Gut microbiome and its meta-omics perspectives: profound implications for cardiovascular diseases

Jing Xu, Yuejin Yang, Jing Xu, Yuejin Yang

Abstract

Cardiovascular diseases (CVDs) still remain the leading concern of global health, accounting for approximately 17.9 million deaths in 2016. The pathogenetic mechanisms of CVDs are multifactorial and incompletely understood. Recent evidence has shown that alterations in the gut microbiome and its associated metabolites may influence the pathogenesis and progression of CVDs such as atherosclerosis, heart failure, hypertension, and arrhythmia, yet the underlying links are not fully elucidated. Owing to the progress in next-generation sequencing techniques and computational strategies, researchers now are available to explore the emerging links to the genomes, transcriptomes, proteomes, and metabolomes in parallel meta-omics approaches, presenting a panoramic vista of culture-independent microbial investigation. This review aims to outline the characteristics of meta-omics pipelines and provide a brief overview of current applications in CVDs studies which can be practical for addressing crucial knowledge gaps in this field, as well as to shed its light on cardiovascular risk biomarkers and therapeutic intervention in the near future.

Keywords: Cardiovascular diseases; gut microbiome; meta-omics.

Figures

Figure 1.
Figure 1.
Meta-omics algorithm for investigating the host–microbiome interactions
Figure 1.
Figure 1.
Meta-omics algorithm for investigating the host–microbiome interactions
Figure 2.
Figure 2.
Downstream effects of microbe-derived metabolites and their roles in CVDs
Figure 2.
Figure 2.
Downstream effects of microbe-derived metabolites and their roles in CVDs
Figure 3.
Figure 3.
Relationship between atherosclerosis and oral diseases
Figure 3.
Figure 3.
Relationship between atherosclerosis and oral diseases

References

    1. Virani SS, Alonso A, Benjamin EJ, Bittencourt MS, Callaway CW, Carson AP.. Heart disease and stroke statistics-2020 update: a report from the American Heart Association. Circulation. 2020;141(9):e139–25. PubMed PMID: 31992061. doi:10.1161/cir.0000000000000757. Epub 2020/01/30.
    1. Young DR, Hivert MF, Alhassan S, Camhi SM, Ferguson JF, Katzmarzyk PT. Sedentary behavior and cardiovascular morbidity and mortality: a science advisory from the American Heart Association. Circulation. 2016; 134(13):e262–79. Epub 2016/08/17. PubMed PMID: 27528691. doi: 10.1161/cir.0000000000000440.
    1. Ferguson JF, Allayee H, Gerszten RE, Ideraabdullah F, Kris-Etherton PM, Ordovás JM. Nutrigenomics, the microbiome, and gene-environment interactions: new directions in cardiovascular disease research, prevention, and treatment: a scientific statement from the American Heart Association. Circ Cardiovasc Genet. 2016;9(3):291–313. PubMed PMID: 27095829. doi:10.1161/hcg.0000000000000030. Epub 2016/04/21.
    1. Ripatti S, Tikkanen E, Orho-Melander M, Havulinna AS, Silander K, Sharma A. A multilocus genetic risk score for coronary heart disease: case-control and prospective cohort analyses. Lancet. 2010;376(9750):1393–1400. PubMed PMID: 20971364; PubMed Central PMCID: PMCPMC2965351. doi:10.1016/s0140-6736(10)61267-6. Epub 2010/10/26.
    1. Loscalzo J. Gut microbiota, the genome, and diet in atherogenesis. N Engl J Med. 2013;368(17):1647–1649. PubMed PMID: 23614591. doi:10.1056/NEJMe1302154. Epub 2013/04/26.
    1. Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012;148(6):1258–1270. PubMed PMID: 22424233; PubMed Central PMCID: PMCPMC5050011. doi:10.1016/j.cell.2012.01.035. Epub 2012/03/20.
    1. Weiss GA, Hennet T. Mechanisms and consequences of intestinal dysbiosis. Cell Mol Life Sci. 2017;74(16):2959–2977. PubMed PMID: 28352996. doi:10.1007/s00018-017-2509-x. Epub 2017/03/30.
    1. Zhang X, Li L, Butcher J, Stintzi A, Figeys D. Advancing functional and translational microbiome research using meta-omics approaches. Microbiome. 2019;7(1):154. PubMed PMID: 31810497; PubMed Central PMCID: PMCPMC6898977. doi:10.1186/s40168-019-0767-6. Epub 2019/12/08.
    1. Maruvada P, Leone V, Kaplan LM, Chang EB. The human microbiome and obesity: moving beyond associations. Cell Host Microbe. 2017;22(5):589–599. PubMed PMID: 29120742. doi:10.1016/j.chom.2017.10.005. Epub 2017/11/10.
    1. Miyamoto J, Igarashi M, Watanabe K, Karaki SI, Mukouyama H, Kishino S. Gut microbiota confers host resistance to obesity by metabolizing dietary polyunsaturated fatty acids. Nat Commun. 2019;10(1):4007. PubMed PMID: 31488836; PubMed Central PMCID: PMCPMC6728375. doi:10.1038/s41467-019-11978-0. Epub 2019/09/07.
    1. McIlroy J, Ianiro G, Mukhopadhya I, Hansen R, Hold GL. Review article: the gut microbiome in inflammatory bowel disease-avenues for microbial management. Aliment Pharmacol Ther. 2018;47(1):26–42. PubMed PMID: 29034981. doi:10.1111/apt.14384. Epub 2017/10/17.
    1. Sitkin S, Demyanova E, Vakhitov T, Pokrotnieks J. Altered sphingolipid metabolism and its interaction with the intestinal microbiome is another key to the pathogenesis of inflammatory bowel disease. Inflamm Bowel Dis. 2019;25(12):e157–e8. PubMed PMID: 31560761. doi:10.1093/ibd/izz228. Epub 2019/09/29.
    1. Rajagopala SV, Vashee S, Oldfield LM, Suzuki Y, Venter JC, Telenti A. The human microbiome and cancer. Cancer Prev Res (Phila). 2017;10(4):226–234. PubMed PMID: 28096237. doi:10.1158/1940-6207.Capr-16-0249. Epub 2017/01/18.
    1. Liang W, Yang Y, Wang H, Wang H, Yu X, Lu Y. Gut microbiota shifts in patients with gastric cancer in perioperative period. Medicine (Baltimore). 2019;98(35):e16626. PubMed PMID: 31464899; PubMed Central PMCID: PMCPMC6736490. doi:10.1097/md.0000000000016626. Epub 2019/08/30.
    1. Yeoh N, Burton JP, Suppiah P, Reid G, Stebbings S. The role of the microbiome in rheumatic diseases. Curr Rheumatol Rep. 2013;15(3):314. PubMed PMID: 23378145. doi:10.1007/s11926-012-0314-y. Epub 2013/02/05.
    1. Ehp VD, Del Chierico F, Malattia C, Russo A, Pires Marafon D, Ter Haar NM. Microbiome analytics of the gut microbiota in patients with juvenile idiopathic arthritis: a longitudinal observational cohort study. Arthritis Rheumatol. 2019;71(6):1000–1010. PubMed PMID: 30592383; PubMed Central PMCID: PMCPMC6593809. doi:10.1002/art.40827. Epub 2018/12/29.
    1. Ascher S, Reinhardt C. The gut microbiota: an emerging risk factor for cardiovascular and cerebrovascular disease. Eur J Immunol. 2018;48(4):564–575. PubMed PMID: 29230812. doi:10.1002/eji.201646879. Epub 2017/12/13.
    1. Koeth RA, Wang Z, Levison BS, Buffa JA, Org E, Sheehy BT. Intestinal microbiota metabolism of L-carnitine, a nutrient in red meat, promotes atherosclerosis. Nat Med. 2013;19(5):576–585. PubMed PMID: 23563705; PubMed Central PMCID: PMCPMC3650111. doi:10.1038/nm.3145. Epub 2013/04/09.
