Molecular and phenotypic biomarkers of aging

Xian Xia, Weiyang Chen, Joseph McDermott, Jing-Dong Jackie Han, Xian Xia, Weiyang Chen, Joseph McDermott, Jing-Dong Jackie Han

Abstract

Individuals of the same age may not age at the same rate. Quantitative biomarkers of aging are valuable tools to measure physiological age, assess the extent of 'healthy aging', and potentially predict health span and life span for an individual. Given the complex nature of the aging process, the biomarkers of aging are multilayered and multifaceted. Here, we review the phenotypic and molecular biomarkers of aging. Identifying and using biomarkers of aging to improve human health, prevent age-associated diseases, and extend healthy life span are now facilitated by the fast-growing capacity of multilevel cross-sectional and longitudinal data acquisition, storage, and analysis, particularly for data related to general human populations. Combined with artificial intelligence and machine learning techniques, reliable panels of biomarkers of aging will have tremendous potential to improve human health in aging societies.

Keywords: age-associated diseases; aging process; molecular; phenotypic; physiological age.

Conflict of interest statement

Competing interests: The authors declare that they have no competing interests.No competing interests were disclosed.No competing interests were disclosed.No competing interests were disclosed.

References

    1. López-Otín C, Blasco MA, Partridge L, et al. : The hallmarks of aging. Cell. 2013;153(6):1194–217. 10.1016/j.cell.2013.05.039
    2. F1000 Recommendation

    1. Engelfriet PM, Jansen EH, Picavet HS, et al. : Biochemical markers of aging for longitudinal studies in humans. Epidemiol Rev. 2013;35(1):132–51. 10.1093/epirev/mxs011
    2. F1000 Recommendation

    1. Johnson TE: Recent results: biomarkers of aging. Exp Gerontol. 2006;41(12):1243–6. 10.1016/j.exger.2006.09.006
    1. Aubert G, Lansdorp PM: Telomeres and aging. Physiol Rev. 2008;88(2):557–79. 10.1152/physrev.00026.2007
    1. Kimura M, Hjelmborg JV, Gardner JP, et al. : Telomere length and mortality: a study of leukocytes in elderly Danish twins. Am J Epidemiol. 2008;167(7):799–806. 10.1093/aje/kwm380
    2. F1000 Recommendation

    1. Rehkopf DH, Needham BL, Lin J, et al. : Leukocyte Telomere Length in Relation to 17 Biomarkers of Cardiovascular Disease Risk: A Cross-Sectional Study of US Adults. PLoS Med. 2016;13(11):e1002188. 10.1371/journal.pmed.1002188
    2. F1000 Recommendation

    1. Hammadah M, Al Mheid I, Wilmot K, et al. : Telomere Shortening, Regenerative Capacity, and Cardiovascular Outcomes. Circ Res. 2017;120(7):1130–8. 10.1161/CIRCRESAHA.116.309421
    2. F1000 Recommendation

    1. Blackburn EH, Epel ES, Lin J: Human telomere biology: A contributory and interactive factor in aging, disease risks, and protection. Science. 2015;350(6265):1193–8. 10.1126/science.aab3389
    2. F1000 Recommendation

    1. Eitan E, Hutchison ER, Mattson MP: Telomere shortening in neurological disorders: an abundance of unanswered questions. Trends Neurosci. 2014;37(5):256–63. 10.1016/j.tins.2014.02.010
    1. Sedelnikova OA, Horikawa I, Zimonjic DB, et al. : Senescing human cells and ageing mice accumulate DNA lesions with unrepairable double-strand breaks. Nat Cell Biol. 2004;6(2):168–70. 10.1038/ncb1095
    2. F1000 Recommendation

    1. Dollé ME, Giese H, Hopkins CL, et al. : Rapid accumulation of genome rearrangements in liver but not in brain of old mice. Nat Genet. 1997;17(4):431–4. 10.1038/ng1297-431
    1. White RR, Milholland B, de Bruin A, et al. : Controlled induction of DNA double-strand breaks in the mouse liver induces features of tissue ageing. Nat Commun. 2015;6:6790. 10.1038/ncomms7790
    2. F1000 Recommendation

