Single-subject-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mild traumatic brain injury

Ming-Xiong Huang, Sharon Nichols, Dewleen G Baker, Ashley Robb, Annemarie Angeles, Kate A Yurgil, Angela Drake, Michael Levy, Tao Song, Robert McLay, Rebecca J Theilmann, Mithun Diwakar, Victoria B Risbrough, Zhengwei Ji, Charles W Huang, Douglas G Chang, Deborah L Harrington, Laura Muzzatti, Jose M Canive, J Christopher Edgar, Yu-Han Chen, Roland R Lee, Ming-Xiong Huang, Sharon Nichols, Dewleen G Baker, Ashley Robb, Annemarie Angeles, Kate A Yurgil, Angela Drake, Michael Levy, Tao Song, Robert McLay, Rebecca J Theilmann, Mithun Diwakar, Victoria B Risbrough, Zhengwei Ji, Charles W Huang, Douglas G Chang, Deborah L Harrington, Laura Muzzatti, Jose M Canive, J Christopher Edgar, Yu-Han Chen, Roland R Lee

Abstract

Traumatic brain injury (TBI) is a leading cause of sustained impairment in military and civilian populations. However, mild TBI (mTBI) can be difficult to detect using conventional MRI or CT. Injured brain tissues in mTBI patients generate abnormal slow-waves (1-4 Hz) that can be measured and localized by resting-state magnetoencephalography (MEG). In this study, we develop a voxel-based whole-brain MEG slow-wave imaging approach for detecting abnormality in patients with mTBI on a single-subject basis. A normative database of resting-state MEG source magnitude images (1-4 Hz) from 79 healthy control subjects was established for all brain voxels. The high-resolution MEG source magnitude images were obtained by our recent Fast-VESTAL method. In 84 mTBI patients with persistent post-concussive symptoms (36 from blasts, and 48 from non-blast causes), our method detected abnormalities at the positive detection rates of 84.5%, 86.1%, and 83.3% for the combined (blast-induced plus with non-blast causes), blast, and non-blast mTBI groups, respectively. We found that prefrontal, posterior parietal, inferior temporal, hippocampus, and cerebella areas were particularly vulnerable to head trauma. The result also showed that MEG slow-wave generation in prefrontal areas positively correlated with personality change, trouble concentrating, affective lability, and depression symptoms. Discussion is provided regarding the neuronal mechanisms of MEG slow-wave generation due to deafferentation caused by axonal injury and/or blockages/limitations of cholinergic transmission in TBI. This study provides an effective way for using MEG slow-wave source imaging to localize affected areas and supports MEG as a tool for assisting the diagnosis of mTBI.

Keywords: Axonal injury; Blast; Magnetoencephalography; Slow-wave; Traumatic brain injury.

Figures

Fig. 1
Fig. 1
Brain voxels that survived the K–S test for Gaussian distribution in the normative MEG slow-wave database. Top row (yellow) was for 2 mm FWHM, middle row (green) for 3 mm FWHM, and bottom row (blue) for 8 mm FWHM. Left column (transverse plane), middle column (coronal plane), right column (sagittal plane).
Fig. 2
Fig. 2
Zcmax values obtained from MEG source imaging for 1–4 Hz are plotted separately for 1) healthy control, 2) mild blast-induced TBI, and 3) mild non-blast-induced TBI, groups respectively. The embedded plot: the Youden index is plotted as a function of the Zcmax cutoff. The solid and dashed lines in both plots indicate cutoff values of 2.50 and 2.35, respectively.
Fig. 3
Fig. 3
Single-subject-based analysis showing statistically abnormal MEG source-wave sources in representative mTBI cases. Left column (transverse plane), middle column (coronal plane), right column (sagittal plane).
Fig. 4
Fig. 4
Voxel-based maps showing the percent likelihood of abnormal MEG slow-wave generation across the whole brain.
Fig. 5
Fig. 5
MEG slow-wave source magnitude significantly correlated with PCS in blast mTBI group (first 4 panels) and non-blast mTBI group (last panel). FDR corrected p 