    1. Knight R, Vrbanac A, Taylor BC, Aksenov A, Callewaert C, Debelius J. Best practices for analysing microbiomes. Nat Rev Microbiol. 2018;16(7):410–422. PubMed PMID: 29795328. doi:10.1038/s41579-018-0029-9. Epub 2018/05/26.
    1. Underhill DM, Iliev ID. The mycobiota: interactions between commensal fungi and the host immune system. Nat Rev Immunol. 2014;14(6):405–416. PubMed PMID: 24854590; PubMed Central PMCID: PMCPMC4332855. doi:10.1038/nri3684. Epub 2014/05/24.
    1. Korem T, Zeevi D, Suez J, Weinberger A, Avnit-Sagi T, Pompan-Lotan M. Growth dynamics of gut microbiota in health and disease inferred from single metagenomic samples. Science. 2015;349(6252):1101–1106. PubMed PMID: 26229116; PubMed Central PMCID: PMCPMC5087275. doi:10.1126/science.aac4812. Epub 2015/08/01.
    1. Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H. Experimental factors affecting PCR-based estimates of microbial species richness and evenness. ISME J. 2010;4(5):642–647. PubMed PMID: 20090784. doi:10.1038/ismej.2009.153. Epub 2010/01/22.
    1. Claesson MJ, Wang Q, O’Sullivan O, Greene-Diniz R, Cole JR, Ross RP. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 2010;38(22):e200. PubMed PMID: 20880993; PubMed Central PMCID: PMCPMC3001100. doi:10.1093/nar/gkq873. Epub 2010/10/01.
    1. Gevers D, Cohan FM, Lawrence JG, Spratt BG, Coenye T, Feil EJ. Opinion: re-evaluating prokaryotic species. Nat Rev Microbiol. 2005;3(9):733–739. PubMed PMID: 16138101. doi:10.1038/nrmicro1236. Epub 2005/09/03.
    1. Scholz M, Ward DV, Pasolli E, Tolio T, Zolfo M, Asnicar F. Strain-level microbial epidemiology and population genomics from shotgun metagenomics. Nat Methods. 2016;13(5):435–438. PubMed PMID: 26999001. doi:10.1038/nmeth.3802. Epub 2016/03/22.
    1. Mukherjee S, Seshadri R, Varghese NJ, Eloe-Fadrosh EA, Meier-Kolthoff JP, Göker M. 1,003 reference genomes of bacterial and archaeal isolates expand coverage of the tree of life. Nat Biotechnol. 2017;35(7):676–683. PubMed PMID: 28604660. doi:10.1038/nbt.3886. Epub 2017/06/13.
    1. Pope PB, Smith W, Denman SE, Tringe SG, Barry K, Hugenholtz P. Isolation of succinivibrionaceae implicated in low methane emissions from tammar wallabies. Science. 2011;333(6042):646–648. PubMed PMID: 21719642. doi:10.1126/science.1205760. Epub 2011/07/02.
    1. Tyson GW, Chapman J, Hugenholtz P, Allen EE, Ram RJ, Richardson PM. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature. 2004;428(6978):37–43. PubMed PMID: 14961025. doi:10.1038/nature02340. Epub 2004/02/13.
    1. Sunagawa S, Mende DR, Zeller G, Izquierdo-Carrasco F, Berger SA, Kultima JR. Metagenomic species profiling using universal phylogenetic marker genes. Nat Methods. 2013;10(12):1196–1199. PubMed PMID: 24141494. doi:10.1038/nmeth.2693. Epub 2013/10/22.
    1. Abubucker S, Segata N, Goll J, Schubert AM, Izard J, Cantarel BL. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput Biol. 2012;8(6):e1002358. PubMed PMID: 22719234; PubMed Central PMCID: PMCPMC3374609. doi:10.1371/journal.pcbi.1002358. Epub 2012/06/22.
    1. Tatusov RL, Galperin MY, Natale DA, Koonin EV. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28(1):33–36. PubMed PMID: 10592175; PubMed Central PMCID: PMCPMC102395. doi:10.1093/nar/28.1.33. Epub 1999/12/11.
    1. Kanehisa M, Goto S, Sato Y, Kawashima M, Furumichi M, Tanabe M. Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res. 2014;42(D1):D199–205. PubMed PMID: 24214961; PubMed Central PMCID: PMCPMC3965122. doi:10.1093/nar/gkt1076. Epub 2013/11/12.
    1. Powell S, Forslund K, Szklarczyk D, Trachana K, Roth A, Huerta-Cepas J. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 2014;42(Database issue):D231–9. PubMed PMID: 24297252; PubMed Central PMCID: PMCPMC3964997. doi:10.1093/nar/gkt1253. Epub 2013/12/04.
    1. Hunter S, Corbett M, Denise H, Fraser M, Gonzalez-Beltran A, Hunter C. EBI metagenomics – a new resource for the analysis and archiving of metagenomic data. Nucleic Acids Res. 2014;42(Database issue):D600–6. PubMed PMID: 24165880; PubMed Central PMCID: PMCPMC3965009. doi:10.1093/nar/gkt961. Epub 2013/10/30.
    1. Li J, Jia H, Cai X, Zhong H, Feng Q, Sunagawa S. An integrated catalog of reference genes in the human gut microbiome. Nat Biotechnol. 2014;32(8):834–841. PubMed PMID: 24997786. doi:10.1038/nbt.2942. Epub 2014/07/07.
    1. Chan SHJ, Cai J, Wang L, Simons-Senftle MN, Maranas CD. Standardizing biomass reactions and ensuring complete mass balance in genome-scale metabolic models. Bioinformatics. 2017;33(22):3603–3609. PubMed PMID: 29036557. doi:10.1093/bioinformatics/btx453. Epub 2017/10/17.
    1. Raes J, Korbel JO, Lercher MJ, Von Mering C, Bork P. Prediction of effective genome size in metagenomic samples. Genome Biol. 2007;8(1):R10. PubMed PMID: 17224063; PubMed Central PMCID: PMCPMC1839125. doi:10.1186/gb-2007-8-1-r10. Epub 2007/01/17.
    1. Human Microbiome Project Consortium. A framework for human microbiome research. Nature. 2012;486(7402):215–221. Epub 2012/06/16. doi: 10.1038/nature11209. PubMed PMID: 22699610; PubMed Central PMCID: PMCPMC3377744.
    1. Kennedy NA, Walker AW, Berry SH, Duncan SH, Farquarson FM, Louis P. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS One. 2014;9(2):e88982. PubMed PMID: 24586470; PubMed Central PMCID: PMCPMC3933346. doi:10.1371/journal.pone.0088982. Epub 2014/03/04.
    1. Wesolowska-Andersen A, Bahl MI, Carvalho V, Kristiansen K, Sicheritz-Pontén T, Gupta R. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome. 2014;2(1):19. PubMed PMID: 24949196; PubMed Central PMCID: PMCPMC4063427. doi:10.1186/2049-2618-2-19. Epub 2014/06/21.
    1. Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C. A human gut microbial gene catalogue established by metagenomic sequencing. Nature. 2010;464(7285):59–65. PubMed PMID: 20203603; PubMed Central PMCID: PMCPMC3779803. doi:10.1038/nature08821. Epub 2010/03/06.
    1. Poretsky RS, Hewson I, Sun S, Allen AE, Zehr JP, Moran MA. Comparative day/night metatranscriptomic analysis of microbial communities in the North Pacific subtropical gyre. Environ Microbiol. 2009;11(6):1358–1375. PubMed PMID: 19207571. doi:10.1111/j.1462-2920.2008.01863.x. Epub 2009/02/12.
    1. Verberkmoes NC, Russell AL, Shah M, Godzik A, Rosenquist M, Halfvarson J. Shotgun metaproteomics of the human distal gut microbiota. ISME J. 2009;3(2):179–189. PubMed PMID: 18971961. doi:10.1038/ismej.2008.108. Epub 2008/10/31.
