Tick-Borne Encephalitis Specific Lymphocyte Response after Allogeneic Hematopoietic Stem Cell Transplantation Predicts Humoral Immunity after Vaccination

Nicole Harrison, Katharina Grabmeier-Pfistershammer, Alexandra Graf, Doris Trapin, Peter Tauber, Judith H Aberle, Karin Stiasny, Ralf Schmidt, Hildegard Greinix, Werner Rabitsch, Michael Ramharter, Heinz Burgmann, Winfried F Pickl, Christina Bahrs, Nicole Harrison, Katharina Grabmeier-Pfistershammer, Alexandra Graf, Doris Trapin, Peter Tauber, Judith H Aberle, Karin Stiasny, Ralf Schmidt, Hildegard Greinix, Werner Rabitsch, Michael Ramharter, Heinz Burgmann, Winfried F Pickl, Christina Bahrs

Abstract

The aim of this prospective study was to assess lymphocyte proliferative and cytokine response prior to and following tick-borne encephalitis (TBE) immunization among patients after allogeneic hematopoietic stem cell transplantation (HSCT). Seventeen adult patients 11-13 months after HSCT and eight unvaccinated healthy adults received up to three TBE vaccinations. Following in vitro stimulation with TBE-antigen, lymphocyte proliferation and cytokine secretion (IL-2, IL-10, IL-13, TNF-alpha, IFN-gamma, GM-CSF) were analyzed by thymidine incorporation assay and the Luminex system. Ten patients (59%) showed significant baseline TBE-specific lymphocyte proliferation (stimulation index (SI) > 3) prior to vaccination, but none of the unvaccinated controls (p = 0.002). All patients with a TBE-specific antibody response after two vaccinations (at least 2-fold increase of neutralization test titers) exhibited a strong TBE-specific lymphocyte proliferative response at baseline (SI > 10). Patients with sibling donors had a significantly stronger baseline TBE-specific lymphocyte proliferative and IL-13 cytokine response than patients with unrelated donors (p < 0.05). In conclusion, a relevant proportion of patients showed TBE-specific lymphocyte proliferative and cytokine responses prior to vaccination after HSCT, which predicted the humoral response to the vaccine. Patients with vaccinated sibling donors were more likely to elicit a cellular immune response than patients with unrelated donors of unknown vaccination status.

Keywords: allogeneic stem cell transplant; cytokine response; humoral responders; interleukin 13; lymphocyte proliferation; sibling donors; tick-borne encephalitis vaccination.

Conflict of interest statement

C.B. received a grant of the Austrian Scient Fund (grant number KLI 372) that enabled to conduct the present study and partly supported employment of N.H. H.B. received a research grant from Pfizer (Project No. WI201689), who performed neutralizing assays and supplied TBE-vaccines and TBE-antigens free of cost. Pfizer had no role in the conceptualization, design of the study or the decision to publish. All other authors report no competing interests related to the present work.

Figures

Figure 1
Figure 1
Boxplots showing the median and distribution of lymphocyte proliferation as detected by thymidine incorporation assay (the stimulation indices are given) at three different time points for healthy controls (orange) and patients (green) after stimulation with TBE antigen. Asterisk marks significant p-value (p = 0.0019).
Figure 2
Figure 2
Boxplots showing the median and distribution of cytokines as detected by Luminex assay at baseline before vaccination for healthy controls (orange) and patients (green) after stimulation with TBE antigen. Asterisk marks significant p-value (IL2: p = 0.03; TNF-alpha: p = 0.03; IL13: p < 0.001; GM-CSF: p = 0.01).
Figure 3
Figure 3
Boxplots showing the median and distribution of lymphocyte proliferation as detected by thymidine incorporation assay (the stimulation indices are given) at three different time points for humoral non-responders (orange) and responders (green) after stimulation with TBE antigen (response was defined as NT ≥ 10 and at least two-fold increase in titer after two vaccinations). Asterisk marks significant p-value (baseline: p < 0.001; 2nd vaccination: p = 0.0019).
Figure 4
Figure 4
Boxplots showing the median and distribution of cytokines as detected by Luminex assay at baseline before vaccination for humoral non-responders (orange) and responders (green) after stimulation with TBE antigen (response was defined as NT ≥ 10 and at least two-fold increase in titer after two vaccinations). Asterisk marks significant p-value (IL2: p < 0.001; IFN-gamma: p = 0.003; TNF-alpha: p = 0.002; IL10: p = 0.04; IL13: p < 0.001; GM-CSF: p = 0.001).
Figure 5
Figure 5
Boxplots showing the median and distribution of lymphocyte proliferation as detected by thymidine incorporation assay (the stimulation indices are given) at three different time points for patients with unrelated (orange) and related donors (green) after stimulation with TBE antigen. Asterisk marks significant p-value (baseline: p = 0.004; 2nd vaccination: p = 0.015; 3rd vaccination: p = 0.002).
Figure 6
Figure 6
Boxplots showing the median and distribution of IL-13 as detected by Luminex assay at three different time points for patients with unrelated (orange) and related donors (green) after stimulation with TBE antigen. Asterisk marks significant p-value (baseline: p = 0.04; after 2nd vaccination: p = 0.01; after 3rd vaccination: p = 0.01).