References

    1. Adams J.H., Doyle D., Ford I., Gennarelli T.A., Graham D.I., McLellan D.R. Diffuse axonal injury in head injury: definition, diagnosis and grading. Histopathology. 1989;15:49–59.
    1. Alexander M.P. Mild traumatic brain injury: pathophysiology, natural history, and clinical management. Neurology. 1995;45:1253–1260.
    1. Arfanakis K., Haughton V.M., Carew J.D., Rogers B.P., Dempsey R.J., Meyerand M.E. Diffusion tensor MR imaging in diffuse axonal injury. AJNR Am. J. Neuroradiol. 2002;23:794–802.
    1. Babbage D.R., Yim J., Zupan B., Neumann D., Tomita M.R., Willer B. Meta-analysis of facial affect recognition difficulties after traumatic brain injury. Neuropsychology. 2011;25:277–285.
    1. Ball G.J., Gloor P., Schaul N. The cortical electromicrophysiology of pathological delta waves in the electroencephalogram of cats. Electroencephalogr. Clin. Neurophysiol. 1977;43:346–361.
    1. Basser P.J. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed. 1995;8:333–344.
    1. Basser P.J., Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J. Magn. Reson., Ser. B. 1996;111:209–219.
    1. Benjamini Y., Hochberg Y. Controlling the false positive rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B. 1995;57:289–300.
    1. Bigler E.D., Orrison W.W. Neuroimaging in sports-related brain injury. In: Lovell M.R., Echemendia R.J., Barth J.T., Collins M.W., editors. Traumatic Brain Injury in Sports: An International Perspective. Lisse, Netherlands; Swets and Zeitlinger: 2004. pp. 71–94.
    1. Binder L.M. Persisting symptoms after mild head injury: a review of the postconcussive syndrome. J. Clin. Exp. Neuropsychol. 1986;8:323–346.
    1. Binder L.M. A review of mild head trauma. Part II: clinical implications. J.Clin.Exp.Neuropsychol. 1997;19:432–457.
    1. Bohnen N., Jolles J., Twijnstra A. Neuropsychological deficits in patients with persistent symptoms six months after mild head injury. Neurosurgery. 1992;30:692–695.
    1. Bryant R.A., O'Donnell M.L., Creamer M., McFarlane A.C., Clark C.R., Silove D. The psychiatric sequelae of traumatic injury. Am. J. Psychiatry. 2010;167:312–320.
    1. Carlson N.R. 11 ed. Pearson; Boston: 2013. Physiology of Behavior.
    1. Centers for Disease Control, Prevention, National Center for Injury Prevention, Control . Report to Congress on Mild Traumatic Brain Injury in the United States: Steps to Prevent a Serious Public Health Problem. Centers for Disease Control and Prevention; Atlanta, GA, USA: 2003.
    1. Cernak I., Noble-Haeusslein L.J. Traumatic brain injury: an overview of pathobiology with emphasis on military populations. J. Cereb. Blood Flow Metab. 2010;30:255–266.
    1. Cohen D., Schläpfer U., Ahlfors S., Hämäläinen M., Halgren E. New six-layer magnetically-shielded room for MEG. In: Nowak H.H.J., Gießler F., editors. Proceedings of the 13th International Conference on Biomagnetism. VDE Verlag; Jena, Germany: 2002. pp. 919–921.
    1. Culotta V.P., Sementilli M.E., Gerold K., Watts C.C. Clinicopathological heterogeneity in the classification of mild head injury. Neurosurgery. 1996;38:245–250.
    1. Davenport N.D., Lim K.O., Armstrong M.T., Sponheim S.R. Diffuse and spatially variable white matter disruptions are associated with blast-related mild traumatic brain injury. Neuroimage. 2012;59:2017–2024.
    1. Dikmen S.S., Ross B.L., Machamer J.E., Temkin N.R. One year psychosocial outcome in head injury. J. Int. Neuropsychol. Soc. 1995;1:67–77.
    1. Downing P.E., Jiang Y., Shuman M., Kanwisher N. A cortical area selective for visual processing of the human body. Science. 2001;293:2470–2473.
    1. Elder G.A., Mitsis E.M., Ahlers S.T., Cristian A. Blast-induced mild traumatic brain injury. Psychiatr. Clin. North Am. 2010;33:757–781.