    1. Nicholson JK, Holmes E, Wilson ID. Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol. 2005;3(5):431–438. PubMed PMID: 15821725. doi:10.1038/nrmicro1152. Epub 2005/04/12.
    1. David LA, Maurice CF, Carmody RN, Gootenberg DB, Button JE, Wolfe BE. Diet rapidly and reproducibly alters the human gut microbiome. Nature. 2014;505(7484):559–563. PubMed PMID: 24336217; PubMed Central PMCID: PMCPMC3957428. doi:10.1038/nature12820. Epub 2013/12/18.
    1. Heintz-Buschart A, May P, Laczny CC, Lebrun LA, Bellora C, Krishna A. Integrated multi-omics of the human gut microbiome in a case study of familial type 1 diabetes. Nat Microbiol. 2016;2(1):16180. PubMed PMID: 27723761. doi:10.1038/nmicrobiol.2016.180. Epub 2016/10/11.
    1. Bikel S, Valdez-Lara A, Cornejo-Granados F, Rico K, Canizales-Quinteros S, Soberón X. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systems-level understanding of human microbiome. Comput Struct Biotechnol J. 2015;13:390–401. doi:10.1016/j.csbj.2015.06.001. PubMed PMID: 26137199; PubMed Central PMCID: PMCPMC4484546. Epub 2015/07/03.
    1. Zhang X, Chen W, Ning Z, Mayne J, Mack D, Stintzi A. Deep metaproteomics approach for the study of human microbiomes. Anal Chem. 2017;89(17):9407–9415. PubMed PMID: 28749657. doi:10.1021/acs.analchem.7b02224. Epub 2017/07/28.
    1. Zhang X, Figeys D. Perspective and guidelines for metaproteomics in microbiome studies. J Proteome Res. 2019;18(6):2370–2380. PubMed PMID: 31009573. doi:10.1021/acs.jproteome.9b00054. Epub 2019/04/23.
    1. Karu N, Deng L, Slae M, Guo AC, Sajed T, Huynh H. A review on human fecal metabolomics: methods, applications and the human fecal metabolome database. Anal Chim Acta. 2018;1030:1–24. doi:10.1016/j.aca.2018.05.031. PubMed PMID: 30032758. Epub 2018/07/24.
    1. Lamichhane S, Sen P, Dickens AM, Orešič M, Bertram HC. Gut metabolome meets microbiome: a methodological perspective to understand the relationship between host and microbe. Methods. 2018;149:3–12. doi:10.1016/j.ymeth.2018.04.029. PubMed PMID: 29715508. Epub 2018/05/02.
    1. Wikoff WR, Anfora AT, Liu J, Schultz PG, Lesley SA, Peters EC. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc Natl Acad Sci U S A. 2009;106(10):3698–3703. PubMed PMID: 19234110; PubMed Central PMCID: PMCPMC2656143. doi:10.1073/pnas.0812874106. Epub 2009/02/24.
    1. Nicholson JK, Holmes E, Kinross J, Burcelin R, Gibson G, Jia W. Host-gut microbiota metabolic interactions. Science. 2012;336(6086):1262–1267. PubMed PMID: 22674330. doi:10.1126/science.1223813. Epub 2012/06/08.
    1. Franzosa EA, Hsu T, Sirota-Madi A, Shafquat A, Abu-Ali G, Morgan XC. Sequencing and beyond: integrating molecular ‘omics’ for microbial community profiling. Nat Rev Microbiol. 2015;13(6):360–372. PubMed PMID: 25915636; PubMed Central PMCID: PMCPMC4800835. doi:10.1038/nrmicro3451. Epub 2015/04/29.
    1. Blanco-Míguez A, Fdez-Riverola F, Sánchez B, Lourenço A. Resources and tools for the high-throughput, multi-omic study of intestinal microbiota. Brief Bioinform. 2019;20(3):1032–1056. PubMed PMID: 29186315. doi:10.1093/bib/bbx156. Epub 2017/12/01.
    1. Weiss S, Van Treuren W, Lozupone C, Faust K, Friedman J, Deng Y. Correlation detection strategies in microbial data sets vary widely in sensitivity and precision. ISME J. 2016;10(7):1669–1681. PubMed PMID: 26905627; PubMed Central PMCID: PMCPMC4918442. doi:10.1038/ismej.2015.235. Epub 2016/02/26.
    1. McHardy IH, Goudarzi M, Tong M, Ruegger PM, Schwager E, Weger JR. Integrative analysis of the microbiome and metabolome of the human intestinal mucosal surface reveals exquisite inter-relationships. Microbiome. 2013;1(1):17. PubMed PMID: 24450808; PubMed Central PMCID: PMCPMC3971612. doi:10.1186/2049-2618-1-17. Epub 2014/01/24.
    1. Koren O, Spor A, Felin J, Fåk F, Stombaugh J, Tremaroli V. Human oral, gut, and plaque microbiota in patients with atherosclerosis. Proc Natl Acad Sci U S A. 2011;108 Suppl 1 (Suppl 1):4592–4598. Epub 2010/10/13. doi: 10.1073/pnas.1011383107. PubMed PMID: 20937873; PubMed Central PMCID: PMCPMC3063583
    1. Karlsson FH, Fåk F, Nookaew I, Tremaroli V, Fagerberg B, Petranovic D. Symptomatic atherosclerosis is associated with an altered gut metagenome. Nat Commun. 2012;3:1245. Epub 2012/12/06. doi: 10.1038/ncomms2266. PubMed PMID: 23212374; PubMed Central PMCID: PMCPMC3538954 competing financial interests.
    1. Yin J, Liao SX, He Y, Wang S, Xia GH, Liu FT. Dysbiosis of gut microbiota with reduced Trimethylamine-N-Oxide level in patients with large-artery atherosclerotic stroke or transient ischemic attack. J Am Heart Assoc. 2015;4(11). Epub 2015/11/26. doi: 10.1161/jaha.115.002699. PubMed PMID: 26597155; PubMed Central PMCID: PMCPMC4845212.
    1. Feng Q, Liu Z, Zhong S, Li R, Xia H, Jie Z. Integrated metabolomics and metagenomics analysis of plasma and urine identified microbial metabolites associated with coronary heart disease. Sci Rep. 2016;6:22525. doi:10.1038/srep22525. PubMed PMID: 26932197; PubMed Central PMCID: PMCPMC4773756. Epub 2016/03/05.
    1. Emoto T, Yamashita T, Sasaki N, Hirota Y, Hayashi T, So A. Analysis of gut microbiota in coronary artery disease patients: a possible link between gut microbiota and coronary artery disease. J Atheroscler Thromb. 2016;23(8):908–921. PubMed PMID: 26947598; PubMed Central PMCID: PMCPMC7399299. doi:10.5551/jat.32672. Epub 2016/03/08.
    1. Jie Z, Xia H, Zhong SL, Feng Q, Li S, Liang S. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845. PubMed PMID: 29018189; PubMed Central PMCID: PMCPMC5635030. doi:10.1038/s41467-017-00900-1. Epub 2017/10/12.
    1. Gózd-Barszczewska A, Kozioł-Montewka M, Barszczewski P, Młodzińska A, Humińska K. Gut microbiome as a biomarker of cardiometabolic disorders. Ann Agric Environ Med. 2017;24(3):416–422. PubMed PMID: 28954482. doi:10.26444/aaem/75456. Epub 2017/09/29.
    1. Yoshida N, Emoto T, Yamashita T, Watanabe H, Hayashi T, Tabata T. Bacteroides vulgatus and bacteroides dorei reduce gut microbial Lipopolysaccharide production and inhibit atherosclerosis. Circulation. 2018;138(22):2486–2498. doi:10.1161/CIRCULATIONAHA.118.033714. PubMed PMID: 30571343.
