A game changer for bipolar disorder diagnosis using RNA editing-based biomarkers

Nicolas Salvetat, Francisco Jesus Checa-Robles, Vipul Patel, Christopher Cayzac, Benjamin Dubuc, Fabrice Chimienti, Jean-Daniel Abraham, Pierrick Dupré, Diana Vetter, Sandie Méreuze, Jean-Philippe Lang, David J Kupfer, Philippe Courtet, Dinah Weissmann, Nicolas Salvetat, Francisco Jesus Checa-Robles, Vipul Patel, Christopher Cayzac, Benjamin Dubuc, Fabrice Chimienti, Jean-Daniel Abraham, Pierrick Dupré, Diana Vetter, Sandie Méreuze, Jean-Philippe Lang, David J Kupfer, Philippe Courtet, Dinah Weissmann

Abstract

In clinical practice, differentiating Bipolar Disorder (BD) from unipolar depression is a challenge due to the depressive symptoms, which are the core presentations of both disorders. This misdiagnosis during depressive episodes results in a delay in proper treatment and a poor management of their condition. In a first step, using A-to-I RNA editome analysis, we discovered 646 variants (366 genes) differentially edited between depressed patients and healthy volunteers in a discovery cohort of 57 participants. After using stringent criteria and biological pathway analysis, candidate biomarkers from 8 genes were singled out and tested in a validation cohort of 410 participants. Combining the selected biomarkers with a machine learning approach achieved to discriminate depressed patients (n = 267) versus controls (n = 143) with an AUC of 0.930 (CI 95% [0.879-0.982]), a sensitivity of 84.0% and a specificity of 87.1%. In a second step by selecting among the depressed patients those with unipolar depression (n = 160) or BD (n = 95), we identified a combination of 6 biomarkers which allowed a differential diagnosis of bipolar disorder with an AUC of 0.935 and high specificity (Sp = 84.6%) and sensitivity (Se = 90.9%). The association of RNA editing variants modifications with depression subtypes and the use of artificial intelligence allowed developing a new tool to identify, among depressed patients, those suffering from BD. This test will help to reduce the misdiagnosis delay of bipolar patients, leading to an earlier implementation of a proper treatment.

Conflict of interest statement

The authors declare no competing interests.

© 2022. The Author(s).

Figures

Fig. 1. STARD flow chart diagram of…
Fig. 1. STARD flow chart diagram of participants included in the study.
The diagram reports the flow of participants through the study, indicating the number of participants evaluated for the study, the number of participants excluded because they did not meet the inclusion criteria, and the number of participants included in the discovery and in the validation study.
Fig. 2. RNA editing landscape in whole…
Fig. 2. RNA editing landscape in whole blood.
A Proportions of RNA variant types in human whole blood. A-to-G variant, indicating A-to-I editing, is disproportionately enriched. B The percentage of RNA editing sites across different intervals of editing degrees. C The proportion and numbers of A-to-I editing sites across genomic localization are shown in piechart and at the right of the gray bars. The proportion of editing sites not residing in Alu repeats is represented by black bars. D Repartition of A-to-I editing events or edited genes by chromosome or gene. Black (right y-axis): Repartition of A-to-I editing events by chromosome. Red (left y-axis): Number of edited genes by chromosome. E Distribution of Alu editing index (AEI) values in controls and depressed patients. Data are the mean ± SEM. p value of AEI index was calculated using the Wilcoxon rank-sum test.
Fig. 3. Identification of differentially A-to-I RNA…
Fig. 3. Identification of differentially A-to-I RNA edited sites between healthy controls and depressed patients using RNA-Seq data from human blood.
A Volcano plot of differentially edited sites between healthy controls and depressed patients. The volcano plot shows the upregulated and downregulated sites differentially edited between depressed patients healthy controls. For each plot, the x-axis represents the log2(Fold Change) (FC), and the y-axis represents -log10(p values). Editing sites with a p value of < 0.05 were assigned as differentially edited and are indicated in green. Significant editing sites of selected genes (see Table 2) are labeled in black. B: Heatmap of MeSH class associated with the 7 genes identified by RNAseq annotated by the DisGeNET database. All identified genes have been analyzed and their relationships with mental disorders, behavior and behavior mechanisms, nervous system diseases and immune system diseases MeSH categories have been calculated with DisGeNET database. The darker the heatmap, the stronger the association.
Fig. 4. Diagnostic performance of the tests.
Fig. 4. Diagnostic performance of the tests.
Target Editing Index (TEI) were calculated by combining all significant RNA editing variants with p value ≤ 0.05 for each target gene. ROC curve plotted are the probabilities for the correct response of the tested sets using case specific trained random forest models. The results of the 100 trained random forest by MultDS were combined by majority voting for test dataset. RF results are shown on the test dataset which has never seen the algorithm. The implementation was done using the randomForest and caret R package. A TEI for depressed patients (DEP; n = 267) and healthy controls (CTRL; n = 143); (B) ROC curve and diagnostic performance of Random Forest model for DEP vs CTRL classification; (C) TEI for unipolar (n = 160) and bipolar disorder (BD; n = 95); (D) ROC curve and diagnostic performance of Random Forest model for unipolar vs BD classification.