    1. Fisch B.J. Elsevier; 1999. Fisch and Spehlmann's EEG Primer: Basic Principles of Digital and Analog EEG.
    1. Garman R.H., Jenkins L.W., Switzer R.C., III, Bauman R.A., Tong L.C., Swauger P.V., Parks S.A., Ritzel D.V., Dixon C.E., Clark R.S., Bayir H., Kagan V., Jackson E.K., Kochanek P.M. Blast exposure in rats with body shielding is characterized primarily by diffuse axonal injury. J. Neurotrauma. 2011;28:947–959.
    1. Gennarelli T.A., Thibault L.E., Adams J.H., Graham D.I., Thompson C.J., Marcincin R.P. Diffuse axonal injury and traumatic coma in the primate. Ann. Neurol. 1982;12:564–574.
    1. Gloor P., Ball G., Schaul N. Brain lesions that produce delta waves in the EEG. Neurology. 1977;27:326–333.
    1. Huang M., Aine C.J., Supek S., Best E., Ranken D., Flynn E.R. Multi-start downhill simplex method for spatio-temporal source localization in magnetoencephalography. Electroencephalogr. Clin. Neurophysiol. 1998;108:32–44.
    1. Huang M.X., Lee R.R., Miller G.A., Thoma R.J., Hanlon F.M., Paulson K.M., Martin K., Harrington D.L., Weisend M.P., Edgar J.C., Canive J.M. A parietal–frontal network studied by somatosensory oddball MEG responses, and its cross-modal consistency. Neuroimage. 2005;28:99–114.
    1. Huang M.X., Dale A.M., Song T., Halgren E., Harrington D.L., Podgorny I., Canive J.M., Lewis S., Lee R.R. Vector-based spatial–temporal minimum L1-norm solution for MEG. Neuroimage. 2006;31:1025–1037.
    1. Huang M.X., Song T., Hagler D.J., Jr., Podgorny I., Jousmaki V., Cui L., Gaa K., Harrington D.L., Dale A.M., Lee R.R., Elman J., Halgren E. A novel integrated MEG and EEG analysis method for dipolar sources. Neuroimage. 2007;37:731–748.
    1. Huang M.X., Theilmann R.J., Robb A., Angeles A., Nichols S., Drake A., D'Andrea J., Levy M., Holland M., Song T., Ge S., Hwang E., Yoo K., Cui L., Baker D.G., Trauner D., Coimbra R., Lee R.R. Integrated imaging approach with MEG and DTI to detect mild traumatic brain injury in military and civilian patients. J. Neurotrauma. 2009;26:1213–1226.
    1. Huang M.X., Nichols S., Robb A., Angeles A., Drake A., Holland M., Asmussen S., D'Andrea J., Chun W., Levy M., Cui L., Song T., Baker D.G., Hammer P., McLay R., Theilmann R.J., Coimbra R., Diwakar M., Boyd C., Neff J., Liu T.T., Webb-Murphy J., Farinpour R., Cheung C., Harrington D.L., Heister D., Lee R.R. An automatic MEG low-frequency source imaging approach for detecting injuries in mild and moderate TBI patients with blast and non-blast causes. Neuroimage. 2012;61:1067–1082.
    1. Huang M.X., Huang C.W., Robb A., Angeles A., Nichols S.L., Baker D.G., Song T., Harrington D.L., Theilmann R.J., Srinivasan R., Heister D., Diwakar M., Canive J.M., Edgar J.C., Chen Y.H., Ji Z., Shen M., El-Gabalawy F., Levy M., McLay R., Webb-Murphy J., Liu T.T., Drake A., Lee R.R. MEG source imaging method using fast L1 minimum-norm and its applications to signals with brain noise and human resting-state source amplitude images. Neuroimage. 2014;84:585–604.
    1. Huisman T.A., Schwamm L.H., Schaefer P.W., Koroshetz W.J., Shetty-Alva N., Ozsunar Y., Wu O., Sorensen A.G. Diffusion tensor imaging as potential biomarker of white matter injury in diffuse axonal injury. AJNR Am. J. Neuroradiol. 2004;25:370–376.
    1. Jeter C.B., Hergenroeder G.W., Hylin M.J., Redell J.B., Moore A.N., Dash P.K. Biomarkers for the diagnosis and prognosis of mild traumatic brain injury/concussion. J. Neurotrauma. 2013;30:657–670.
    1. Johnston K.M., Ptito A., Chankowsky J., Chen J.K. New frontiers in diagnostic imaging in concussive head injury. Clin. J. Sport Med. 2001;11:166–175.
    1. Kandel E.R., Schwartz J.H., Jessell T.M. 4 ed. McGraw-Hill; New York: 2000. Principles of Neural Science.
