Specific Amino Acids Affect Cardiovascular Diseases and Atherogenesis via Protection against Macrophage Foam Cell Formation: Review Article

Claudia Grajeda-Iglesias, Michael Aviram, Claudia Grajeda-Iglesias, Michael Aviram

Abstract

The strong relationship between cardiovascular diseases (CVD), atherosclerosis, and endogenous or exogenous lipids has been recognized for decades, underestimating the contribution of other dietary components, such as amino acids, to the initiation of the underlying inflammatory disease. Recently, specific amino acids have been associated with incident cardiovascular disorders, suggesting their significant role in the pathogenesis of CVD. Special attention has been paid to the group of branched-chain amino acids (BCAA), leucine, isoleucine, and valine, since their plasma values are frequently found in high concentrations in individuals with CVD risk. Nevertheless, dietary BCAA, leucine in particular, have been associated with improved indicators of atherosclerosis. Therefore, their potential role in the process of atherogenesis and concomitant CVD development remains unclear. Macrophages play pivotal roles in the development of atherosclerosis. They can accumulate high amounts of circulating lipids, through a process known as macrophage foam cell formation, and initiate the atherogenesis process. We have recently screened for anti- or pro-atherogenic amino acids in the macrophage model system. Our study showed that glycine, cysteine, alanine, leucine, glutamate, and glutamine significantly affected macrophage atherogenicity mainly through modulation of the cellular triglyceride metabolism. The anti-atherogenic properties of glycine and leucine, and the pro-atherogenic effects of glutamine, were also confirmed in vivo. Further investigation is warranted to define the role of these amino acids in atherosclerosis and CVD, which may serve as a basis for the development of anti-atherogenic nutritional and therapeutic approaches.

Conflict of interest statement

Conflict of interest: No potential conflict of interest relevant to this article was reported.

Figures

Figure 1. Amino Acids Affect Macrophage Foam…
Figure 1. Amino Acids Affect Macrophage Foam Cell Formation through Regulation of Lipid Metabolism
Leucine and glycine significantly prevented triglyceride accumulation in macrophages, by inhibiting triglyceride-rich very-low-density lipoprotein (VLDL) uptake and triglyceride biosynthesis rate, while glutamine showed the opposite effects, accompanied by a concurrent upregulation of diacylglycerol acyltransferase-1 (DGAT1). Leucine also decreased macrophage cholesterol content by inhibiting the rate of cholesterol biosynthesis and increasing serum-mediated cholesterol efflux from macrophages, whereas glutamine increased the uptake of cholesterol-rich low-density lipoproteins (LDL), with concomitant accumulation of cholesterol mass. Macrophage mitochondrial respiration and ATP production were improved after leucine supplementation. Red-colored up-arrows (indicating increase or upregulation) and compounds names, designate pro-atherogenic effects; green-colored up-arrows, crossed circles (indicating decrease or inhibition), and compounds names, designate anti-atherogenic effects. ABCA1, ABCG1, ATP-binding cassette subfamily A or G member 1; DGAT1, diacylglycerol acyltransferase-1; FA, fatty acids; HDL, high-density lipoprotein; LDL, low-density lipoprotein; LDLR, LDL receptor; SR-B1, scavenger receptor type B-1; TG, triglycerides; VLDL, very-LDL.
Figure 2. Oxidative Status and Lipid Metabolism…
Figure 2. Oxidative Status and Lipid Metabolism upon Addition of Glycine- or Leucine-Rich Proteins (Fibroin or Casein, Respectively) to Cultured J774A.1 Macrophages
Quantifications were performed after cell incubation with fibroin (glycine-rich), casein (leucine-rich), or only glycine, followed by: (A) Intracellular ROS generation measured by 2′,7′-dichlorodihydrofluorescein diacetate (DCFH-DA); (B) Cholesterol mass; (C) Triglyceride mass; (D) VLDL uptake, using fluorescein isothiocyanate (FITC)-labeled VLDL; (E) Triglyceride biosynthesis rate after cell incubation with [3H]-oleic acid; (F) Triglyceride degradation rate versus Control.