    1. Wang C, Jurk D, Maddick M, et al. : DNA damage response and cellular senescence in tissues of aging mice. Aging Cell. 2009;8(3):311–23. 10.1111/j.1474-9726.2009.00481.x
    1. Rübe CE, Fricke A, Widmann TA, et al. : Accumulation of DNA damage in hematopoietic stem and progenitor cells during human aging. PLoS One. 2011;6(3):e17487. 10.1371/journal.pone.0017487
    1. Kuo LJ, Yang LX: Gamma-H2AX - a novel biomarker for DNA double-strand breaks. In Vivo. 2008;22(3):305–9.
    1. Song Z, von Figura G, Liu Y, et al. : Lifestyle impacts on the aging-associated expression of biomarkers of DNA damage and telomere dysfunction in human blood. Aging Cell. 2010;9(4):607–15. 10.1111/j.1474-9726.2010.00583.x
    1. Chevanne M, Caldini R, Tombaccini D, et al. : Comparative levels of DNA breaks and sensitivity to oxidative stress in aged and senescent human fibroblasts: a distinctive pattern for centenarians. Biogerontology. 2003;4(2):97–104. 10.1023/A:1023399820770
    1. Day K, Waite LL, Thalacker-Mercer A, et al. : Differential DNA methylation with age displays both common and dynamic features across human tissues that are influenced by CpG landscape. Genome Biol. 2013;14(9):R102. 10.1186/gb-2013-14-9-r102
    1. Horvath S, Zhang Y, Langfelder P, et al. : Aging effects on DNA methylation modules in human brain and blood tissue. Genome Biol. 2012;13(10):R97. 10.1186/gb-2012-13-10-r97
    1. Horvath S, Gurven M, Levine ME, et al. : An epigenetic clock analysis of race/ethnicity, sex, and coronary heart disease. Genome Biol. 2016;17(1):171. 10.1186/s13059-016-1030-0
    1. Weidner CI, Lin Q, Koch CM, et al. : Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014;15(2):R24. 10.1186/gb-2014-15-2-r24
    1. Bacos K, Gillberg L, Volkov P, et al. : Blood-based biomarkers of age-associated epigenetic changes in human islets associate with insulin secretion and diabetes. Nat Commun. 2016;7: 11089. 10.1038/ncomms11089
    2. F1000 Recommendation

    1. Sen P, Shah PP, Nativio R, et al. : Epigenetic Mechanisms of Longevity and Aging. Cell. 2016;166(4):822–39. 10.1016/j.cell.2016.07.050
    2. F1000 Recommendation

    1. Lu Y, Biancotto A, Cheung F, et al. : Systematic Analysis of Cell-to-Cell Expression Variation of T Lymphocytes in a Human Cohort Identifies Aging and Genetic Associations. Immunity. 2016;45(5):1162–75. 10.1016/j.immuni.2016.10.025
    2. F1000 Recommendation

    1. Peters MJ, Joehanes R, Pilling LC, et al. : The transcriptional landscape of age in human peripheral blood. Nat Commun. 2015;6: 8570. 10.1038/ncomms9570
    2. F1000 Recommendation

    1. Dumortier O, Hinault C, Van Obberghen E: MicroRNAs and metabolism crosstalk in energy homeostasis. Cell Metab. 2013;18(3):312–24. 10.1016/j.cmet.2013.06.004
    1. Dhahbi JM: Circulating small noncoding RNAs as biomarkers of aging. Ageing Res Rev. 2014;17:86–98. 10.1016/j.arr.2014.02.005
    1. Li X, Khanna A, Li N, et al. : Circulatory miR34a as an RNAbased, noninvasive biomarker for brain aging. Aging (Albany NY). 2011;3(10):985–1002. 10.18632/aging.100371
    1. Pang J, Xiong H, Yang H, et al. : Circulating miR-34a levels correlate with age-related hearing loss in mice and humans. Exp Gerontol. 2016;76:58–67. 10.1016/j.exger.2016.01.009
    2. F1000 Recommendation