References

    1. Erber W., Schmitt H., Janković T. The TBE Book. Global Health Press; Singapore: 2019. Epidemiology by country—An overview. Chapter 12a.
    1. ECDC Tick-Borne Encephalitis. European Centre for Disease Prevention and Control: Annual Epidemiological Report for 2018. [(accessed on 8 December 2020)];2019 Available online: .
    1. Taba P., Schmutzhard E., Forsberg P., Lutsar I., Ljøstad U., Mygland Å., Levchenko I., Strle F., Steiner I. Ean consensus review on prevention, diagnosis and management of tick-borne encephalitis. Eur. J. Neurol. 2017;24:1214–1261. doi: 10.1111/ene.13356.
    1. Lipowski D., Popiel M., Perlejewski K., Nakamura S., Bukowska-Osko I., Rzadkiewicz E., Dzieciatkowski T., Milecka A., Wenski W., Ciszek M., et al. A of fatal tick-borne encephalitis virus infection in organ transplant setting. J. Infect. Dis. 2017;215:896–901. doi: 10.1093/infdis/jix040.
    1. Mackall C., Fry T., Gress R., Peggs K., Storek J., Toubert A. Background to hematopoietic cell transplantation, including post transplant immune recovery. Bone Marrow Transplant. 2009;44:457–462. doi: 10.1038/bmt.2009.255.
    1. Maury S., Mary J.Y., Rabian C., Schwarzinger M., Toubert A., Scieux C., Carmagnat M., Esperou H., Ribaud P., Devergie A., et al. Prolonged immune deficiency following allogeneic stem cell transplantation: Risk factors and complications in adult patients. Br. J. Haematol. 2001;115:630–641. doi: 10.1046/j.1365-2141.2001.03135.x.
    1. Hilgendorf I., Freund M., Jilg W., Einsele H., Gea-Banacloche J., Greinix H., Halter J., Lawitschka A., Wolff D., Meisel R. Vaccination of allogeneic haematopoietic stem cell transplant recipients: Report from the international consensus conference on clinical practice in chronic gvhd. Vaccine. 2011;29:2825–2833. doi: 10.1016/j.vaccine.2011.02.018.
    1. Harrison N., Grabmeier-Pfistershammer K., Graf A., Schwarzinger I., Aberle J.H., Stiasny K., Greinix H., Rabitsch W., Kalhs P., Ramharter M., et al. Humoral immune response to tick-borne encephalitis vaccination in allogeneic blood and marrow graft recipients. NPJ Vaccines. 2020;5:67. doi: 10.1038/s41541-020-00215-1.
    1. Greinix H.T., Pohlreich D., Kouba M., Körmöczi U., Lohmann I., Feldmann K., Zielinski C., Pickl W.F. Elevated numbers of immature/transitional cd21- b lymphocytes and deficiency of memory cd27+ b cells identify patients with active chronic graft-versus-host disease. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2008;14:208–219. doi: 10.1016/j.bbmt.2007.10.009.
    1. Kuzmina Z., Greinix H.T., Weigl R., Körmöczi U., Rottal A., Frantal S., Eder S., Pickl W.F. Significant differences in b-cell subpopulations characterize patients with chronic graft-versus-host disease-associated dysgammaglobulinemia. Blood. 2011;117:2265–2274. doi: 10.1182/blood-2010-07-295766.
    1. Li G., Teleki C., Wang T. Memory t cells in flavivirus vaccination. Vaccines. 2018;6:73. doi: 10.3390/vaccines6040073.
    1. Aberle J.H., Schwaiger J., Aberle S.W., Stiasny K., Scheinost O., Kundi M., Chmelik V., Heinz F.X. Human cd4+ t helper cell responses after tick-borne encephalitis vaccination and infection. PLoS ONE. 2015;10:e0140545. doi: 10.1371/journal.pone.0140545.
    1. Divekar A.A., Zaiss D.M., Lee F.E., Liu D., Topham D.J., Sijts A.J., Mosmann T.R. Protein vaccines induce uncommitted il-2-secreting human and mouse cd4 t cells, whereas infections induce more ifn-gamma-secreting cells. J. Immunol. (Baltim. Md. 1950) 2006;176:1465–1473. doi: 10.4049/jimmunol.176.3.1465.
    1. WHO Vaccines against tick-borne encephalitis: Who position paper—Recommendations. Vaccine. 2011;29:8769–8770. doi: 10.1016/j.vaccine.2011.07.024.
    1. Salat J., Mikulasek K., Larralde O., Pokorna Formanova P., Chrdle A., Haviernik J., Elsterova J., Teislerova D., Palus M., Eyer L., et al. Tick-borne encephalitis virus vaccines contain non-structural protein 1 antigen and may elicit ns1-specific antibody responses in vaccinated individuals. Vaccines. 2020;8:81. doi: 10.3390/vaccines8010081.