References

    1. Laslett LJ, Alagona P, Clark BA, 3rd, et al. The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: a report from the American College of Cardiology. J Am Coll Cardiol. 2012;60:S1–49. doi: 10.1016/j.jacc.2012.11.002.
    1. Madamanchi NR, Runge MS. Mitochondrial dysfunction in atherosclerosis. Circ Res. 2007;100:460–73. doi: 10.1161/01.RES.0000258450.44413.96.
    1. Moore KJ, Sheedy FJ, Fisher EA. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol. 2013;13:709–21. doi: 10.1038/nri3520.
    1. Rutledge JC, Woo MM, Rezai AA, Curtiss LK, Goldberg IJ. Lipoprotein lipase increases lipoprotein binding to the artery wall and increases endothelial layer permeability by formation of lipolysis products. Circ Res. 1997;80:819–28. doi: 10.1161/01.RES.80.6.819.
    1. Goldberg IJ, Eckel RH, McPherson R. Triglycerides and heart disease, still a hypothesis? Arterioscler Thromb Vasc Biol. 2011;31:1716–25. doi: 10.1161/ATVBAHA.111.226100.
    1. Goldberg IJ. 2017 George Lyman Duff Memorial Lecture: Fat in the blood, fat in the artery, fat in the heart: triglyceride in physiology and disease. Arterioscler Thromb Vasc Biol. 2018;38:700–6. doi: 10.1161/ATVBAHA.117.309666.
    1. VanderLaan PA, Reardon CA, Thisted RA, Getz GS. VLDL best predicts aortic root atherosclerosis in LDL receptor deficient mice. J Lipid Res. 2009;50:376–85. doi: 10.1194/jlr.M800284-JLR200.
    1. Shah SH, Kraus WE, Newgard CB. Metabolomic profiling for the identification of novel biomarkers and mechanisms related to common cardiovascular diseases: form and function. Circulation. 2012;126:1110–20. doi: 10.1161/CIRCULATIONAHA.111.060368.
    1. Rom O, Aviram M. It is not just lipids: proatherogenic vs. antiatherogenic roles for amino acids in macrophage foam cell formation. Curr Opin Lipidol. 2017;28:85–7. doi: 10.1097/MOL.0000000000000377.
    1. Shah SH, Bain JR, Muehlbauer MJ, et al. Association of a peripheral blood metabolic profile with coronary artery disease and risk of subsequent cardiovascular events. Circ Cardiovasc Genet. 2010;3:207–14. doi: 10.1161/CIRCGENETICS.109.852814.
    1. Vaarhorst AA, Verhoeven A, Weller CM, et al. A metabolomic profile is associated with the risk of incident coronary heart disease. Am Heart J. 2014;168:45–52.e7. doi: 10.1016/j.ahj.2014.01.019.
    1. Würtz P, Raiko JR, Magnussen CG, et al. High-throughput quantification of circulating metabolites improves prediction of subclinical atherosclerosis. Eur Heart J. 2012;33:2307–16. doi: 10.1093/eurheartj/ehs020.
    1. Paynter NP, Balasubramanian R, Giulianini F, et al. Metabolic predictors of incident coronary heart disease in women. Circulation. 2018;137:841–53. doi: 10.1161/CIRCULATIONAHA.117.029468.
    1. Chernyavskiy I, Veeranki S, Sen U, Tyagi SC. Atherogenesis: hyperhomocysteinemia interactions with LDL, macrophage function, paraoxonase 1, and exercise. Ann NY Acad Sci. 2016;1363:138–54. doi: 10.1111/nyas.13009.
    1. Yang AN, Zhang HP, Sun Y, et al. High-methionine diets accelerate atherosclerosis by HHcy-mediated FABP4 gene demethylation pathway via DNMT1 in ApoE(−/−) mice. FEBS Lett. 2015;589:3998–4009. doi: 10.1016/j.febslet.2015.11.010.
    1. Fang P, Zhang D, Cheng Z, et al. Hyperhomocysteinemia potentiates hyperglycemia-induced inflammatory monocyte differentiation and atherosclerosis. Diabetes. 2014;63:4275–90. doi: 10.2337/db14-0809.