    1. Zhu Q, Gao R, Zhang Y, Pan D, Zhu Y, Zhang X. Dysbiosis signatures of gut microbiota in coronary artery disease. Physiol Genomics. 2018;50(10):893–903. PubMed PMID: 30192713. doi:10.1152/physiolgenomics.00070.2018. Epub 2018/09/08.
    1. Liu H, Chen X, Hu X, Niu H, Tian R, Wang H. Alterations in the gut microbiome and metabolism with coronary artery disease severity. Microbiome. 2019;7(1):68. PubMed PMID: 31027508; PubMed Central PMCID: PMCPMC6486680. doi:10.1186/s40168-019-0683-9. Epub 2019/04/28.
    1. Yang T, Santisteban MM, Rodriguez V, Li E, Ahmari N, Carvajal JM. Gut dysbiosis is linked to hypertension. Hypertension. 2015;65(6):1331–1340. PubMed PMID: 25870193; PubMed Central PMCID: PMCPMC4433416. doi:10.1161/hypertensionaha.115.05315. Epub 2015/04/15.
    1. Gomez-Arango LF, Barrett HL, McIntyre HD, Callaway LK, Morrison M, Dekker Nitert M. Increased systolic and diastolic blood pressure is associated with altered gut microbiota composition and Butyrate production in early pregnancy. Hypertension. 2016;68(4):974–981. PubMed PMID: 27528065. doi:10.1161/hypertensionaha.116.07910. Epub 2016/08/17.
    1. Li J, Zhao F, Wang Y, Chen J, Tao J, Tian G. Gut microbiota dysbiosis contributes to the development of hypertension. Microbiome. 2017;5(1):14. doi:10.1186/s40168-016-0222-x. PubMed PMID: 28143587
    1. Yan Q, Gu Y, Li X, Yang W, Jia L, Chen C. Alterations of the gut microbiome in hypertension. Front Cell Infect Microbiol. 2017;7:381. doi:10.3389/fcimb.2017.00381. PubMed PMID: 28884091; PubMed Central PMCID: PMCPMC5573791. Epub 2017/09/09.
    1. Kim S, Goel R, Kumar A, Qi Y, Lobaton G, Hosaka K. Imbalance of gut microbiome and intestinal epithelial barrier dysfunction in patients with high blood pressure. Clin Sci (Lond). 2018;132(6):701–718. PubMed PMID: 29507058; PubMed Central PMCID: PMCPMC5955695. doi:10.1042/cs20180087. Epub 2018/03/07.
    1. Menni C, Lin C, Cecelja M, Mangino M, Matey-Hernandez ML, Keehn L. Gut microbial diversity is associated with lower arterial stiffness in women. Eur Heart J. 2018;39(25):2390–2397. doi:10.1093/eurheartj/ehy226. PubMed PMID: 29750272
    1. Sun S, Lulla A, Sioda M, Winglee K, Wu MC, Jacobs DR Jr.. Gut microbiota composition and blood pressure. Hypertension. 2019;73(5):998–1006. PubMed PMID: 30905192; PubMed Central PMCID: PMCPMC6458072. doi:10.1161/hypertensionaha.118.12109. Epub 2019/03/25.
    1. Huart J, Leenders J, Taminiau B, Descy J, Saint-Remy A, Daube G. Gut microbiota and fecal levels of short-chain fatty acids differ upon 24-hour blood pressure levels in men. Hypertension. 2019;74(4):1005–1013. PubMed PMID: 31352822. doi:10.1161/hypertensionaha.118.12588. Epub 2019/07/30.
    1. Verhaar BJH, Collard D, Prodan A, Levels JHM, Zwinderman AH, Bäckhed F. Associations between gut microbiota, faecal short-chain fatty acids, and blood pressure across ethnic groups: the HELIUS study. Eur Heart J. 2020;41(44):4259–4267. PubMed PMID: 32869053; PubMed Central PMCID: PMCPMC7724641. doi:10.1093/eurheartj/ehaa704. Epub 2020/09/02.
    1. Sandek A, Bauditz J, Swidsinski A, Buhner S, Weber-Eibel J, Von Haehling S. Altered intestinal function in patients with chronic heart failure. J Am Coll Cardiol. 2007;50(16):1561–1569. PubMed PMID: 17936155. doi:10.1016/j.jacc.2007.07.016. Epub 2007/10/16.
    1. Sandek A, Swidsinski A, Schroedl W, Watson A, Valentova M, Herrmann R. Intestinal blood flow in patients with chronic heart failure: a link with bacterial growth, gastrointestinal symptoms, and cachexia. J Am Coll Cardiol. 2014;64(11):1092–1102. PubMed PMID: 25212642. doi:10.1016/j.jacc.2014.06.1179. Epub 2014/09/13.
    1. Pasini E, Aquilani R, Testa C, Baiardi P, Angioletti S, Boschi F. Pathogenic gut flora in patients with chronic heart failure. JACC Heart Fail. 2016;4(3):220–227. PubMed PMID: 26682791. doi:10.1016/j.jchf.2015.10.009. Epub 2015/12/20.
    1. Luedde M, Winkler T, Heinsen FA, Rühlemann MC, Spehlmann ME, Bajrovic A. Heart failure is associated with depletion of core intestinal microbiota. ESC Heart Fail. 2017;4(3):282–290. PubMed PMID: 28772054; PubMed Central PMCID: PMCPMC5542738. doi:10.1002/ehf2.12155. Epub 2017/08/05.
    1. Kamo T, Akazawa H, Suda W, Saga-Kamo A, Shimizu Y, Yagi H. Dysbiosis and compositional alterations with aging in the gut microbiota of patients with heart failure. PLoS One. 2017;12(3):e0174099. PubMed PMID: 28328981; PubMed Central PMCID: PMCPMC5362204 Ltd., Daiichi Sankyo Co., Ltd., Shionogi & Co., Ltd., Nippon Boehringer Ingelheim Co., Ltd., Bristol-Myers Squibb K.K., MSD K.K., Sanofi K.K., and Sumitomo Dainippon Pharma Co., Ltd. There are no patents, products in development, or marketed products to declare. doi:10.1371/journal.pone.0174099. Epub 2017/03/23.
    1. Kummen M, Mayerhofer CCK, Vestad B, Broch K, Awoyemi A, Storm-Larsen C. Gut microbiota signature in heart failure defined from profiling of 2 independent cohorts. J Am Coll Cardiol. 2018;71(10):1184–1186. PubMed PMID: 29519360. doi:10.1016/j.jacc.2017.12.057. Epub 2018/03/10.
    1. Cui X, Ye L, Li J, Jin L, Wang W, Li S. Metagenomic and metabolomic analyses unveil dysbiosis of gut microbiota in chronic heart failure patients. Sci Rep. 2018;8(1):635. PubMed PMID: 29330424; PubMed Central PMCID: PMCPMC5766622. doi:10.1038/s41598-017-18756-2. Epub 2018/01/14.
    1. Zuo K, Yin X, Li K, Zhang J, Wang P, Jiao J. Different types of atrial fibrillation share patterns of gut microbiota dysbiosis. mSphere. 2020;5(2). Epub 2020/03/20. doi: 10.1128/mSphere.00071-20. PubMed PMID: 32188747; PubMed Central PMCID: PMCPMC7082137.
    1. Fu J, Bonder MJ, Cenit MC, Tigchelaar EF, Maatman A, Dekens JA. The gut microbiome contributes to a substantial proportion of the variation in blood lipids. Circ Res. 2015;117(9):817–824. PubMed PMID: 26358192; PubMed Central PMCID: PMCPMC4596485. doi:10.1161/circresaha.115.306807. Epub 2015/09/12.
    1. Kelly TN, Bazzano LA, Ajami NJ, He H, Zhao J, Petrosino JF. Gut microbiome associates with lifetime cardiovascular disease risk profile among Bogalusa heart study participants. Circ Res. 2016;119(8):956–964. PubMed PMID: 27507222; PubMed Central PMCID: PMCPMC5045790. doi:10.1161/circresaha.116.309219. Epub 2016/08/11.