    1. Kanwisher N., McDermott J., Chun M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 1997;17:4302–4311.
    1. Kirkwood M.W., Yeates K.O., Wilson P.E. Pediatric sport-related concussion: a review of the clinical management of an oft-neglected population. Pediatrics. 2006;117:1359–1371.
    1. Leahy R.M., Mosher J.C., Spencer M.E., Huang M.X., Lewine J.D. A study of dipole localization accuracy for MEG and EEG using a human skull phantom. Electroencephalogr. Clin. Neurophysiol. 1998;107:159–173.
    1. Levin H.S., Amparo E., Eisenberg H.M., Williams D.H., High W.M., Jr., McArdle C.B., Weiner R.L. Magnetic resonance imaging and computerized tomography in relation to the neurobehavioral sequelae of mild and moderate head injuries. J. Neurosurg. 1987;66:706–713.
    1. Lewine J.D., Davis J.T., Sloan J.H., Kodituwakku P.W., Orrison W.W., Jr. Neuromagnetic assessment of pathophysiologic brain activity induced by minor head trauma. AJNR Am. J. Neuroradiol. 1999;20:857–866.
    1. Lewine J.D., Davis J.T., Bigler E.D., Thoma R., Hill D., Funke M., Sloan J.H., Hall S., Orrison W.W. Objective documentation of traumatic brain injury subsequent to mild head trauma: multimodal brain imaging with MEG, SPECT, and MRI. J. Head Trauma Rehabil. 2007;22:141–155.
    1. Luo Q., Xu D., Roskos T., Stout J., Kull L., Cheng X., Whitson D., Boomgarden E., Gfeller J., Bucholz R.D. Complexity analysis of resting state magnetoencephalography activity in traumatic brain injury patients. J. Neurotrauma. 2013;30:1702–1709.
    1. MacGregor A.J., Dougherty A.L., Galarneau M.R. Injury-specific correlates of combat-related traumatic brain injury in operation Iraqi freedom. J. Head Trauma Rehabil. 2011;26:312–318.
    1. McLean A., Jr., Dikmen S., Temkin N., Wyler A.R., Gale J.L. Psychosocial functioning at 1 month after head injury. Neurosurgery. 1984;14:393–399.
    1. Mosher J.C., Leahy R.M., Lewis P.S. EEG and MEG: forward solutions for inverse methods. IEEE Trans. Biomed. Eng. 1999;46:245–259.
    1. Niedermeyer E., Lopes da Silva F.H. 5th ed. Lippincott Williams & Wilkins; Philadelphia, Baltimore, New York, London, Buenos Aires, Hong Kong, Sydney, Tokyo: 2005. Electroencephalography: Basic Principles, Clinical Applications, and Related Fields.
    1. Niogi S.N., Mukherjee P. Diffusion tensor imaging of mild traumatic brain injury. J. Head Trauma Rehabil. 2010;25:241–255.
    1. Niogi S.N., Mukherjee P., Ghajar J., Johnson C., Kolster R.A., Sarkar R., Lee H., Meeker M., Zimmerman R.D., Manley G.T., McCandliss B.D. Extent of microstructural white matter injury in postconcussive syndrome correlates with impaired cognitive reaction time: a 3T diffusion tensor imaging study of mild traumatic brain injury. AJNR Am. J. Neuroradiol. 2008;29:967–973.
    1. Niogi S.N., Mukherjee P., Ghajar J., Johnson C.E., Kolster R., Lee H., Suh M., Zimmerman R.D., Manley G.T., McCandliss B.D. Structural dissociation of attentional control and memory in adults with and without mild traumatic brain injury. Brain. 2008;131:3209–3221.
    1. Rapoport M.J. Depression following traumatic brain injury: epidemiology, risk factors and management. CNS Drugs. 2012;26:111–121.
    1. Rimel R.W., Giordani B., Barth J.T., Boll T.J., Jane J.A. Disability caused by minor head injury. Neurosurgery. 1981;9:221–228.
    1. Robinson S.E., Vrba J. Functional neuroimaging by synthetic aperture magnetometry (SAM) In: Yoshimoto T., Kotani M., Kuriki S., Karibe H., Nakasato N., editors. Recent Advances in Biomagnetism. Tohoku University Press; Sendai, Japan: 1999. pp. 302–305.
    1. Rockstroh B.S., Wienbruch C., Ray W.J., Elbert T. Abnormal oscillatory brain dynamics in schizophrenia: a sign of deviant communication in neural network? BMC. Psychiatry. 2007;7:44.