    1. Julve J, Escolà-Gil JC, Rodriguez-Millán E, et al. Methionine-induced hyperhomocysteinemia impairs the antioxidant ability of high-density lipoproteins without reducing in vivo macrophage-specific reverse cholesterol transport. Mol Nutr Food Res. 2013;57:1814–24. doi: 10.1002/mnfr.201300133.
    1. Bellamy MF, McDowell IF, Ramsey MW, et al. Hyperhomocysteinemia after an oral methionine load acutely impairs endothelial function in healthy adults. Circulation. 1998;98:1848–52.
    1. Selhub J, Troen AM. Sulfur amino acids and atherosclerosis: a role for excess dietary methionine. Ann N Y Acad Sci. 2016;1363:18–25. doi: 10.1111/nyas.12962.
    1. Zhou J, Møller J, Danielsen CC, et al. Dietary supplementation with methionine and homocysteine promotes early atherosclerosis but not plaque rupture in ApoE-deficient mice. Arterioscler Thromb Vasc Biol. 2001;21:1470–6. doi: 10.1161/hq0901.096582.
    1. Ding Y, Svingen GF, Pedersen ER, et al. Plasma glycine and risk of acute myocardial infarction in patients with suspected stable angina pectoris. J Am Heart Assoc. 2015;5:e002621. doi: 10.1161/JAHA.115.002621.
    1. Deveaux A, Pham I, West SG, et al. l-Arginine supplementation alleviates postprandial endothelial dysfunction when baseline fasting plasma arginine concentration is low: a randomized controlled trial in healthy overweight adults with cardiometabolic risk factors. J Nutr. 2016;146:1330–40. doi: 10.3945/jn.115.227959.
    1. Wang W, Wu Z, Dai Z, Yang Y, Wang J, Wu G. Glycine metabolism in animals and humans: implications for nutrition and health. Amino Acids. 2013;45:463–77. doi: 10.1007/s00726-013-1493-1.
    1. Venkatesh R, Srinivasan K, Singh SA. Effect of arginine:lysine and glycine:methionine intake ratios on dyslipidemia and selected biomarkers implicated in cardiovascular disease: a study with hypercholesterolemic rats. Biomed Pharmacother. 2017;91:408–14. doi: 10.1016/j.biopha.2017.04.072.
    1. Hasegawa S, Ichiyama T, Sonaka I, et al. Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells. Clin Exp Immunol. 2012;167:269–74. doi: 10.1111/j.1365-2249.2011.04519.x.
    1. Bahls M, Friedrich N, Atzler D, et al. L-Arginine and SDMA serum concentrations are associated with subclinical atherosclerosis in the Study of Health in Pomerania (SHIP) PLoS One. 2015;10:e0131293. doi: 10.1371/journal.pone.0131293.
    1. Ruiz-Canela M, Toledo E, Clish CB, et al. Plasma branched-chain amino acids and incident cardiovascular disease in the PREDIMED trial. Clin Chem. 2016;62:582–92. doi: 10.1373/clinchem.2015.251710.
    1. Huang Y, Zhou M, Sun H, Wang Y. Branched-chain amino acid metabolism in heart disease: an epiphenomenon or a real culprit? Cardiovasc Res. 2011;90:220–3. doi: 10.1093/cvr/cvr070.
    1. Sun H, Wang Y. Branched chain amino acid metabolic reprogramming in heart failure. Biochim Biophys Acta. 2016;1862:2270–5. doi: 10.1016/j.bbadis.2016.09.009.
    1. Harper A, Miller R, Block K. Branched-chain amino acid metabolism. Annu Rev Nutr. 1984;4:409–54. doi: 10.1146/annurev.nu.04.070184.002205.
    1. Sunny NE, Kalavalapalli S, Bril F, et al. Cross-talk between branched-chain amino acids and hepatic mitochondria is compromised in nonalcoholic fatty liver disease. Am J Physiol Endocrinol Metab. 2015;309:E311–19. doi: 10.1152/ajpendo.00161.2015.