    1. Rothschild D, Weissbrod O, Barkan E, Kurilshikov A, Korem T, Zeevi D. Environment dominates over host genetics in shaping human gut microbiota. Nature. 2018;555(7695):210–215. PubMed PMID: 29489753. doi:10.1038/nature25973. Epub 2018/03/01.
    1. Jie Z, Xia H, Zhong S-L, Feng Q, Li S, Liang S. The gut microbiome in atherosclerotic cardiovascular disease. Nat Commun. 2017;8(1):845. doi:10.1038/s41467-017-00900-1. PubMed PMID: 29018189.
    1. Arneson D, Shu L, Tsai B, Barrere-Cain R, Sun C, Yang X. Multidimensional integrative genomics approaches to dissecting cardiovascular disease. Front Cardiovasc Med. 2017;4:8. doi:10.3389/fcvm.2017.00008. PubMed PMID: 28289683; PubMed Central PMCID: PMCPMC5327355. Epub 2017/03/16.
    1. Huang S, Chaudhary K, Garmire LX. More is better: recent progress in multi-omics data integration methods. Front Genet. 2017;8:84. doi:10.3389/fgene.2017.00084. PubMed PMID: 28670325; PubMed Central PMCID: PMCPMC5472696. Epub 2017/07/04.
    1. Griffin JL, Wang X, Stanley E. Does our gut microbiome predict cardiovascular risk? A review of the evidence from metabolomics. Circ Cardiovasc Genet. 2015;8(1):187–191. PubMed PMID: 25691688; PubMed Central PMCID: PMCPMC4333723. doi:10.1161/circgenetics.114.000219. Epub 2015/02/19.
    1. Xu J, Yang Y. Implications of gut microbiome on coronary artery disease. Cardiovasc Diagn Ther. 2020;10(4):869–880. PubMed PMID: 32968642; PubMed Central PMCID: PMCPMC7487393. doi:10.21037/cdt-20-428. Epub 2020/09/25.
    1. Sonnenburg JL, Bäckhed F. Diet-microbiota interactions as moderators of human metabolism. Nature. 2016;535(7610):56–64. PubMed PMID: 27383980; PubMed Central PMCID: PMCPMC5991619. doi:10.1038/nature18846. Epub 2016/07/08.
    1. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. doi:10.1038/nature09922. PubMed PMID: 21475195
    1. Tang WH, Wang Z, Levison BS, Koeth RA, Britt EB, Fu X. Intestinal microbial metabolism of phosphatidylcholine and cardiovascular risk. N Engl J Med. 2013;368(17):1575–1584. PubMed PMID: 23614584; PubMed Central PMCID: PMCPMC3701945. doi:10.1056/NEJMoa1109400. Epub 2013/04/26.
    1. Koeth RA, Levison BS, Culley MK, Buffa JA, Wang Z, Gregory JC. γ-Butyrobetaine is a proatherogenic intermediate in gut microbial metabolism of L-carnitine to TMAO. Cell Metab. 2014;20(5):799–812. PubMed PMID: 25440057; PubMed Central PMCID: PMCPMC4255476. doi:10.1016/j.cmet.2014.10.006. Epub 2014/12/03.
    1. Li XS, Wang Z, Cajka T, Buffa JA, Nemet I, Hurd AG. Untargeted metabolomics identifies trimethyllysine, a TMAO-producing nutrient precursor, as a predictor of incident cardiovascular disease risk. JCI Insight. 2018;3(6). Epub 2018/03/23. doi: 10.1172/jci.insight.99096. PubMed PMID: 29563342; PubMed Central PMCID: PMCPMC5926943.
    1. Wang Z, Bergeron N, Levison BS, Li XS, Chiu S, Jia X. Impact of chronic dietary red meat, white meat, or non-meat protein on trimethylamine N-oxide metabolism and renal excretion in healthy men and women. Eur Heart J. 2019;40(7):583–594. PubMed PMID: 30535398; PubMed Central PMCID: PMCPMC6374688. doi:10.1093/eurheartj/ehy799. Epub 2018/12/12.
    1. Zhu W, Wang Z, Tang WHW, Hazen SL. Gut microbe-generated Trimethylamine N-Oxide from Dietary Choline is Prothrombotic in subjects. Circulation. 2017;135(17):1671–1673. PubMed PMID: 28438808; PubMed Central PMCID: PMCPMC5460631. doi:10.1161/circulationaha.116.025338. Epub 2017/04/26.
    1. Craciun S, Balskus EP. Microbial conversion of choline to trimethylamine requires a glycyl radical enzyme. Proc Natl Acad Sci U S A. 2012;109(52):21307–21312. PubMed PMID: 23151509; PubMed Central PMCID: PMCPMC3535645. doi:10.1073/pnas.1215689109. Epub 2012/11/16.
    1. Ding L, Chang M, Guo Y, Zhang L, Xue C, Yanagita T. Trimethylamine-N-oxide (TMAO)-induced atherosclerosis is associated with bile acid metabolism. Lipids Health Dis. 2018;17(1):286. PubMed PMID: 30567573; PubMed Central PMCID: PMCPMC6300890. doi:10.1186/s12944-018-0939-6. Epub 2018/12/21.
    1. Aldana-Hernández P, Leonard KA, Zhao YY, Curtis JM, Field CJ, Jacobs RL. Dietary Choline or Trimethylamine N-oxide supplementation does not influence Atherosclerosis development in Ldlr-/- and Apoe-/- male mice. J Nutr. 2020;150(2):249–255. PubMed PMID: 31529091. doi:10.1093/jn/nxz214. Epub 2019/09/19.
    1. Xue J, Zhou D, Poulsen O, Imamura T, Hsiao YH, Smith TH. Intermittent hypoxia and hypercapnia accelerate atherosclerosis, partially via trimethylamine-oxide. Am J Respir Cell Mol Biol. 2017;57(5):581–588. PubMed PMID: 28678519; PubMed Central PMCID: PMCPMC5705907. doi:10.1165/rcmb.2017-0086OC. Epub 2017/07/06.
    1. Wang Z, Klipfell E, Bennett BJ, Koeth R, Levison BS, Dugar B. Gut flora metabolism of phosphatidylcholine promotes cardiovascular disease. Nature. 2011;472(7341):57–63. PubMed PMID: 21475195; PubMed Central PMCID: PMCPMC3086762. doi:10.1038/nature09922. Epub 2011/04/09.
    1. Skye SM, Zhu W, Romano KA, Guo CJ, Wang Z, Jia X. Microbial transplantation with human gut commensals containing CutC is sufficient to transmit enhanced platelet reactivity and thrombosis potential. Circ Res. 2018;123(10):1164–1176. PubMed PMID: 30359185; PubMed Central PMCID: PMCPMC6223262. doi:10.1161/circresaha.118.313142. Epub 2018/10/26.
    1. Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–124. PubMed PMID: 26972052; PubMed Central PMCID: PMCPMC4862743. doi:10.1016/j.cell.2016.02.011. Epub 2016/03/15.
    1. Zhu W, Buffa JA, Wang Z, Warrier M, Schugar R, Shih DM. Flavin monooxygenase 3, the host hepatic enzyme in the metaorganismal trimethylamine N-oxide-generating pathway, modulates platelet responsiveness and thrombosis risk. J Thromb Haemost. 2018;16(9):1857–1872. PubMed PMID: 29981269; PubMed Central PMCID: PMCPMC6156942. doi:10.1111/jth.14234. Epub 2018/07/08.
    1. Roberts AB, Gu X, Buffa JA, Hurd AG, Wang Z, Zhu W. Development of a gut microbe-targeted nonlethal therapeutic to inhibit thrombosis potential. Nat Med. 2018;24(9):1407–1417. PubMed PMID: 30082863; PubMed Central PMCID: PMCPMC6129214. doi:10.1038/s41591-018-0128-1. Epub 2018/08/08.
