Spatial Ventilation Inhomogeneity Determined by Electrical Impedance Tomography in Patients With Chronic Obstructive Lung Disease

Inéz Frerichs, Livia Lasarow, Claas Strodthoff, Barbara Vogt, Zhanqi Zhao, Norbert Weiler, Inéz Frerichs, Livia Lasarow, Claas Strodthoff, Barbara Vogt, Zhanqi Zhao, Norbert Weiler

Abstract

The aim of this study was to examine whether electrical impedance tomography (EIT) could determine the presence of ventilation inhomogeneity in patients with chronic obstructive lung disease (COPD) from measurements carried out not only during conventional forced full expiration maneuvers but also from forced inspiration maneuvers and quiet tidal breathing and whether the inhomogeneity levels were comparable among the phases and higher than in healthy subjects. EIT data were acquired in 52 patients with exacerbated COPD (11 women, 41 men, 68 ± 11 years) and 14 healthy subjects (6 women, 8 men, 38 ± 8 years). Regional lung function parameters of forced vital capacity (FVC), forced expiratory volume in 1 s (FEV1), forced inspiratory vital capacity (FIVC), forced inspiratory volume in 1 s (FIV1), and tidal volume (V T ) were determined in 912 image pixels. The spatial inhomogeneity of the pixel parameters was characterized by the coefficients of variation (CV) and the global inhomogeneity (GI) index. CV and GI values of pixel FVC, FEV1, FIVC, FIV1, and VT were significantly higher in patients than in healthy subjects (p ≤ 0.0001). The ventilation distribution was affected by the analyzed lung function parameter in patients (CV: p = 0.0024, GI: p = 0.006) but not in healthy subjects. Receiver operating characteristic curves showed that CV and GI discriminated patients from healthy subjects with an area under the curve (AUC) of 0.835 and 0.852 (FVC), 0.845 and 0.867 (FEV1), 0.903 and 0.903 (FIVC), 0.891 and 0.882 (FIV1), and 0.821 and 0.843 (VT), respectively. These findings confirm the ability of EIT to identify increased ventilation inhomogeneity in patients with COPD.

Keywords: EIT; airway obstruction; electrical bioimpedance; forced ventilation maneuver; functional imaging; lung imaging; obstructive lung disease; pulmonary function testing.

Conflict of interest statement

IF has received funding from the European Commission (grant agreement numbers 611223, 668259, and 825572) and speaking/congress fees from Dräger AG & Co KGaA outside the submitted work. ZZ has received a consulting fee from Dräger AG & Co KGaA outside the submitted work. The remaining authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Frerichs, Lasarow, Strodthoff, Vogt, Zhao and Weiler.

Figures

FIGURE 1
FIGURE 1
Schematic drawing of the electrical impedance tomography (EIT) waveform in one image pixel. The waveform reflects the regional lung volume changes over time during pulmonary function testing (A). Five lung function measures analyzed from the periods of quiet tidal breathing, forced full inspiration, and forced full expiration are highlighted: tidal volume (VT), forced inspiratory vital capacity (FIVC), forced inspiratory volume in 1 s (FIV1), forced expiratory volume in 1 s (FEV1), and forced vital capacity (FVC). These measures are calculated in all image pixels and can be visually presented in form of two-dimensional maps called functional EIT images. Example functional EIT images (B) showing the distribution of regional FEV1 acquired in a healthy subject and a patient with chronic obstructive lung disease (COPD) are provided.
FIGURE 2
FIGURE 2
Heterogeneity of regional lung ventilation in patients with COPD and healthy human subjects and the results of receiver-operating characteristics (ROC) analyses. Coefficients of variation (CV) of the pixel values of FVC (A), FEV1(B), FIVC (C), FIV1(D), and VT(E) are shown at the top. The ROC curves revealing the power of CV of the pixel values of FVC (F), FEV1(G), FIVC (H), FIV1(I), and VT(J) to discriminate between the patients suffering from COPD and the healthy subjects are displayed at the bottom. Box and whisker plots show the minimum, 25% percentile, median, 75% percentile, and maximum values. Significant differences between the two groups are indicated: ****p < 0.0001; ***p = 0.0001; ††p < 0.01 (vs. FEV1). AUC, confidence interval (CI), and p-values are given in the bottom part of each ROC curve diagram.
FIGURE 3
FIGURE 3
Heterogeneity of regional lung ventilation in patients with COPD and healthy human subjects and the results of ROC analyses. The values of GI indices calculated from the pixel values of FVC (A), FEV1(B), FIVC (C), FIV1(D), and VT(E) are shown at the top. The ROC curves revealing the power of the GI indices calculated from the pixel values of FVC (F), FEV1(G), FIVC (H), FIV1(I), and VT(J) to discriminate between the patients suffering from COPD and the healthy subjects are given at the bottom part of the figure. Box and whisker plots show the minimum, 25% percentile, median, 75% percentile, and maximum values. Significant differences between the two groups are indicated: ****p < 0.0001; ††p < 0.01 (vs. FEV1); † † †p < 0.001 (vs. FEV1). AUC, CI, and p-values are given in the bottom part of each ROC curve diagram.

