 L/day. Physiol. Rep. 2017;5:e13356. doi: 10.14814/phy2.13356.
    1. Borghi L., Meschi T., Amato F., Briganti A., Novarini A., Giannini A. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: A 5-year randomized prospective study. J. Urol. 1996;155:839–843. doi: 10.1016/S0022-5347(01)66321-3.
    1. McCauley L.R., Dyer A.J., Stern K., Hicks T., Nguyen M.M. Factors influencing fluid intake behavior among kidney stone formers. J. Urol. 2012;187:1282–1286. doi: 10.1016/j.juro.2011.11.111.
    1. Manz F., Wentz A. 24-h hydration status: Parameters, epidemiology and recommendations. Eur. J. Clin. Nutr. 2003;57:S101–S108. doi: 10.1038/sj.ejcn.1601896.
    1. Martin W.F., Cerundolo L.H., Pikosky M.A., Gaine P.C., Maresh C.M., Armstrong L.E., Bolster D.R., Rodriguez N.R. Effects of dietary protein intake on indexes of hydration. J. Am. Diet. Assoc. 2006;106:587–589. doi: 10.1016/j.jada.2006.01.011.
    1. Amro O.W., Paulus J.K., Noubary F., Perrone R.D. Low-osmolar diet and adjusted water intake for vasopressin reduction in autosomal dominant polycystic kidney disease: A pilot randomized controlled trial. Am. J. Kidney Dis. 2016;68:882–891. doi: 10.1053/j.ajkd.2016.07.023.
    1. Bhasin B., Velez J.C.Q. Evaluation of polyuria: The roles of solute loading and water diuresis. Am. J. Kidney Dis. 2016;67:507–511. doi: 10.1053/j.ajkd.2015.10.021.
    1. Blalock T., Jr., Gerron G., Quiter E., Rudman D. Role of diet in the management of vasopressin-responsive and-resistant diabetes insipidus. Am. J. Clin. Nutr. 1977;30:1070–1076. doi: 10.1093/ajcn/30.7.1070.
    1. Bouby N.A., Trinh-Trang-Tan M.M., Coutaud C.H., Bankir L.I. Vasopressin is involved in renal effects of high-protein diet: Study in homozygous Brattleboro rats. Am. J. Physiol. Ren. Physiol. 1991;260:F96–F100. doi: 10.1152/ajprenal.1991.260.1.F96.
    1. Daniels B.S., Hostetter T.H. Effects of dietary protein intake on vasoactive hormones. Am. J. Physiol. Regul. Integr. Comp. Physiol. 1990;258:R1095–R1100. doi: 10.1152/ajpregu.1990.258.5.R1095.
    1. Lauridsen T.G., Vase H., Starklint J., Bech J.N., Pedersen E.B. Protein-enriched diet increases water absorption via the aquaporin-2 water channels in healthy humans. Nephrol. Dial. Transplant. 2010;25:2502–2510. doi: 10.1093/ndt/gfq111.
    1. Bankir L., Bichet D.G., Morgenthaler N.G. Vasopressin: Physiology, assessment and osmosensation. J. Intern. Med. 2017;282:284–297. doi: 10.1111/joim.12645.
    1. National Academies of Sciences, Engineering, and Medicine . Dietary Reference Intakes for Sodium and Potassium. The National Academies Press; Washington, DC, USA: 2019.
    1. McCarron D.A., Kazaks A.G., Geerling J.C., Stern J.S., Graudal N.A. Normal range of human dietary sodium intake: A perspective based on 24-hour urinary sodium excretion worldwide. Am. J. Hypertens. 2013;26:1218–1223. doi: 10.1093/ajh/hpt139.
    1. Jacobson M.F., Havas S., McCarter R. Changes in sodium levels in processed and restaurant foods, 2005 to 2011. JAMA Intern. Med. 2013;173:1285–1291. doi: 10.1001/jamainternmed.2013.6154.
    1. Institute of Medicine . Sodium Intake in Populations: Assessment of Evidence. National Academies Press; Washington, DC, USA: 2013.
    1. Mattes R.D., Donnelly D. Relative contributions of dietary sodium sources. J. Am. Coll. Nutr. 1991;10:383–393. doi: 10.1080/07315724.1991.10718167.
    1. Kavouras S. Assessing hydration status. Curr. Opin. Clin. Nutr. Metab. Care. 2002;5:519–524. doi: 10.1097/00075197-200209000-00010.
    1. Cheuvront S.N., Carter R., Montain S.J., Sawka M.N. Daily body mass variability and stability in active men undergoing exercise-heat stress. Int. J. Sport Nutr. Exerc. Metab. 2004;14:532–540. doi: 10.1123/ijsnem.14.5.532.
    1. Armstrong L.E., Ganio M.S., Klau J.F., Johnson E.C., Casa D.J., Maresh C.M. Novel hydration assessment techniques employing thirst and a water intake challenge in healthy men. Appl. Physiol. Nutr. Metab. 2014;39:138–144. doi: 10.1139/apnm-2012-0369.
    1. Burchfield J.M., Ganio M.S., Kavouras S.A., Adams J.D., Gonzalez M.A., Ridings C.B., Moyen N.E., Tucker M.A. 24-h Void number as an indicator of hydration status. Eur. J. Clin. Nutr. 2015;69:638–641. doi: 10.1038/ejcn.2014.278.
    1. Tucker M.A., Gonzalez M.A., Adams J.D., Burchfield J.M., Moyen N.E., Robinson F.B., Schreiber B.A., Ganio M.S. Reliability of 24-h void frequency as an index of hydration status when euhydrated and hypohydrated. Eur. J. Clin. Nutr. 2016;70:908–911. doi: 10.1038/ejcn.2015.233.
    1. Perrier E.T., Johnson E.C., Ganio M.S., McKenzie A.L., Ellis L.A., Armstrong L.E. Urine colour change as an indicator of change in daily water intake: A quantitative analysis. Eur. J. Nutr. 2016;55:1943–1949. doi: 10.1007/s00394-015-1010-2.
    1. McKenzie A.L., Muñoz C.X., Armstrong L.E. Accuracy of urine color to detect equal to or greater than 2% body mass loss in men. J. Athl. Train. 2016;50:1306–1309. doi: 10.4085/1062-6050-51.1.03.

Source: PubMed

3
Se inscrever