    1. Seldin MM, Meng Y, Qi H, Zhu W, Wang Z, Hazen SL. Trimethylamine N-Oxide promotes vascular inflammation through signaling of Mitogen-Activated Protein Kinase and Nuclear Factor-κB. J Am Heart Assoc. 2016;5(2). Epub 2016/02/24. doi: 10.1161/jaha.115.002767. PubMed PMID: 26903003; PubMed Central PMCID: PMCPMC4802459.
    1. Chen ML, Zhu XH, Ran L, Lang HD, Yi L, Mi MT. Trimethylamine-N-Oxide induces vascular inflammation by activating the NLRP3 inflammasome through the SIRT3-SOD2-mtROS signaling pathway. J Am Heart Assoc. 2017;6(9). Epub 2017/09/06. doi: 10.1161/jaha.117.006347. PubMed PMID: 28871042; PubMed Central PMCID: PMCPMC5634285.
    1. Zhang X, Li Y, Yang P, Liu X, Lu L, Chen Y. Trimethylamine-N-Oxide promotes vascular calcification through activation of NLRP3 (Nucleotide-binding domain, Leucine-Rich-containing Family, Pyrin domain-containing-3) inflammasome and NF-κB (Nuclear Factor κB) signals. Arterioscler Thromb Vasc Biol. 2020;40(3):751–765. PubMed PMID: 31941382. doi:10.1161/atvbaha.119.313414. Epub 2020/01/17.
    1. Tang WH, Wang Z, Kennedy DJ, Wu Y, Buffa JA, Agatisa-Boyle B. Gut microbiota-dependent trimethylamine N-oxide (TMAO) pathway contributes to both development of renal insufficiency and mortality risk in chronic kidney disease. Circ Res. 2015;116(3):448–455. PubMed PMID: 25599331; PubMed Central PMCID: PMCPMC4312512. doi:10.1161/circresaha.116.305360. Epub 2015/01/20.
    1. Li XS, Obeid S, Klingenberg R, Gencer B, Mach F, Räber L. Gut microbiota-dependent trimethylamine N-oxide in acute coronary syndromes: a prognostic marker for incident cardiovascular events beyond traditional risk factors. Eur Heart J. 2017;38(11):814–824. Epub 2017/01/13. doi: 10.1093/eurheartj/ehw582. PubMed PMID: 28077467; PubMed Central PMCID: PMCPMC5837488.
    1. Li XS, Obeid S, Wang Z, Hazen BJ, Li L, Wu Y. Trimethyllysine, a trimethylamine N-oxide precursor, provides near- and long-term prognostic value in patients presenting with acute coronary syndromes. Eur Heart J. 2019;40(32):2700–2709. doi:10.1093/eurheartj/ehz259. PubMed PMID: 31049589
    1. Skagen K, Trøseid M, Ueland T, Holm S, Abbas A, Gregersen I. The Carnitine-butyrobetaine-trimethylamine-N-oxide pathway and its association with cardiovascular mortality in patients with carotid atherosclerosis. Atherosclerosis. 2016;247:64–69. doi:10.1016/j.atherosclerosis.2016.01.033. PubMed PMID: 26868510. Epub 2016/02/13.
    1. Tang WH, Wang Z, Fan Y, Levison B, Hazen JE, Donahue LM. Prognostic value of elevated levels of intestinal microbe-generated metabolite trimethylamine-N-oxide in patients with heart failure: refining the gut hypothesis. J Am Coll Cardiol. 2014;64(18):1908–1914. PubMed PMID: 25444145; PubMed Central PMCID: PMCPMC4254529. doi:10.1016/j.jacc.2014.02.617. Epub 2014/12/03.
    1. Trøseid M, Ueland T, Hov JR, Svardal A, Gregersen I, Dahl CP. Microbiota-dependent metabolite trimethylamine-N-oxide is associated with disease severity and survival of patients with chronic heart failure. J Intern Med. 2015;277(6):717–726. PubMed PMID: 25382824. doi:10.1111/joim.12328. Epub 2014/11/11.
    1. Suzuki T, Heaney LM, Bhandari SS, Jones DJ, Ng LL. Trimethylamine N-oxide and prognosis in acute heart failure. Heart. 2016;102(11):841–848. PubMed PMID: 26869641. doi:10.1136/heartjnl-2015-308826. Epub 2016/02/13.
    1. Ge X, Zheng L, Zhuang R, Yu P, Xu Z, Liu G. The Gut microbial metabolite Trimethylamine N-Oxide and hypertension risk: a systematic review and dose-response meta-analysis. Adv Nutr. 2020;11(1):66–76. PubMed PMID: 31269204; PubMed Central PMCID: PMCPMC7442397. doi:10.1093/advances/nmz064. Epub 2019/07/04.
    1. Lau K, Srivatsav V, Rizwan A, Nashed A, Liu R, Shen R. Bridging the gap between gut microbial dysbiosis and cardiovascular diseases. Nutrients. 2017;9(8). Epub 2017/08/11. doi: 10.3390/nu9080859. PubMed PMID: 28796176; PubMed Central PMCID: PMCPMC5579652.
    1. Wang Z, Zhao Y. Gut microbiota derived metabolites in cardiovascular health and disease. Protein Cell. 2018;9(5):416–431. PubMed PMID: 29725935; PubMed Central PMCID: PMCPMC5960473. doi:10.1007/s13238-018-0549-0. Epub 2018/05/05.
    1. Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016;7(1):22–39. PubMed PMID: 26939849; PubMed Central PMCID: PMCPMC4856454. doi:10.1080/19490976.2015.1127483. Epub 2016/03/05.
    1. Jones BV, Begley M, Hill C, Gahan CG, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci U S A. 2008;105(36):13580–13585. PubMed PMID: 18757757; PubMed Central PMCID: PMCPMC2533232. doi:10.1073/pnas.0804437105. Epub 2008/09/02.
    1. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47(2):241–259. PubMed PMID: 16299351. doi:10.1194/jlr.R500013-JLR200. Epub 2005/11/22.
    1. Rowland I, Gibson G, Heinken A, Scott K, Swann J, Thiele I. Gut microbiota functions: metabolism of nutrients and other food components. Eur J Nutr. 2018;57(1):1–24. PubMed PMID: 28393285; PubMed Central PMCID: PMCPMC5847071. doi:10.1007/s00394-017-1445-8. Epub 2017/04/11.
    1. Hylemon PB, Zhou H, Pandak WM, Ren S, Gil G, Dent P. Bile acids as regulatory molecules. J Lipid Res. 2009;50(8):1509–1520. PubMed PMID: 19346331; PubMed Central PMCID: PMCPMC2724047. doi:10.1194/jlr.R900007-JLR200. Epub 2009/04/07.
    1. Keitel V, Stindt J, Häussinger D. Bile Acid-activated receptors: GPBAR1 (TGR5) and other G Protein-coupled receptors. Handb Exp Pharmacol. 2019;256:19–49. doi:10.1007/164_2019_230. PubMed PMID: 31302759. Epub 2019/07/16.
    1. Kuipers F, Bloks VW, Groen AK. Beyond intestinal soap–bile acids in metabolic control. Nat Rev Endocrinol. 2014;10(8):488–498. PubMed PMID: 24821328. doi:10.1038/nrendo.2014.60. Epub 2014/05/14.
    1. Li T, Chiang JY. Bile acids as metabolic regulators. Curr Opin Gastroenterol. 2015;31(2):159–165. PubMed PMID: 25584736; PubMed Central PMCID: PMCPMC4332523. doi:10.1097/mog.0000000000000156. Epub 2015/01/15.
    1. Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci U S A. 2006;103(10):3920–3925. PubMed PMID: 16473946; PubMed Central PMCID: PMCPMC1450165. doi:10.1073/pnas.0509592103. Epub 2006/02/14.