References

    1. Adler A., Arnold J. H., Bayford R., Borsic A., Brown B., Dixon P., et al. (2009). GREIT: a unified approach to 2D linear EIT reconstruction of lung images. Physiol. Meas. 30 S35–S55. 10.1088/0967-3334/30/6/S03
    1. Bronco A., Grassi A., Meroni V., Giovannoni C., Rabboni F., Rezoagli E., et al. (2021). Clinical value of electrical impedance tomography (EIT) in the management of patients with acute respiratory failure: a single centre experience. Physiol. Meas. 42:074003. 10.1088/1361-6579/ac0e85
    1. Frerichs I., Amato M. B., van Kaam A. H., Tingay D. G., Zhao Z., Grychtol B., et al. (2017). Chest electrical impedance tomography examination, data analysis, terminology, clinical use and recommendations: consensus statement of the translational EIT development study group. Thorax 72 83–93. 10.1136/thoraxjnl-2016-208357
    1. Frerichs I., Hahn G., Hellige G. (1996). Gravity-dependent phenomena in lung ventilation determined by functional EIT. Physiol. Meas. 17 (Suppl 4A) A149–A157. 10.1088/0967-3334/17/4a/019
    1. Frerichs I., Vogt B., Wacker J., Paradiso R., Braun F., Rapin M., et al. (2020). Multimodal remote chest monitoring system with wearable sensors: a validation study in healthy subjects. Physiol. Meas. 41:015006. 10.1088/1361-6579/ab668f
    1. Frerichs I., Zhao Z., Becher T., Zabel P., Weiler N., Vogt B. (2016). Regional lung function determined by electrical impedance tomography during bronchodilator reversibility testing in patients with asthma. Physiol. Meas. 37 698–712. 10.1088/0967-3334/37/6/698
    1. GBD 2019 Diseases and Injuries Collaborators (2020). Global burden of 369 diseases and injuries in 204 countries and territories, 1990-2019: a systematic analysis for the Global Burden of Disease Study 2019. Lancet 396 1204–1222. 10.1016/S0140-6736(20)30925-9
    1. Graham B. L., Steenbruggen I., Miller M. R., Barjaktarevic I. Z., Cooper B. G., Hall G. L., et al. (2019). Standardization of spirometry 2019 update. An official american thoracic society and european respiratory society technical statement. Am. J, Respir. Crit. Care Med. 200 e70–e88. 10.1164/rccm.201908-1590ST
    1. Kobylianskii J., Murray A., Brace D., Goligher E., Fan E. (2016). Electrical impedance tomography in adult patients undergoing mechanical ventilation: a systematic review. J. Crit. Care 35 33–50. 10.1016/j.jcrc.2016.04.028
    1. Krowka M. J., Enright P. L., Rodarte J. R., Hyatt R. E. (1987). Effect of effort on measurement of forced expiratory volume in one second. Am. Rev. Respir. Dis. 136 829–833. 10.1164/ajrccm/136.4.829
    1. Krueger-Ziolek S., Schullcke B., Zhao Z., Gong B., Naehrig S., Muller-Lisse U., et al. (2016). Multi-layer ventilation inhomogeneity in cystic fibrosis. Respir. Physiol. Neurobiol. 233 25–32. 10.1016/j.resp.2016.07.010
    1. Kunst P. W., Bohm S. H., Vazquez de Anda G., Amato M. B., Lachmann B., Postmus P. E., et al. (2000). Regional pressure volume curves by electrical impedance tomography in a model of acute lung injury. Crit. Care Med. 28 178–183. 10.1097/00003246-200001000-00029
    1. Lasarow L., Vogt B., Zhao Z., Balke L., Weiler N., Frerichs I. (2021). Regional lung function measures determined by electrical impedance tomography during repetitive ventilation manoeuvres in patients with COPD. Physiol. Meas. 42:015008. 10.1088/1361-6579/abdad6