    1. Olivieri F, Spazzafumo L, Santini G, et al. : Age-related differences in the expression of circulating microRNAs: miR-21 as a new circulating marker of inflammaging. Mech Ageing Dev. 2012;133(11–12):675–85. 10.1016/j.mad.2012.09.004
    1. Noren Hooten N, Fitzpatrick M, Wood WH, 3rd, et al. : Age-related changes in microRNA levels in serum. Aging (Albany NY). 2013;5(10):725–40. 10.18632/aging.100603
    1. Olivieri F, Bonafè M, Spazzafumo L, et al. : Age- and glycemia-related miR-126-3p levels in plasma and endothelial cells. Aging (Albany NY). 2014;6(9):771–87. 10.18632/aging.100693
    1. Pincus Z, Smith-Vikos T, Slack FJ: MicroRNA predictors of longevity in Caenorhabditis elegans. PLoS Genet. 2011;7(9):e1002306. 10.1371/journal.pgen.1002306
    2. F1000 Recommendation

    1. Fatica A, Bozzoni I: Long non-coding RNAs: new players in cell differentiation and development. Nat Rev Genet. 2014;15(1):7–21. 10.1038/nrg3606
    1. Grammatikakis I, Panda AC, Abdelmohsen K, et al. : Long noncoding RNAs(lncRNAs) and the molecular hallmarks of aging. Aging (Albany NY). 2014;6(12):992–1009. 10.18632/aging.100710
    1. Kour S, Rath PC: Long noncoding RNAs in aging and age-related diseases. Ageing Res Rev. 2016;26:1–21. 10.1016/j.arr.2015.12.001
    2. F1000 Recommendation

    1. Quinn JJ, Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 2016;17(1):47–62. 10.1038/nrg.2015.10
    2. F1000 Recommendation

    1. Montes M, Nielsen MM, Maglieri G, et al. : The lncRNA MIR31HG regulates p16 INK4A expression to modulate senescence. Nat Commun. 2015;6:6967. 10.1038/ncomms7967
    2. F1000 Recommendation

    1. Chen YN, Cai MY, Xu S, et al. : Identification of the lncRNA, AK156230, as a novel regulator of cellular senescence in mouse embryonic fibroblasts. Oncotarget. 2016;7(33):52673–84. 10.18632/oncotarget.10170
    2. F1000 Recommendation

    1. Boon RA, Hofmann P, Michalik KM, et al. : Long Noncoding RNA Meg3 Controls Endothelial Cell Aging and Function: Implications for Regenerative Angiogenesis. J Am Coll Cardiol. 2016;68(23):2589–91. 10.1016/j.jacc.2016.09.949
    1. Zhu S, Li W, Liu J, et al. : Genome-scale deletion screening of human long non-coding RNAs using a paired-guide RNA CRISPR-Cas9 library. Nat Biotechnol. 2016;34(12):1279–86. 10.1038/nbt.3715
    2. F1000 Recommendation

    1. Fontana L, Partridge L, Longo VD: Extending healthy life span--from yeast to humans. Science. 2010;328(5976):321–6. 10.1126/science.1172539
    1. Schumacher B, van der Pluijm I, Moorhouse MJ, et al. : Delayed and accelerated aging share common longevity assurance mechanisms. PLoS Genet. 2008;4(8):e1000161. 10.1371/journal.pgen.1000161
    1. Corpas E, Harman SM, Blackman MR: Human growth hormone and human aging. Endocr Rev. 1993;14(1):20–39. 10.1210/edrv-14-1-20
    1. Crimmins E, Vasunilashorn S, Kim JK, et al. : Biomarkers related to aging in human populations. Adv Clin Chem. 2008;46:161–216. 10.1016/S0065-2423(08)00405-8
    1. Johnson SC, Rabinovitch PS, Kaeberlein M: mTOR is a key modulator of ageing and age-related disease. Nature. 2013;493(7432):338–45. 10.1038/nature11861
    1. Bajwa P, Nagendra PB, Nielsen S, et al. : Age related increase in mTOR activity contributes to the pathological changes in ovarian surface epithelium. Oncotarget. 2016;7(15):19214–27. 10.18632/oncotarget.8468
    2. F1000 Recommendation