References

    1. Terry PC, Parsons-Smith RL, Terry VR. Mood responses associated with COVID-19 restrictions. Front Psychol. 2020;11:589598. doi: 10.3389/fpsyg.2020.589598.
    1. Bueno-Notivol J, Gracia-García P, Olaya B, Lasheras I, López-Antón R, Santabárbara J. Prevalence of depression during the COVID-19 outbreak: a meta-analysis of community-based studies. Int J Clin Health Psychol. 2021;21:100196. doi: 10.1016/j.ijchp.2020.07.007.
    1. Wu T, Jia X, Shi H, Niu J, Yin X, Xie J, et al. Prevalence of mental health problems during the COVID-19 pandemic: A systematic review and meta-analysis. J Affect Disord. 2021;281:91–98. doi: 10.1016/j.jad.2020.11.117.
    1. Pera A. Depressive symptoms, anxiety disorder, and suicide risk during the COVID-19 pandemic. Front Psychol. 2020;11:572699. doi: 10.3389/fpsyg.2020.572699.
    1. Wohleb ES, Franklin T, Iwata M, Duman RS. Integrating neuroimmune systems in the neurobiology of depression. Nat Rev Neurosci. 2016;17:497–511. doi: 10.1038/nrn.2016.69.
    1. Otte C, Gold SM, Penninx BW, Pariante CM, Etkin A, Fava M, et al. Major depressive disorder. Nat Rev Dis Prim. 2016;2:16065. doi: 10.1038/nrdp.2016.65.
    1. Association, AP Diagnostic and Statistical Manual of Mental Disorders (5th ed) Washington, DC, 2013.
    1. Malhi GS, Mann JJ. Depression. Lancet. 2018;392:2299–312. doi: 10.1016/S0140-6736(18)31948-2.
    1. Hirschfeld RM, Cass AR, Holt DC, Carlson CA. Screening for bipolar disorder in patients treated for depression in a family medicine clinic. J Am Board Fam Pr. 2005;18:233–9. doi: 10.3122/jabfm.18.4.233.
    1. Judd LL, Akiskal HS, Schettler PJ, Endicott J, Maser J, Solomon DA, et al. The long-term natural history of the weekly symptomatic status of bipolar I disorder. Arch Gen Psychiatry. 2002;59:530–7. doi: 10.1001/archpsyc.59.6.530.
    1. Dagani J, Signorini G, Nielssen O, Bani M, Pastore A, Girolamo G, et al. Meta-analysis of the Interval between the Onset and Management of Bipolar Disorder. Can J Psychiatry. 2017;62:247–58. doi: 10.1177/0706743716656607.
    1. Hirschfeld RM, Lewis L, Vornik LA. Perceptions and impact of bipolar disorder: how far have we really come? Results of the national depressive and manic-depressive association 2000 survey of individuals with bipolar disorder. J Clin Psychiatry. 2003;64:161–74. doi: 10.4088/JCP.v64n0209.
    1. Beyer JL. The use of antidepressants in bipolar depression. Handb Exp Pharm. 2019;250:415–42. doi: 10.1007/164_2018_155.
    1. Young RC, Biggs JT, Ziegler VE, Meyer DA. A rating scale for mania: reliability, validity and sensitivity. Br J Psychiatry. 1978;133:429–35. doi: 10.1192/bjp.133.5.429.
    1. Altman EG, Hedeker D, Peterson JL, Davis JM. The Altman self-rating mania scale. Biol Psychiatry. 1997;42:948–55. doi: 10.1016/S0006-3223(96)00548-3.
    1. Hirschfeld RM, Williams JB, Spitzer RL, Calabrese JR, Flynn L, Keck PE, Jr, et al. Development and validation of a screening instrument for bipolar spectrum disorder: the Mood Disorder Questionnaire. Am J Psychiatry. 2000;157:1873–5. doi: 10.1176/appi.ajp.157.11.1873.
    1. Jentsch MC, Van Buel EM, Bosker FJ, Gladkevich AV, Klein HC, Oude Voshaar RC, et al. Biomarker approaches in major depressive disorder evaluated in the context of current hypotheses. Biomark Med. 2015;9:277–97. doi: 10.2217/bmm.14.114.