    1. Joyce SA, Gahan CG. Disease-associated changes in Bile Acid profiles and links to altered gut microbiota. Dig Dis. 2017;35(3):169–177. PubMed PMID: 28249284. doi:10.1159/000450907. Epub 2017/03/02.
    1. Adorini L, Schoonjans K, Friedman SL. Megatrends in bile acid receptor research. Hepatol Commun. 2017;1(8):831–835. PubMed PMID: 29404496; PubMed Central PMCID: PMCPMC5678912. doi:10.1002/hep4.1085. Epub 2018/02/07.
    1. Haeusler RA, Astiarraga B, Camastra S, Accili D, Ferrannini E. Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes. 2013;62(12):4184–4191. PubMed PMID: 23884887; PubMed Central PMCID: PMCPMC3837033. doi:10.2337/db13-0639. Epub 2013/07/26.
    1. Choucair I, Nemet I, Li L, Cole MA, Skye SM, Kirsop JD. Quantification of bile acids: a mass spectrometry platform for studying gut microbe connection to metabolic diseases. J Lipid Res. 2020;61(2):159–177. PubMed PMID: 31818878; PubMed Central PMCID: PMCPMC6997600. doi:10.1194/jlr.RA119000311. Epub 2019/12/11.
    1. Gu Y, Wang X, Li J, Zhang Y, Zhong H, Liu R. Analyses of gut microbiota and plasma bile acids enable stratification of patients for antidiabetic treatment. Nat Commun. 2017;8(1):1785. PubMed PMID: 29176714; PubMed Central PMCID: PMCPMC5702614. doi:10.1038/s41467-017-01682-2. Epub 2017/11/28.
    1. Mayerhofer CCK, Ueland T, Broch K, Vincent RP, Cross GF, Dahl CP. Increased secondary/primary Bile Acid ratio in Chronic heart failure. J Card Fail. 2017;23(9):666–671. PubMed PMID: 28688889. doi:10.1016/j.cardfail.2017.06.007. Epub 2017/07/10.
    1. Ryan PM, Stanton C, Caplice NM. Bile acids at the cross-roads of gut microbiome-host cardiometabolic interactions. Diabetol Metab Syndr. 2017;9(1):102. PubMed PMID: 29299069; PubMed Central PMCID: PMCPMC5745752. doi:10.1186/s13098-017-0299-9. Epub 2018/01/05.
    1. Jones ML, Martoni CJ, Prakash S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr. 2012;66(11):1234–1241. PubMed PMID: 22990854. doi:10.1038/ejcn.2012.126. Epub 2012/09/20.
    1. Morrison DJ, Preston T. Formation of short chain fatty acids by the gut microbiota and their impact on human metabolism. Gut Microbes. 2016;7(3):189–200. PubMed PMID: 26963409; PubMed Central PMCID: PMCPMC4939913. doi:10.1080/19490976.2015.1134082. Epub 2016/03/11.
    1. Trøseid M, Andersen G, Broch K, Hov JR. The gut microbiome in coronary artery disease and heart failure: current knowledge and future directions. EBioMedicine. 2020;52:102649. doi:10.1016/j.ebiom.2020.102649. PubMed PMID: 32062353; PubMed Central PMCID: PMCPMC7016372. Epub 2020/02/18.
    1. Willemsen LE, Koetsier MA, Van Deventer SJ, Van Tol EA. Short chain fatty acids stimulate epithelial mucin 2 expression through differential effects on prostaglandin E(1) and E(2) production by intestinal myofibroblasts. Gut. 2003;52(10):1442–1447. PubMed PMID: 12970137; PubMed Central PMCID: PMCPMC1773837. doi:10.1136/gut.52.10.1442. Epub 2003/09/13.
    1. Pluznick J. A novel SCFA receptor, the microbiota, and blood pressure regulation. Gut Microbes. 2014;5(2):202–207. PubMed PMID: 24429443; PubMed Central PMCID: PMCPMC4063845. doi:10.4161/gmic.27492. Epub 2014/01/17.
    1. Pluznick JL, Protzko RJ, Gevorgyan H, Peterlin Z, Sipos A, Han J. Olfactory receptor responding to gut microbiota-derived signals plays a role in renin secretion and blood pressure regulation. Proc Natl Acad Sci U S A. 2013;110(11):4410–4415. PubMed PMID: 23401498; PubMed Central PMCID: PMCPMC3600440. doi:10.1073/pnas.1215927110. Epub 2013/02/13.
    1. Natarajan N, Hori D, Flavahan S, Steppan J, Flavahan NA, Berkowitz DE. Microbial short chain fatty acid metabolites lower blood pressure via endothelial G protein-coupled receptor 41. Physiol Genomics. 2016;48(11):826–834. PubMed PMID: 27664183; PubMed Central PMCID: PMCPMC6223570. doi:10.1152/physiolgenomics.00089.2016. Epub 2016/09/25.
    1. Hur KY, Lee MS. Gut microbiota and metabolic disorders. Diabetes Metab J. 2015;39(3):198–203. PubMed PMID: 26124989; PubMed Central PMCID: PMCPMC4483604. doi:10.4093/dmj.2015.39.3.198. Epub 2015/07/01.
    1. Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal epithelial cells to promote inflammatory responses in mice. Gastroenterology. 2013;145(2):396–406. PubMed PMID: 23665276. doi:10.1053/j.gastro.2013.04.056. e1-10. Epub 2013/05/15.
    1. Tolhurst G, Heffron H, Lam YS, Parker HE, Habib AM, Diakogiannaki E. Short-chain fatty acids stimulate glucagon-like peptide-1 secretion via the G-protein-coupled receptor FFAR2. Diabetes. 2012;61(2):364–371. PubMed PMID: 22190648; PubMed Central PMCID: PMCPMC3266401. doi:10.2337/db11-1019. Epub 2011/12/23.
    1. Psichas A, Sleeth ML, Murphy KG, Brooks L, Bewick GA, Hanyaloglu AC. The short chain fatty acid propionate stimulates GLP-1 and PYY secretion via free fatty acid receptor 2 in rodents. Int J Obes (Lond). 2015;39(3):424–429. PubMed PMID: 25109781; PubMed Central PMCID: PMCPMC4356745. doi:10.1038/ijo.2014.153. Epub 2014/08/12.
    1. Drucker DJ. The cardiovascular biology of Glucagon-like Peptide-1. Cell Metab. 2016;24(1):15–30. PubMed PMID: 27345422. doi:10.1016/j.cmet.2016.06.009. Epub 2016/06/28.
    1. Lønborg J, Vejlstrup N, Kelbæk H, Bøtker HE, Kim WY, Mathiasen AB. Exenatide reduces reperfusion injury in patients with ST-segment elevation myocardial infarction. Eur Heart J. 2012;33(12):1491–1499. PubMed PMID: 21920963. doi:10.1093/eurheartj/ehr309. Epub 2011/09/17.
    1. Ussher JR, Baggio LL, Campbell JE, Mulvihill EE, Kim M, Kabir MG. Inactivation of the cardiomyocyte glucagon-like peptide-1 receptor (GLP-1R) unmasks cardiomyocyte-independent GLP-1R-mediated cardioprotection. Mol Metab. 2014;3(5):507–517. PubMed PMID: 25061556; PubMed Central PMCID: PMCPMC4099509. doi:10.1016/j.molmet.2014.04.009. Epub 2014/07/26.
    1. Bartolomaeus H, Balogh A, Yakoub M, Homann S, Markó L, Höges S. Short-chain fatty acid propionate protects from hypertensive cardiovascular damage. Circulation. 2019;139(11):1407–1421. PubMed PMID: 30586752; PubMed Central PMCID: PMCPMC6416008. doi:10.1161/circulationaha.118.036652. Epub 2018/12/28.