    1. Dieterlen MT, Bittner HB, Klein S, et al. : Assay validation of phosphorylated S6 ribosomal protein for a pharmacodynamic monitoring of mTOR-inhibitors in peripheral human blood. Cytometry B Clin Cytom. 2012;82(3):151–7. 10.1002/cyto.b.21005
    1. Martin-Montalvo A, Mercken EM, Mitchell SJ, et al. : Metformin improves healthspan and lifespan in mice. Nat Commun. 2013;4: 2192. 10.1038/ncomms3192
    2. F1000 Recommendation

    1. Gordon SE, Lake JA, Westerkamp CM, et al. : Does AMP-activated protein kinase negatively mediate aged fast-twitch skeletal muscle mass? Exerc Sport Sci Rev. 2008;36(4):179–86. 10.1097/JES.0b013e3181877e13
    1. Massudi H, Grant R, Braidy N, et al. : Age-associated changes in oxidative stress and NAD + metabolism in human tissue. PLoS One. 2012;7(7):e42357. 10.1371/journal.pone.0042357
    1. Dang W: The controversial world of sirtuins. Drug Discov Today Technol. 2014;12:e9–e17. 10.1016/j.ddtec.2012.08.003
    1. Imai S, Guarente L: NAD + and sirtuins in aging and disease. Trends Cell Biol. 2014;24(8):464–71. 10.1016/j.tcb.2014.04.002
    1. Kim KS, Park HK, Lee JW, et al. : Investigate correlation between mechanical property and aging biomarker in passaged human dermal fibroblasts. Microsc Res Tech. 2015;78(4):277–82. 10.1002/jemt.22472
    2. F1000 Recommendation

    1. Zhang J, Fang L, Lu Z, et al. : Are sirtuins markers of ovarian aging? Gene. 2016;575(2 Pt 3):680–6. 10.1016/j.gene.2015.09.043
    2. F1000 Recommendation

    1. Yudoh K, Karasawa R, Ishikawa J: Age-related Decrease of Sirtuin 2 Protein in Human Peripheral Blood Mononuclear Cells. Curr Aging Sci. 2015;8(3):256–8. 10.2174/1874609808999150831112939
    2. F1000 Recommendation

    1. Gorisse L, Pietrement C, Vuiblet V, et al. : Protein carbamylation is a hallmark of aging. Proc Natl Acad Sci U S A. 2016;113(5):1191–6. 10.1073/pnas.1517096113
    1. Verbrugge FH, Tang WH, Hazen SL: Protein carbamylation and cardiovascular disease. Kidney Int. 2015;88(3):474–8. 10.1038/ki.2015.166
    2. F1000 Recommendation

    1. Semba RD, Nicklett EJ, Ferrucci L: Does accumulation of advanced glycation end products contribute to the aging phenotype? J Gerontol A Biol Sci Med Sci. 2010;65(9):963–75. 10.1093/gerona/glq074
    1. Thorpe SR, Baynes JW: Role of the Maillard reaction in diabetes mellitus and diseases of aging. Drugs Aging. 1996;9(2):69–77. 10.2165/00002512-199609020-00001
    1. Hanssen NM, Wouters K, Huijberts MS, et al. : Higher levels of advanced glycation endproducts in human carotid atherosclerotic plaques are associated with a rupture-prone phenotype. Eur Heart J. 2014;35(17):1137–46. 10.1093/eurheartj/eht402
    1. Sayej WN, Knight Iii PR, Guo WA, et al. : Advanced Glycation End Products Induce Obesity and Hepatosteatosis in CD-1 Wild-Type Mice. Biomed Res Int. 2016;2016: 7867852. 10.1155/2016/7867852
    2. F1000 Recommendation