    1. Vismara M, Girone N, Cirnigliaro G, Fasciana F, Vanzetto S, Ferrara L, et al. Peripheral biomarkers in DSM-5 anxiety disorders: an updated overview. Brain Sci. 2020;10:564.. doi: 10.3390/brainsci10080564.
    1. Jung Y, Goldman D. Role of RNA modifications in brain and behavior. Genes Brain Behav. 2018;17:e12444. doi: 10.1111/gbb.12444.
    1. Shelton RC. The molecular neurobiology of depression. Psychiatr Clin North Am. 2007;30:1–11. doi: 10.1016/j.psc.2006.12.005.
    1. Lee SY, Lu RB, Wang LJ, Chang CH, Lu T, Wang TY, et al. Serum miRNA as a possible biomarker in the diagnosis of bipolar II disorder. Sci Rep. 2020;10:1131. doi: 10.1038/s41598-020-58195-0.
    1. Giacopuzzi E, Gennarelli M, Sacco C, Filippini A, Mingardi J, Magri C, et al. Genome-wide analysis of consistently RNA edited sites in human blood reveals interactions with mRNA processing genes and suggests correlations with cell types and biological variables. BMC Genomics. 2018;19:963. doi: 10.1186/s12864-018-5364-8.
    1. Yang W, Wang Q, Kanes SJ, Murray JM, Nishikura K. Altered RNA editing of serotonin 5-HT2C receptor induced by interferon: implications for depression associated with cytokine therapy. Brain Res Mol Brain Res. 2004;124:70–8. doi: 10.1016/j.molbrainres.2004.02.010.
    1. Lyddon R, Dwork AJ, Keddache M, Siever LJ, Dracheva S. Serotonin 2c receptor RNA editing in major depression and suicide. World J Biol Psychiatry. 2013;14:590–601. doi: 10.3109/15622975.2011.630406.
    1. Walkley CR, Li JB. Rewriting the transcriptome: adenosine-to-inosine RNA editing by ADARs. Genome Biol. 2017;18:205. doi: 10.1186/s13059-017-1347-3.
    1. Daniel C, Lagergren J, Öhman M. RNA editing of non-coding RNA and its role in gene regulation. Biochimie. 2015;117:22–7. doi: 10.1016/j.biochi.2015.05.020.
    1. Nishikura K. A-to-I editing of coding and non-coding RNAs by ADARs. Nat Rev Mol Cell Biol. 2016;17:83–96. doi: 10.1038/nrm.2015.4.
    1. Kawahara Y, Megraw M, Kreider E, Iizasa H, Valente L, Hatzigeorgiou AG, et al. Frequency and fate of microRNA editing in human brain. Nucleic Acids Res. 2008;36:5270–80. doi: 10.1093/nar/gkn479.
    1. Wulff BE, Nishikura K. Modulation of microRNA expression and function by ADARs. Curr Top Microbiol Immunol. 2012;353:91–109.
    1. Gatsiou A, Vlachogiannis N, Lunella FF, Sachse M, Stellos K. Adenosine-to-Inosine RNA Editing in Health and Disease. Antioxid Redox Signal. 2018;29:846–63. doi: 10.1089/ars.2017.7295.
    1. Rosenthal JJ, Seeburg PH. A-to-I RNA editing: effects on proteins key to neural excitability. Neuron. 2012;74:432–9. doi: 10.1016/j.neuron.2012.04.010.
    1. Weissmann D, van der Laan S, Underwood MD, Salvetat N, Cavarec L, Vincent L, et al. Region-specific alterations of A-to-I RNA editing of serotonin 2c receptor in the cortex of suicides with major depression. Transl Psychiatry. 2016;6:e878. doi: 10.1038/tp.2016.121.
    1. Chimienti F, Cavarec L, Vincent L, Salvetat N, Arango V, Underwood MD, et al. Brain region-specific alterations of RNA editing in PDE8A mRNA in suicide decedents. Transl Psychiatry. 2019;9:91. doi: 10.1038/s41398-018-0331-3.
    1. Bender AT, Beavo JA. Cyclic nucleotide phosphodiesterases: molecular regulation to clinical use. Pharm Rev. 2006;58:488–520. doi: 10.1124/pr.58.3.5.