    1. Newgard CB, An J, Bain JR, et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and contributes to insulin resistance. Cell Metab. 2009;9:311–26. doi: 10.1016/j.cmet.2009.02.002.
    1. Yang RY, Wang SM, Sun L, et al. Association of branched-chain amino acids with coronary artery disease: a matched-pair case-control study. Nutr Metab Carbiovasc Dis. 2015;25:937–42. doi: 10.1016/j.numecd.2015.06.003.
    1. Bhattacharya S, Granger CB, Craig D, et al. Validation of the association between a branched chain amino acid metabolite profile and extremes of coronary artery disease in patients referred for cardiac catheterization. Atherosclerosis. 2014;232:191–6. doi: 10.1016/j.atherosclerosis.2013.10.036.
    1. Ntzouvani A, Nomikos T, Panagiotakos D, et al. Amino acid profile and metabolic syndrome in a male Mediterranean population: a cross-sectional study. Nutr Metab Carbiovasc Dis. 2017;27:1021–30.
    1. Mangge H, Zelzer S, Prüller F, et al. Branched-chain amino acids are associated with cardiometabolic risk profiles found already in lean, overweight and obese young. J Nutr Biochem. 2016;32:123–7. doi: 10.1016/j.jnutbio.2016.02.007.
    1. Wiklund P, Zhang X, Tan X, Keinanen-Kiukaanniemi S, Alen M, Cheng S. Serum amino acid profiles in childhood predict triglyceride level in adulthood: a 7-year longitudinal study in girls. J Clin Endocrinol Metab. 2016;101:2047–55. doi: 10.1210/jc.2016-1053.
    1. Cheng S, Rhee EP, Larson MG, et al. Metabolite profiling identifies pathways associated with metabolic risk in humans. Circulation. 2012;125:2222–31. doi: 10.1161/CIRCULATIONAHA.111.067827.
    1. Tobias DK, Lawler PR, Harada PH, et al. Circulating branched-chain amino acids and incident cardiovascular disease in a prospective cohort of US women. Circ Genom Precis Med. 2018;11:e002157. doi: 10.1161/CIRCGEN.118.002157.
    1. Jennings A, MacGregor A, Pallister T, Spector T, Cassidy A. Associations between branched chain amino acid intake and biomarkers of adiposity and cardiometabolic health independent of genetic factors: a twin study. Int J Cardiol. 2016;223:992–8. doi: 10.1016/j.ijcard.2016.08.307.
    1. Jennings A, MacGregor A, Welch A, Chowienczyk P, Spector T, Cassidy A. Amino acid intakes are inversely associated with arterial stiffness and central blood pressure in women. J Nutr. 2015;145:2130–8. doi: 10.3945/jn.115.214700.
    1. Sun H, Olson KC, Gao C, et al. Catabolic defect of branched-chain amino acids promotes heart failure. Circulation. 2016;133:2038–49. doi: 10.1161/CIRCULATIONAHA.115.020226.
    1. Wang W, Zhang F, Xia Y, et al. Defective branched chain amino acid catabolism contributes to cardiac dysfunction and remodeling following myocardial infarction. Am J Physio Heart Circul Physiol. 2016;311:H1160–9. doi: 10.1152/ajpheart.00114.2016.
    1. Li T, Zhang Z, Kolwicz SC, Jr, et al. Defective branched-chain amino acid catabolism disrupts glucose metabolism and sensitizes the heart to ischemia-reperfusion injury. Cell Metab. 2017;25:374–85. doi: 10.1016/j.cmet.2016.11.005.
    1. Uchino Y, Watanabe M, Takata M, et al. Effect of oral branched-chain amino acids on serum albumin concentration in heart failure patients with hypoalbuminemia: results of a preliminary study. Am J Cardiovasc Drugs. 2018 Mar 6; doi: 10.1007/s40256-018-0269-0. [Epub ahead of print].