    1. Brownlee M: Advanced protein glycosylation in diabetes and aging. Annu Rev Med. 1995;46:223–34. 10.1146/annurev.med.46.1.223
    1. Nagai R, Shirakawa J, Ohno R, et al. : Antibody-based detection of advanced glycation end-products: promises vs. limitations. Glycoconj J. 2016;33(4):545–52. 10.1007/s10719-016-9708-9
    1. Dall'Olio F, Vanhooren V, Chen CC, et al. : N-glycomic biomarkers of biological aging and longevity: a link with inflammaging. Ageing Res Rev. 2013;12(2):685–98. 10.1016/j.arr.2012.02.002
    1. Glei DA, Goldman N, Lin YH, et al. : Age-Related Changes in Biomarkers: Longitudinal Data from a Population-Based Sample. Res Aging. 2011;33(3):312–26. 10.1177/0164027511399105
    1. Montoliu I, Scherer M, Beguelin F, et al. : Serum profiling of healthy aging identifies phospho- and sphingolipid species as markers of human longevity. Aging (Albany NY). 2014;6(1):9–25. 10.18632/aging.100630
    1. Sanchis-Gomar F, Pareja-Galeano H, Santos-Lozano A, et al. : A preliminary candidate approach identifies the combination of chemerin, fetuin-A, and fibroblast growth factors 19 and 21 as a potential biomarker panel of successful aging. Age (Dordr). 2015;37(3):9776. 10.1007/s11357-015-9776-y
    1. Syslová K, Böhmová A, Mikoška M, et al. : Multimarker screening of oxidative stress in aging. Oxid Med Cell Longev. 2014;2014: 562860. 10.1155/2014/562860
    1. Shen EZ, Song CQ, Lin Y, et al. : Mitoflash frequency in early adulthood predicts lifespan in Caenorhabditis elegans. Nature. 2014;508(7494):128–32. 10.1038/nature13012
    2. F1000 Recommendation

    1. Tyrrell DJ, Bharadwaj MS, Jorgensen MJ, et al. : Blood cell respirometry is associated with skeletal and cardiac muscle bioenergetics: Implications for a minimally invasive biomarker of mitochondrial health. Redox Biol. 2016;10:65–77. 10.1016/j.redox.2016.09.009
    2. F1000 Recommendation

    1. Tyrrell DJ, Bharadwaj MS, Van Horn CG, et al. : Respirometric Profiling of Muscle Mitochondria and Blood Cells Are Associated With Differences in Gait Speed Among Community-Dwelling Older Adults. J Gerontol A Biol Sci Med Sci. 2015;70(11):1394–9. 10.1093/gerona/glu096
    2. F1000 Recommendation

    1. Wilkins HM, Koppel SJ, Weidling IW, et al. : Extracellular Mitochondria and Mitochondrial Components Act as Damage-Associated Molecular Pattern Molecules in the Mouse Brain. J Neuroimmune Pharmacol. 2016;11(4):622–8. 10.1007/s11481-016-9704-7
    2. F1000 Recommendation

    1. Burton DG: Cellular senescence, ageing and disease. Age (Dordr). 2009;31(1):1–9. 10.1007/s11357-008-9075-y
    1. Campisi J: Aging, cellular senescence, and cancer. Annu Rev Physiol. 2013;75:685–705. 10.1146/annurev-physiol-030212-183653
    1. Tacutu R, Budovsky A, Yanai H, et al. : Molecular links between cellular senescence, longevity and age-related diseases - a systems biology perspective. Aging (Albany NY). 2011;3(12):1178–91. 10.18632/aging.100413
    1. Sharpless NE, Sherr CJ: Forging a signature of in vivo senescence. Nat Rev Cancer. 2015;15(7):397–408. 10.1038/nrc3960
    2. F1000 Recommendation

    1. Matjusaitis M, Chin G, Sarnoski EA, et al. : Biomarkers to identify and isolate senescent cells. Ageing Res Rev. 2016;29:1–12. 10.1016/j.arr.2016.05.003
    2. F1000 Recommendation