    1. Rowan A.J., Tolunsky E. Butterworth Heinemann; 2003. Primer of EEG with a Mini-Atlas.
    1. Rutherford W.H. Postconcussion symptoms: relationship to acute neurological indices, individual differences, and circumstances of injury. In: Levin H., Eisenberg H., Benton A.L., editors. Mild Head Injury. Oxford University Press; New York: 1989. pp. 217–228.
    1. Schaul N. The fundamental neural mechanisms of electroencephalography. Electroencephalogr. Clin. Neurophysiol. 1998;106:101–107.
    1. Schaul N., Gloor P., Ball G., Gotman J. The electromicrophysiology of delta waves induced by systemic atropine. Brain Res. 1978;143:475–486.
    1. Schwarzbold M., Diaz A., Martins E.T., Rufino A., Amante L.N., Thais M.E., Quevedo J., Hohl A., Linhares M.N., Walz R. Psychiatric disorders and traumatic brain injury. Neuropsychiatr. Dis. Treat. 2008;4:797–816.
    1. Sekihara K., Nagarajan S.S., Poeppel D., Marantz A., Miyashita Y. Reconstructing spatio-temporal activities of neural sources using an MEG vector beamformer technique. IEEE Trans. Biomed. Eng. 2001;48:760–771.
    1. Selden N.R., Gitelman D.R., Salamon-Murayama N., Parrish T.B., Mesulam M.M. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain. 1998;121(Pt 12):2249–2257.
    1. Sergent J., Ohta S., MacDonald B. Functional neuroanatomy of face and object processing. A positron emission tomography study. Brain. 1992;115(Pt 1):15–36.
    1. Song T., Gaa K., Cui L., Feffer L., Lee R.R., Huang M. Evaluation of signal space separation via simulation. Med. Biol. Eng. Comput. 2008;46:923–932.
    1. Tarapore P.E., Findlay A.M., Lahue S.C., Lee H., Honma S.M., Mizuiri D., Luks T.L., Manley G.T., Nagarajan S.S., Mukherjee P. Resting state magnetoencephalography functional connectivity in traumatic brain injury. J. Neurosurg. 2013;118:1306–1316.
    1. Taulu S., Kajola M., Simola J. Suppression of interference and artifacts by the signal space separation method. Brain Topogr. 2004;16:269–275.
    1. Taulu S., Simola J., Kajola M. MEG recordings of DC fields using the signal space separation method (SSS) Neurol. Clin. Neurophysiol. 2004;2004:35.
    1. Teasdale G., Jennett B. Assessment of coma and impaired consciousness. A practical scale. Lancet. 1974;2:81–84.
    1. Thurman D.J., Alverson C., Dunn K.A., Guerrero J., Sniezek J.E. Traumatic brain injury in the United States: a public health perspective. J. Head Trauma Rehabil. 1999;14:602–615.
    1. Van Boven R.W., Harrington G.S., Hackney D.B., Ebel A., Gauger G., Bremner J.D., D'Esposito M., Detre J.A., Haacke E.M., Jack C.R., Jr., Jagust W.J., Le B.D., Mathis C.A., Mueller S., Mukherjee P., Schuff N., Chen A., Weiner M.W. Advances in neuroimaging of traumatic brain injury and posttraumatic stress disorder. J. Rehabil. Res. Dev. 2009;46:717–757.
    1. Van Veen B.D., van D.W., Yuchtman M., Suzuki A. Localization of brain electrical activity via linearly constrained minimum variance spatial filtering. IEEE Trans. Biomed. Eng. 1997;44:867–880.
    1. Weiner K.S., Grill-Spector K. Sparsely-distributed organization of face and limb activations in human ventral temporal cortex. Neuroimage. 2010;52:1559–1573.
    1. Wienbruch C. Abnormal slow wave mapping (ASWAM)—a tool for the investigation of abnormal slow wave activity in the human brain. J. Neurosci. Methods. 2007;163:119–127.
    1. Xu J., Rasmussen I.A., Lagopoulos J., Haberg A. Diffuse axonal injury in severe traumatic brain injury visualized using high-resolution diffusion tensor imaging. J. Neurotrauma. 2007;24:753–765.
    1. YOUDEN W.J. Index for rating diagnostic tests. Cancer. 1950;3:32–35.

Source: PubMed

3
Se inscrever