    1. Lehmann S., Leonhardt S., Ngo C., Bergmann L., Ayed I., Schrading S., et al. (2016). Global and regional lung function in cystic fibrosis measured by electrical impedance tomography. Pediatr. Pulmonol. 51 1191–1199. 10.1002/ppul.23444
    1. Metherall P., Barber D. C., Smallwood R. H., Brown B. H. (1996). Three-dimensional electrical impedance tomography. Nature 380 509–512. 10.1038/380509a0
    1. Miller M. R., Hankinson J., Brusasco V., Burgos F., Casaburi R., Coates A., et al. (2005). Standardisation of spirometry. Eur. Respir. J. 26 319–338. 10.1183/09031936.05.00034805
    1. Milne S., Huvanandana J., Nguyen C., Duncan J. M., Chapman D. G., Tonga K. O., et al. (2019). Time-based pulmonary features from electrical impedance tomography demonstrate ventilation heterogeneity in chronic obstructive pulmonary disease. J. Appl. Physiol. 127 1441–1452. 10.1152/japplphysiol.00304.2019
    1. Miniati M., Monti S., Stolk J., Mirarchi G., Falaschi F., Rabinovich R., et al. (2008). Value of chest radiography in phenotyping chronic obstructive pulmonary disease. Eur. Respir. J. 31 509–514. 10.1183/09031936.00095607
    1. Moreno R. H., Hogg J. C., Pare P. D. (1986). Mechanics of airway narrowing. Am. Rev. Respir. Dis. 133 1171–1180. 10.1164/arrd.1986.133.6.1171
    1. Park S. S. (1988). Effect of effort versus volume on forced expiratory flow measurement. Am. Rev. Respir. Dis. 138 1002–1005. 10.1164/ajrccm/138.4.1002
    1. Pulletz S., Adler A., Kott M., Elke G., Gawelczyk B., Schadler D., et al. (2012). Regional lung opening and closing pressures in patients with acute lung injury. J. Crit. Care 27 323. e311–e328. 10.1016/j.jcrc.2011.09.002
    1. Quanjer P. H., Hall G. L., Stanojevic S., Cole T. J., Stocks J. (2012a). Age- and height-based prediction bias in spirometry reference equations. Eur. Respir. J. 40 190–197. 10.1183/09031936.00161011
    1. Quanjer P. H., Stanojevic S., Cole T. J., Baur X., Hall G. L., Culver B. H., et al. (2012b). Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur. Respir. J. 40 1324–1343. 10.1183/09031936.00080312
    1. Rapin M., Braun F., Adler A., Wacker J., Frerichs I., Vogt B., et al. (2019). Wearable sensors for frequency-multiplexed EIT and multilead ECG data acquisition. IEEE Trans. Biomed. Eng. 66 810–820. 10.1109/TBME.2018.2857199
    1. Rapin M., Proenca M., Braun F., Meier C., Sola J., Ferrario D., et al. (2015). Cooperative dry-electrode sensors for multi-lead biopotential and bioimpedance monitoring. Physiol. Meas. 36 767–783. 10.1088/0967-3334/36/4/767
    1. Reifferscheid F., Elke G., Pulletz S., Gawelczyk B., Lautenschlager I., Steinfath M., et al. (2011). Regional ventilation distribution determined by electrical impedance tomography: reproducibility and effects of posture and chest plane. Respirology 16 523–531. 10.1111/j.1440-1843.2011.01929.x
    1. Scaramuzzo G., Spinelli E., Spadaro S., Santini A., Tortolani D., Dalla Corte F., et al. (2020). Gravitational distribution of regional opening and closing pressures, hysteresis and atelectrauma in ARDS evaluated by electrical impedance tomography. Crit. Care 24:622. 10.1186/s13054-020-03335-1