    1. Dimri GP, Lee X, Basile G, et al. : A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proc Natl Acad Sci U S A. 1995;92(20):9363–7. 10.1073/pnas.92.20.9363
    1. Liu Y, Sanoff HK, Cho H, et al. : Expression of p16 INK4a in peripheral blood T-cells is a biomarker of human aging. Aging Cell. 2009;8(4):439–48. 10.1111/j.1474-9726.2009.00489.x
    1. Vandenberk B, Brouwers B, Hatse S, et al. : p16 INK4a: A central player in cellular senescence and a promising aging biomarker in elderly cancer patients. J Geriatr Oncol. 2011;2(4):259–69. 10.1016/j.jgo.2011.08.004
    1. Kurz DJ, Decary S, Hong Y, et al. : Senescence-associated (beta)-galactosidase reflects an increase in lysosomal mass during replicative ageing of human endothelial cells. J Cell Sci. 2000;113(Pt 20):3613–22.
    1. Yang NC, Hu ML: The limitations and validities of senescence associated-beta-galactosidase activity as an aging marker for human foreskin fibroblast Hs68 cells. Exp Gerontol. 2005;40(10):813–9. 10.1016/j.exger.2005.07.011
    1. Schadendorf D, Möller A, Algermissen B, et al. : IL-8 produced by human malignant melanoma cells in vitro is an essential autocrine growth factor. J Immunol. 1993;151(5):2667–75.
    1. Wajapeyee N, Serra RW, Zhu X, et al. : Oncogenic BRAF induces senescence and apoptosis through pathways mediated by the secreted protein IGFBP7. Cell. 2008;132(3):363–74. 10.1016/j.cell.2007.12.032
    2. F1000 Recommendation

    1. Tchkonia T, Zhu Y, van Deursen J, et al. : Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. J Clin Invest. 2013;123(3):966–72. 10.1172/JCI64098
    1. Coppé JP, Desprez PY, Krtolica A, et al. : The senescence-associated secretory phenotype: the dark side of tumor suppression. Annu Rev Pathol. 2010;5:99–118. 10.1146/annurev-pathol-121808-102144
    1. Bianchi ME: DAMPs, PAMPs and alarmins: all we need to know about danger. J Leukoc Biol. 2007;81(1):1–5. 10.1189/jlb.0306164
    1. Huang J, Xie Y, Sun X, et al. : DAMPs, ageing, and cancer: The 'DAMP Hypothesis'. Ageing Res Rev. 2015;24(Pt A):3–16. 10.1016/j.arr.2014.10.004
    2. F1000 Recommendation

    1. Wagner KH, Cameron-Smith D, Wessner B, et al. : Biomarkers of Aging: From Function to Molecular Biology. Nutrients. 2016;8(6): pii: E338. 10.3390/nu8060338
    1. Belsky DW, Moffitt TE, Cohen AA, et al. : Telomere, epigenetic clock, and biomarker-composite quantifications of biological aging: Do they measure the same thing? bioRxiv. 2016. 10.1101/071373
    2. F1000 Recommendation

    1. Chen W, Qian W, Wu G, et al. : Three-dimensional human facial morphologies as robust aging markers. Cell Res. 2015;25(5):574–87. 10.1038/cr.2015.36
    1. Chen W, Xia X, Huang Y, et al. : Bioimaging for quantitative phenotype analysis. Methods. 2016;102:20–5. 10.1016/j.ymeth.2016.01.017
    1. Horvath S: DNA methylation age of human tissues and cell types. Genome Biol. 2013;14(10):R115. 10.1186/gb-2013-14-10-r115
    2. F1000 Recommendation

    1. Cohen AA, Milot E, Yong J, et al. : A novel statistical approach shows evidence for multi-system physiological dysregulation during aging. Mech Ageing Dev. 2013;134(3–4):110–7. 10.1016/j.mad.2013.01.004
    1. Cohen AA, Li Q, Milot E, et al. : Statistical distance as a measure of physiological dysregulation is largely robust to variation in its biomarker composition. PLoS One. 2015;10(4):e0122541. 10.1371/journal.pone.0122541
    1. De Maesschalck R, Jouan-Rimbaud D, Massart DL: The Mahalanobis distance. Chemometr Intell Lab Syst. 2000;50(1):1–18. 10.1016/S0169-7439(99)00047-7
    1. Putin E, Mamoshina P, Aliper A, et al. : Deep biomarkers of human aging: Application of deep neural networks to biomarker development. Aging (Albany NY). 2016;8(5):1021–33. 10.18632/aging.100968
    2. F1000 Recommendation

    1. Bürkle A, Moreno-Villanueva M, Bernhard J, et al. : MARK-AGE biomarkers of ageing. Mech Ageing Dev. 2015;151:2–12. 10.1016/j.mad.2015.03.006

Source: PubMed

3
Se inscrever