    1. Einarsdottir S., Nicklasson M., Veje M., Bergström T., Studahl M., Lisak M., Olsson M., Johansson B., Andreasson B., Piauger B., et al. Vaccination against tick-borne encephalitis (tbe) after autologous and allogeneic stem cell transplantation. Vaccine. 2021;39:1035–1038. doi: 10.1016/j.vaccine.2020.12.073.
    1. Cocks B.G., de Waal Malefyt R., Galizzi J.P., de Vries J.E., Aversa G. Il-13 induces proliferation and differentiation of human b cells activated by the cd40 ligand. Int. Immunol. 1993;5:657–663. doi: 10.1093/intimm/5.6.657.
    1. Punnonen J., Aversa G., Cocks B.G., McKenzie A.N., Menon S., Zurawski G., de Waal Malefyt R., de Vries J.E. Interleukin 13 induces interleukin 4-independent igg4 and ige synthesis and cd23 expression by human b cells. Proc. Natl. Acad. Sci. USA. 1993;90:3730–3734. doi: 10.1073/pnas.90.8.3730.
    1. van der Velden A.M., Claessen A.M., van Velzen-Blad H., Biesma D.H., Rijkers G.T. Development of t cell-mediated immunity after autologous stem cell transplantation: Prolonged impairment of antigen-stimulated production of gamma-interferon. Bone Marrow Transplant. 2007;40:261–266. doi: 10.1038/sj.bmt.1705706.
    1. Avetisyan G., Aschan J., Hassan M., Ljungman P. Evaluation of immune responses to seasonal influenza vaccination in healthy volunteers and in patients after stem cell transplantation. Transplantation. 2008;86:257–263. doi: 10.1097/TP.0b013e3181772a75.
    1. Poulin J.F., Sylvestre M., Champagne P., Dion M.L., Kettaf N., Dumont A., Lainesse M., Fontaine P., Roy D.C., Perreault C., et al. Evidence for adequate thymic function but impaired naive t-cell survival following allogeneic hematopoietic stem cell transplantation in the absence of chronic graft-versus-host disease. Blood. 2003;102:4600–4607. doi: 10.1182/blood-2003-05-1428.
    1. Gress R.E., Emerson S.G., Drobyski W.R. Immune reconstitution: How it should work, what’s broken, and why it matters. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2010;16:S133–S137. doi: 10.1016/j.bbmt.2009.10.003.
    1. Lum L.G., Seigneuret M.C., Shiobara S., Noges J., Munn N., Shough N., Jin N.R., Beatty P., Martin P., Sullivan K., et al. Adoptively transferred immunity persists in human marrow graft recipients. Prog. Clin. Biol. Res. 1987;244:449–460.
    1. Harris A.E., Styczynski J., Bodge M., Mohty M., Savani B.N., Ljungman P. Pretransplant vaccinations in allogeneic stem cell transplantation donors and recipients: An often-missed opportunity for immunoprotection? Bone Marrow Transplant. 2015;50:899–903. doi: 10.1038/bmt.2015.49.
    1. Molrine D.C., Antin J.H., Guinan E.C., Soiffer R.J., MacDonald K., Malley R., Malinoski F., Trocciola S., Wilson M., Ambrosino D.M. Donor immunization with pneumococcal conjugate vaccine and early protective antibody responses following allogeneic hematopoietic cell transplantation. Blood. 2003;101:831–836. doi: 10.1182/blood-2002-03-0832.
    1. Parkkali T., Käyhty H., Hovi T., Olander R.M., Roivainen M., Volin L., Ruutu T., Lahdenkari M., Ruutu P. A randomized study on donor immunization with tetanus-diphtheria, haemophilus influenzae type b and inactivated poliovirus vaccines to improve the recipient responses to the same vaccines after allogeneic bone marrow transplantation. Bone Marrow Transplant. 2007;39:179–188. doi: 10.1038/sj.bmt.1705562.
    1. Storek J., Dawson M.A., Lim L.C., Burman B.E., Stevens-Ayers T., Viganego F., Herremans M.M., Flowers M.E., Witherspoon R.P., Maloney D.G., et al. Efficacy of donor vaccination before hematopoietic cell transplantation and recipient vaccination both before and early after transplantation. Bone Marrow Transplant. 2004;33:337–346. doi: 10.1038/sj.bmt.1704336.
    1. Baron F., Storer B., Maris M.B., Storek J., Piette F., Metcalf M., White K., Sandmaier B.M., Maloney D.G., Storb R., et al. Unrelated donor status and high donor age independently affect immunologic recovery after nonmyeloablative conditioning. Biol. Blood Marrow Transplant. J. Am. Soc. Blood Marrow Transplant. 2006;12:1176–1187. doi: 10.1016/j.bbmt.2006.07.004.

Source: PubMed

3
Se inscrever