    1. Salvetat N, Van der Laan S, Vire B, Chimienti F, Cleophax S, Bronowicki JP, et al. RNA editing blood biomarkers for predicting mood alterations in HCV patients. J Neurovirol. 2019;25:825–36. doi: 10.1007/s13365-019-00772-9.
    1. Salvetat N, Chimienti F, Cayzac C, Dubuc B, Checa-Robles F, Dupre P, et al. Phosphodiesterase 8A to discriminate in blood samples depressed patients and suicide attempters from healthy controls based on A-to-I RNA editing modifications. Transl Psychiatry. 2021;11:255. doi: 10.1038/s41398-021-01377-9.
    1. Lecrubier Y, Weiller E, Hergueta T, Amorim P, Bonora LI, Lepine JP, et al. Mini International Neuropsychiatric Interview French Version 5.0.0. 1998: p. INSERM-PARIS, FRANCE.
    1. Montgomery SA, Asberg M. A new depression scale designed to be sensitive to change. Br J Psychiatry. 1979;134:382–9. doi: 10.1192/bjp.134.4.382.
    1. Rush AJ, Gullion CM, Basco MR, Jarrett RB, Trivedi MH. The Inventory of Depressive Symptomatology (IDS): psychometric properties. Psychol Med. 1996;26:477–86. doi: 10.1017/S0033291700035558.
    1. Ewels P, Magnusson M, Lundin S, Käller M. MultiQC: summarize analysis results for multiple tools and samples in a single report. Bioinformatics. 2016;32:3047–8. doi: 10.1093/bioinformatics/btw354.
    1. John D, Weirick T, Dimmeler S, Uchida S. RNAEditor: easy detection of RNA editing events and the introduction of editing islands. Brief Bioinform. 2017;18:993–1001.
    1. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60. doi: 10.1093/bioinformatics/btp324.
    1. Schneider VA, Graves-Lindsay T, Howe K, Bouk N, Chen HC, Kitts PA, et al. Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly. Genome Res. 2017;27:849–64. doi: 10.1101/gr.213611.116.
    1. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet. 2011;43:491–8. doi: 10.1038/ng.806.
    1. Yang H, Wang K. Genomic variant annotation and prioritization with ANNOVAR and wANNOVAR. Nat Protoc. 2015;10:1556–66. doi: 10.1038/nprot.2015.105.
    1. Tempel S. Using and understanding RepeatMasker. Methods Mol Biol. 2012;859:29–51. doi: 10.1007/978-1-61779-603-6_2.
    1. Picardi E, D’Erchia AM, Lo Giudice C, Pesole G. REDIportal: a comprehensive database of A-to-I RNA editing events in humans. Nucleic Acids Res. 2017;45:D750–D757. doi: 10.1093/nar/gkw767.
    1. Bazak L, Levanon EY, Eisenberg E. Genome-wide analysis of Alu editability. Nucleic Acids Res. 2014;42:6876–84. doi: 10.1093/nar/gku414.
    1. Piñero J, Queralt-Rosinach N, Bravo À, Deu-Pons J, Bauer-Mehren A, Baron M, et al. DisGeNET: a discovery platform for the dynamical exploration of human diseases and their genes. Database. 2015;2015:bav028. doi: 10.1093/database/bav028.
    1. Piñero J, Ramírez-Anguita JM, Saüch-Pitarch J, Ronzano F, Centeno E, Sanz F, et al. The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Res. 2020;48:D845–D855.
    1. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. doi: 10.1038/nmeth.1923.
    1. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25:2078–9. doi: 10.1093/bioinformatics/btp352.
    1. Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–93. doi: 10.1093/bioinformatics/btr509.
    1. Gentleman RC, Carey VJ, Bates DM, Bolstad B, Dettling M, Dudoit S, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5:R80. doi: 10.1186/gb-2004-5-10-r80.