    1. Soriano J. B., Lamprecht B., Ramirez A. S., Martinez-Camblor P., Kaiser B., Alfageme I., et al. (2015). Mortality prediction in chronic obstructive pulmonary disease comparing the GOLD 2007 and 2011 staging systems: a pooled analysis of individual patient data. Lancet Respir. Med. 3 443–450. 10.1016/S2213-2600(15)00157-5
    1. Taube C., Lehnigk B., Paasch K., Kirsten D. K., Jorres R. A., Magnussen H. (2000). Factor analysis of changes in dyspnea and lung function parameters after bronchodilation in chronic obstructive pulmonary disease. Am. J. Respir. Crit. Care Med. 162 216–220. 10.1164/ajrccm.162.1.9909054
    1. Victorino J. A., Borges J. B., Okamoto V. N., Matos G. F., Tucci M. R., Caramez M. P., et al. (2004). Imbalances in regional lung ventilation: a validation study on electrical impedance tomography. Am. J. Respir. Crit. Care Med. 169 791–800. 10.1164/rccm.200301-133OC
    1. Vogelmeier C. F., Criner G. J., Martinez F. J., Anzueto A., Barnes P. J., Bourbeau J., et al. (2017). Global strategy for the diagnosis, management, and prevention of chronic obstructive lung disease 2017 report: GOLD executive summary. Eur. Respir. J. 49:1700214. 10.1183/13993003.00214-2017
    1. Vogt B., Pulletz S., Elke G., Zhao Z., Zabel P., Weiler N., et al. (2012). Spatial and temporal heterogeneity of regional lung ventilation determined by electrical impedance tomography during pulmonary function testing. J. Appl. Physiol. 113 1154–1161. 10.1152/japplphysiol.01630.2011
    1. Vogt B., Zhao Z., Zabel P., Weiler N., Frerichs I. (2016). Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease. Am. J. Physiol. Lung Cell. Mol. Physiol. 311 L8–L19. 10.1152/ajplung.00463.2015
    1. Zhang C., Dai M., Liu W., Bai X., Wu J., Xu C., et al. (2018). Global and regional degree of obstruction determined by electrical impedance tomography in patients with obstructive ventilatory defect. PLoS One 13:e0209473. 10.1371/journal.pone.0209473
    1. Zhang N., Jiang H., Zhang C., Li Q., Li Y., Zhang B., et al. (2020). The influence of an electrical impedance tomography belt on lung function determined by spirometry in sitting position. Physiol. Meas. 41:044002. 10.1088/1361-6579/ab7edb
    1. Zhao Z., Chang M. Y., Frerichs I., Zhang J. H., Chang H. T., Gow C. H., et al. (2020a). Regional air trapping in acute exacerbation of obstructive lung diseases measured with electrical impedance tomography: a feasibility study. Minerva Anestesiol. 86 172–180. 10.23736/S0375-9393.19.13732-7
    1. Zhao Z., Fu F., Frerichs I. (2020b). Thoracic electrical impedance tomography in Chinese hospitals: a review of clinical research and daily applications. Physiol. Meas. 41:04TR01. 10.1088/1361-6579/ab81df
    1. Zhao Z., Fischer R., Frerichs I., Muller-Lisse U., Moller K. (2012). Regional ventilation in cystic fibrosis measured by electrical impedance tomography. J. Cyst. Fibros. 11 412–418. 10.1016/j.jcf.2012.03.011
    1. Zhao Z., Moller K., Steinmann D., Frerichs I., Guttmann J. (2009). Evaluation of an electrical impedance tomography-based global inhomogeneity index for pulmonary ventilation distribution. Intensive Care Med. 35 1900–1906. 10.1007/s00134-009-1589-y
    1. Zhao Z., Muller-Lisse U., Frerichs I., Fischer R., Moller K. (2013). Regional airway obstruction in cystic fibrosis determined by electrical impedance tomography in comparison with high resolution CT. Physiol. Meas. 34 N107–N114. 10.1088/0967-3334/34/11/N107

Source: PubMed

3
Se inscrever