    1. Tanada Y, Shioi T, Kato T, Kawamoto A, Okuda J, Kimura T. Branched-chain amino acids ameliorate heart failure with cardiac cachexia in rats. Life Sci. 2015;137:20–7. doi: 10.1016/j.lfs.2015.06.021.
    1. Grajeda-Iglesias C, Rom O, Aviram M. Branched-chain amino acids and atherosclerosis: friends or foes? Curr Opin Lipidol. 2018;29:166–9. doi: 10.1097/MOL.0000000000000494.
    1. Zhenyukh O, Civantos E, Ruiz-Ortega M, et al. High concentration of branched-chain amino acids promotes oxidative stress, inflammation and migration of human peripheral blood mononuclear cells via mTORC1 activation. Free Radic Biol Med. 2017;104:165–77. doi: 10.1016/j.freeradbiomed.2017.01.009.
    1. Terakura D, Shimizu M, Iwasa J, et al. Preventive effects of branched-chain amino acid supplementation on the spontaneous development of hepatic preneoplastic lesions in C57BL/KsJ-db/db obese mice. Carcinogenesis. 2012;33:2499–506. doi: 10.1093/carcin/bgs303.
    1. Honda T, Ishigami M, Luo F, et al. Branched-chain amino acids alleviate hepatic steatosis and liver injury in choline-deficient high-fat diet induced NASH mice. Metabolism. 2017;69:177–87. doi: 10.1016/j.metabol.2016.12.013.
    1. Jiao J, Han SF, Zhang W, et al. Chronic leucine supplementation improves lipid metabolism in C57BL/6J mice fed with a high-fat/cholesterol diet. Food Nutr Res. 2016;60 doi: 10.3402/fnr.v60.31304. doi: 10.3402/fnr.v60.31304.
    1. Yokota S, Ando M, Aoyama S, Nakamura K, Shibata S. Leucine restores murine hepatic triglyceride accumulation induced by a low-protein diet by suppressing autophagy and excessive endoplasmic reticulum stress. Amino Acids. 2016;48:1013–21. doi: 10.1007/s00726-015-2149-0.
    1. Zhao Y, Dai XY, Zhou Z, Zhao GX, Wang X, Xu MJ. Leucine supplementation via drinking water reduces atherosclerotic lesions in apoE null mice. Acta Pharmacol Sin. 2016;37:196–203. doi: 10.1038/aps.2015.88.
    1. Bruckbauer A, Banerjee J, Cao Q, et al. Leucine-nicotinic acid synergy stimulates AMPK/Sirt1 signaling and regulates lipid metabolism and lifespan in Caenorhabditis elegans, and hyperlipidemia and atherosclerosis in mice. Am J Cardiovasc Dis. 2017;7:33–47.
    1. Rom O, Grajeda-Iglesias C, Najjar M, et al. Atherogenicity of amino acids in the lipid-laden macrophage model system in vitro and in atherosclerotic mice: a key role for triglyceride metabolism. J Nutr Biochem. 2017;45:24–38. doi: 10.1016/j.jnutbio.2017.02.023.
    1. Moore KJ, Tabas I. The cellular biology of macrophages in atherosclerosis. Cell. 2011;145:341–55. doi: 10.1016/j.cell.2011.04.005.
    1. Xu L, Dai Perrard X, Perrard JL, et al. Foamy monocytes form early and contribute to nascent atherosclerosis in mice with hypercholesterolemia. Arterioscler Thromb Vasc Biol. 2015;35:1787–97. doi: 10.1161/ATVBAHA.115.305609.
    1. Dickhout JG, Basseri S, Austin RC. Macrophage function and its impact on atherosclerotic lesion composition, progression, and stability: the good, the bad, and the ugly. Arterioscler Thromb Vasc Biol. 2008;28:1413–15. doi: 10.1161/ATVBAHA.108.169144.
    1. Rom O, Aviram M. Endogenous or exogenous antioxidants vs. pro-oxidants in macrophage atherogenicity. Curr Opin Lipidol. 2016;27:204–6. doi: 10.1097/MOL.0000000000000287.