    1. team, R.d.C., R: a language and environment for statistical computing. R Foundation for statistical computing, Vienna, Austria, 2005. ISBN 3-900051-07-0.
    1. Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27. doi: 10.1093/biostatistics/kxj037.
    1. Peterson RA and Cavanaugh JE Ordered quantile normalization: a semiparametric transformation built for the cross-validation era. Journal of applied statistics, 2019:1–16.
    1. Su JQ, Liu JS. Linear combinations of multiple diagnostic markers. J Am Stat Assoc. 1993;88:1350–5. doi: 10.1080/01621459.1993.10476417.
    1. Linden A. Measuring diagnostic and predictive accuracy in disease management: an introduction to receiver operating characteristic (ROC) analysis. J Eval Clin Pr. 2006;12:132–9. doi: 10.1111/j.1365-2753.2005.00598.x.
    1. Breiman L Random forest. Machine learning. Kluwer Academic Publishers, 2001. 45:5–32.
    1. Blagus R, Lusa L. Class prediction for high-dimensional class-imbalanced data. BMC Bioinforma. 2010;11:523. doi: 10.1186/1471-2105-11-523.
    1. Kuhn M. Building Predictive Models in R Using the caret Package. J Stat Softw. 2008;28:1–26. doi: 10.18637/jss.v028.i05.
    1. Gene Ontology C. Gene Ontology Consortium: going forward. Nucleic Acids Res. 2015;43:D1049–56. doi: 10.1093/nar/gku1179.
    1. Fabregat A, Jupe S, Matthews L, Sidiropoulos K, Gillespie M, Garapati P, et al. The Reactome Pathway Knowledgebase. Nucleic Acids Res. 2018;46:D649–D655. doi: 10.1093/nar/gkx1132.
    1. van der Laan S, Salvetat N, Weissmann D, Molina F. Emerging RNA editing biomarkers will foster drug development. Drug Disco Today. 2017;22:1056–63. doi: 10.1016/j.drudis.2017.01.017.
    1. Breen MS, Dobbyn A, Li Q, Roussos P, Hoffman GE, Stahl E, et al. Global landscape and genetic regulation of RNA editing in cortical samples from individuals with schizophrenia. Nat Neurosci. 2019;22:1402–12. doi: 10.1038/s41593-019-0463-7.
    1. Bauer ME, Teixeira AL. Inflammation in psychiatric disorders: what comes first? Ann NY Acad Sci. 2019;1437:57–67. doi: 10.1111/nyas.13712.
    1. Khan A, Leonard D, Defina L, Barlow CE, Willis B, Brown ES. Association between C reactive protein and depression in a population of healthy adults: the Cooper Center Longitudinal Study. J Investig Med. 2020;68:1019–23. doi: 10.1136/jim-2019-001254.
    1. Zhang L, Fu T, Yin R, Zhang Q, Shen B. Prevalence of depression and anxiety in systemic lupus erythematosus: a systematic review and meta-analysis. BMC Psychiatry. 2017;17:70. doi: 10.1186/s12888-017-1234-1.
    1. Brunoni AR, Supasitthumrong T, Teixeira AL, Vieira EL, Gattaz WF, Benseñor IM, et al. Differences in the immune-inflammatory profiles of unipolar and bipolar depression. J Affect Disord. 2020;262:8–15. doi: 10.1016/j.jad.2019.10.037.
    1. Dowlati Y, Herrmann N, Swardfager W, Liu H, Sham L, Reim EK, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67:446–57. doi: 10.1016/j.biopsych.2009.09.033.
    1. Asnis GM, De La Garza R, 2nd, Kohn SR, Reinus JF, Henderson M, Shah J. IFN-induced depression: a role for NSAIDs. Psychopharmacol Bull. 2003;37:29–50.
    1. Liu H, Golji J, Brodeur LK, Chung FS, Chen JT, deBeaumont RS, et al. Tumor-derived IFN triggers chronic pathway agonism and sensitivity to ADAR loss. Nat Med. 2019;25:95–102. doi: 10.1038/s41591-018-0302-5.
    1. Yoshida K, Alagbe O, Wang X, Woolwine B, Thornbury M, Raison CL, et al. Promoter polymorphisms of the interferon-alpha receptor gene and development of Interferon-induced depressive symptoms in patients with chronic hepatitis C: preliminary findings. Neuropsychobiology. 2005;52:55–61. doi: 10.1159/000086605.
    1. Rifai MA, Sabouni MA. Utilizing genomic polymorphisms to personalize hepatitis C therapies. Curr Opin Organ Transpl. 2012;17:198–203. doi: 10.1097/MOT.0b013e328351093b.
    1. Avila M, Martinez-Juarez A, Ibarra-Sanchez A, Gonzalez-Espinosa C. Lyn kinase controls TLR4-dependent IKK and MAPK activation modulating the activity of TRAF-6/TAK-1 protein complex in mast cells. Innate Immun. 2012;18:648–60. doi: 10.1177/1753425911435265.
    1. O’Neill MJ, Bleakman D, Zimmerman DM, Nisenbaum ES. AMPA receptor potentiators for the treatment of CNS disorders. Curr Drug Targets CNS Neurol Disord. 2004;3:181–94. doi: 10.2174/1568007043337508.
    1. Volpin V, Michels T, Sorrentino A, Menevse AN, Knoll G, Ditz M, et al. CAMK1D triggers immune resistance of human tumor cells refractory to anti-PD-L1 treatment. Cancer Immunol Res. 2020;8:1163–1179. doi: 10.1158/2326-6066.CIR-19-0608.
    1. Lin E, Kuo PH, Liu YL, Yu YW, Yang AC, Tsai SJ. A Deep Learning Approach for Predicting Antidepressant Response in Major Depression Using Clinical and Genetic Biomarkers. Front Psychiatry. 2018;9:290. doi: 10.3389/fpsyt.2018.00290.
    1. Wang H, Nestor CE, Benson M, Zhang H. GAB2 regulates type 2 T helper cell differentiation in humans. Cytokine. 2017;96:234–7. doi: 10.1016/j.cyto.2017.04.027.
    1. Reiman EM, Webster JA, Myers AJ, Hardy J, Dunckley T, Zismann VL, et al. GAB2 alleles modify Alzheimer’s risk in APOE epsilon4 carriers. Neuron. 2007;54:713–20. doi: 10.1016/j.neuron.2007.05.022.
    1. Chen XX, Guo RR, Cao XP, Tan L, Tan L. The impact of GAB2 genetic variations on cerebrospinal fluid markers in Alzheimer’s disease. Ann Transl Med. 2018;6:171. doi: 10.21037/atm.2018.04.11.
    1. Hu Y, Zheng L, Cheng L, Zhang Y, Bai W, Zhou W, et al. GAB2 rs2373115 variant contributes to Alzheimer’s disease risk specifically in European population. J Neurol Sci. 2017;375:18–22. doi: 10.1016/j.jns.2017.01.030.
    1. Zhou X, Chen Y, Mok KY, Zhao Q, Chen K, Chen Y, et al. Identification of genetic risk factors in the Chinese population implicates a role of immune system in Alzheimer’s disease pathogenesis. Proc Natl Acad Sci USA. 2018;115:1697–706. doi: 10.1073/pnas.1715554115.
    1. Guo X, Li Z, Zhang C, Yi Z, Li H, Cao L, et al. Down-regulation of PRKCB1 expression in Han Chinese patients with subsyndromal symptomatic depression. J Psychiatr Res. 2015;69:1–6. doi: 10.1016/j.jpsychires.2015.07.011.
    1. Costas J, Gratacòs M, Escaramís G, Martín-Santos R, de Diego Y, Baca-García E, et al. Association study of 44 candidate genes with depressive and anxiety symptoms in post-partum women. J Psychiatr Res. 2010;44:717–24. doi: 10.1016/j.jpsychires.2009.12.012.
    1. Colledge M, Snyder EM, Crozier RA, Soderling JA, Jin Y, Langeberg LK, et al. Ubiquitination regulates PSD-95 degradation and AMPA receptor surface expression. Neuron. 2003;40:595–607. doi: 10.1016/S0896-6273(03)00687-1.

Source: PubMed

3
Se inscrever