    1. Libby P, Bornfeldt KE, Tall AR. Atherosclerosis: successes, surprises, and future challenges. Circ Res. 2016;118:531–4. doi: 10.1161/CIRCRESAHA.116.308334.
    1. Horton JD, Goldstein JL, Brown MS. SREBPs: activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 2002;109:1125–31. doi: 10.1172/JCI15593.
    1. Yen CL, Stone SJ, Koliwad S, Harris C, Farese RV., Jr Thematic review series: glycerolipids. DGAT enzymes and triacylglycerol biosynthesis. J Lipid Res. 2008;49:2283–301. doi: 10.1194/jlr.R800018-JLR200.
    1. Ji A, Meyer JM, Cai L, et al. Scavenger receptor SR-BI in macrophage lipid metabolism. Atherosclerosis. 2011;217:106–12. doi: 10.1016/j.atherosclerosis.2011.03.017.
    1. Van Eck M, Hoekstra M, Hildebrand RB, et al. Increased oxidative stress in scavenger receptor BI knockout mice with dysfunctional HDL. Arterioscler Thromb Vasc Biol. 2007;27:2413–19. doi: 10.1161/ATVBAHA.107.145474.
    1. McCarty MF, Barroso-Aranda J, Contreras F. The hyperpolarizing impact of glycine on endothelial cells may be anti-atherogenic. Med Hypotheses. 2009;73:263–4. doi: 10.1016/j.mehy.2008.12.021.
    1. Grajeda-Iglesias C, Rom O, Hamoud S, et al. Leucine supplementation attenuates macrophage foam-cell formation: studies in humans, mice, and cultured macrophages. Biofactors. 2018 Feb 5; doi: 10.1002/biof.1415. [Epub ahead of print].
    1. Dong W, Zhou M, Dong M, et al. Keto acid metabolites of branched-chain amino acids inhibit oxidative stress-induced necrosis and attenuate myocardial ischemia-reperfusion injury. J Mol Cell Cardiol. 2016;101:90–8. doi: 10.1016/j.yjmcc.2016.11.002.
    1. Yu E, Calvert PA, Mercer JR, et al. Mitochondrial DNA damage can promote atherosclerosis independently of reactive oxygen species through effects on smooth muscle cells and monocytes and correlates with higher-risk plaques in humans. Circulation. 2013;128:702–12. doi: 10.1161/CIRCULATIONAHA.113.002271.
    1. Yu EPK, Reinhold J, Yu H, et al. Mitochondrial respiration is reduced in atherosclerosis, promoting necrotic core formation and reducing relative fibrous cap thickness. Arterioscler Thromb Vasc Biol. 2017;37:2322–32. doi: 10.1161/ATVBAHA.117.310042.
    1. Gordon WG, Semmett WF, Cable RS, Morris M. Amino acid composition of α-casein and β-casein. J Am Chem Soc. 1949;71:3293–7. doi: 10.1021/ja01178a006.
    1. Michas G, Micha R, Zampelas A. Dietary fats and cardiovascular disease: putting together the pieces of a complicated puzzle. Atherosclerosis. 2014;234:320–8. doi: 10.1016/j.atherosclerosis.2014.03.013.
    1. Bifari F, Nisoli E. Branched-chain amino acids differently modulate catabolic and anabolic states in mammals: a pharmacological point of view. Br J Pharmacol. 2017;174:1366–77. doi: 10.1111/bph.13624.
    1. Sun L, Hu C, Yang R, et al. Association of circulating branched-chain amino acids with cardiometabolic traits differs between adults and the oldest-old. Oncotarget. 2017;8:88882–93. .
    1. Gannon NP, Schnuck JK, Vaughan RA. BCAA metabolism and insulin sensitivity - dysregulated by metabolic status? Mol Nutr Food Res. 2018;62:e1700756. doi: 10.1002/mnfr.201700756.
    1. Pedersen HK, Gudmundsdottir V, Nielsen HB, et al. Human gut microbes impact host serum metabolome and insulin sensitivity. Nature. 2016;535:376. doi: 10.1038/nature18646.

Source: PubMed

3
Se inscrever