    1. Tang TWH, Chen HC, Chen CY, Yen CYT, Lin CJ, Prajnamitra RP. Loss of gut microbiota alters Immune system composition and Cripples Postinfarction Cardiac repair. Circulation. 2019;139(5):647–659. PubMed PMID: 30586712. doi:10.1161/circulationaha.118.035235. Epub 2018/12/28.
    1. Kasahara K, Krautkramer KA, Org E, Romano KA, Kerby RL, Vivas EI. Interactions between Roseburia intestinalis and diet modulate atherogenesis in a murine model. Nat Microbiol. 2018;3(12):1461–1471. PubMed PMID: 30397344; PubMed Central PMCID: PMCPMC6280189. doi:10.1038/s41564-018-0272-x. Epub 2018/11/07.
    1. Sallée M, Dou L, Cerini C, Poitevin S, Brunet P, Burtey S. The aryl hydrocarbon receptor-activating effect of uremic toxins from tryptophan metabolism: a new concept to understand cardiovascular complications of chronic kidney disease. Toxins (Basel). 2014;6(3):934–949. PubMed PMID: 24599232; PubMed Central PMCID: PMCPMC3968369. doi:10.3390/toxins6030934. Epub 2014/03/07.
    1. Rothhammer V, Mascanfroni ID, Bunse L, Takenaka MC, Kenison JE, Mayo L. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat Med. 2016;22(6):586–597. PubMed PMID: 27158906; PubMed Central PMCID: PMCPMC4899206. doi:10.1038/nm.4106. Epub 2016/05/10.
    1. Nemet I, Saha PP, Gupta N, Zhu W, Romano KA, Skye SM. A cardiovascular disease-linked gut microbial metabolite acts via Adrenergic receptors. Cell. 2020;180(5). doi:10.1016/j.cell.2020.02.016. PubMed PMID: 32142679.
    1. Xu X, He J, Xue J, Wang Y, Li K, Zhang K. Oral cavity contains distinct niches with dynamic microbial communities. Environ Microbiol. 2015;17(3):699–710. PubMed PMID: 24800728. doi:10.1111/1462-2920.12502. Epub 2014/05/08.
    1. Aarabi G, Heydecke G, Seedorf U. Roles of oral infections in the pathomechanism of Atherosclerosis. Int J Mol Sci. 2018;19(7). Epub 2018/07/11. doi: 10.3390/ijms19071978. PubMed PMID: 29986441; PubMed Central PMCID: PMCPMC6073301.
    1. Eberhard J, Grote K, Luchtefeld M, Heuer W, Schuett H, Divchev D. Experimental gingivitis induces systemic inflammatory markers in young healthy individuals: a single-subject interventional study. PLoS One. 2013;8(2):e55265. PubMed PMID: 23408963; PubMed Central PMCID: PMCPMC3567060. doi:10.1371/journal.pone.0055265. Epub 2013/02/15.
    1. Martin-Cabezas R, Seelam N, Petit C, Agossa K, Gaertner S, Tenenbaum H. Association between periodontitis and arterial hypertension: a systematic review and meta-analysis. Am Heart J. 2016;180:98–112. doi:10.1016/j.ahj.2016.07.018. PubMed PMID: 27659888. Epub 2016/09/24.
    1. Chen H, Jiang W. Application of high-throughput sequencing in understanding human oral microbiome related with health and disease. Front Microbiol. 2014;5:508. doi:10.3389/fmicb.2014.00508. PubMed PMID: 25352835; PubMed Central PMCID: PMCPMC4195358. Epub 2014/10/30.
    1. Marcelino SL, Gaetti-Jardim E Jr., Nakano V, Canônico LA, Nunes FD, Lotufo RF. Presence of periodontopathic bacteria in coronary arteries from patients with chronic periodontitis. Anaerobe. 2010;16(6):629–632. PubMed PMID: 20816998. doi:10.1016/j.anaerobe.2010.08.007. Epub 2010/09/08.
    1. Fernandes CP, Oliveira FA, Silva PG, Alves AP, Mota MR, Montenegro RC. Molecular analysis of oral bacteria in dental biofilm and atherosclerotic plaques of patients with vascular disease. Int J Cardiol. 2014;174(3):710–712. PubMed PMID: 24820755. doi:10.1016/j.ijcard.2014.04.201. Epub 2014/05/14.
    1. Cavrini F, Sambri V, Moter A, Servidio D, Marangoni A, Montebugnoli L. Molecular detection of Treponema denticola and Porphyromonas gingivalis in carotid and aortic atheromatous plaques by FISH: report of two cases. J Med Microbiol. 2005;54(Pt 1):93–96. PubMed PMID: 15591262. doi:10.1099/jmm.0.45845-0. Epub 2004/12/14.
    1. Okuda K, Ishihara K, Nakagawa T, Hirayama A, Inayama Y, Okuda K. Detection of Treponema denticola in atherosclerotic lesions. J Clin Microbiol. 2001;39(3):1114–1117. PubMed PMID: 11230436; PubMed Central PMCID: PMCPMC87882. doi:10.1128/jcm.39.3.1114-1117.2001. Epub 2001/03/07.
    1. Aderem A. Phagocytosis and the inflammatory response. J Infect Dis. 2003;187(Suppl s2):S340–5. PubMed PMID: 12792849. doi:10.1086/374747. Epub 2003/06/07.
    1. Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801. PubMed PMID: 16497588. doi:10.1016/j.cell.2006.02.015. Epub 2006/02/25.
    1. Areschoug T, Gordon S. Pattern recognition receptors and their role in innate immunity: focus on microbial protein ligands. Contrib Microbiol. 2008;15:45–60. doi:10.1159/000135685. PubMed PMID: 18511855. Epub 2008/05/31.
    1. Karin M, Lawrence T, Nizet V. Innate immunity gone awry: linking microbial infections to chronic inflammation and cancer. Cell. 2006;124(4):823–835. PubMed PMID: 16497591. doi:10.1016/j.cell.2006.02.016. Epub 2006/02/25.
    1. Peiser L, Mukhopadhyay S, Gordon S. Scavenger receptors in innate immunity. Curr Opin Immunol. 2002;14(1):123–128. PubMed PMID: 11790542. doi:10.1016/s0952-7915(01)00307-7. Epub 2002/01/16.
    1. Glass CK, Witztum JL. Atherosclerosis. the road ahead. Cell. 2001;104(4):503–516. PubMed PMID: 11239408. doi:10.1016/s0092-8674(01)00238-0. Epub 2001/03/10.
    1. Schaefer AS, Richter GM, Groessner-Schreiber B, Noack B, Nothnagel M, El Mokhtari NE. Identification of a shared genetic susceptibility locus for coronary heart disease and periodontitis. PLoS Genet. 2009;5(2):e1000378. PubMed PMID: 19214202; PubMed Central PMCID: PMCPMC2632758. doi:10.1371/journal.pgen.1000378. Epub 2009/02/14.
    1. Schaefer AS, Bochenek G, Jochens A, Ellinghaus D, Dommisch H, Güzeldemir-Akçakanat E. Genetic evidence for PLASMINOGEN as a shared genetic risk factor of coronary artery disease and periodontitis. Circ Cardiovasc Genet. 2015;8(1):159–167. PubMed PMID: 25466412. doi:10.1161/circgenetics.114.000554. Epub 2014/12/04.
    1. Li X, Tse HF, Jin LJ. Novel endothelial biomarkers: implications for periodontal disease and CVD. J Dent Res. 2011;90(9):1062–1069. PubMed PMID: 21321068. doi:10.1177/0022034510397194. Epub 2011/02/16.
    1. Lockhart PB, Bolger AF, Papapanou PN, Osinbowale O, Trevisan M, Levison ME. Periodontal disease and atherosclerotic vascular disease: does the evidence support an independent association?: a scientific statement from the American Heart Association. Circulation. 2012;125(20):2520–2544. PubMed PMID: 22514251. doi:10.1161/CIR.0b013e31825719f3. Epub 2012/04/20.
    1. Park SY, Kim SH, Kang SH, Yoon CH, Lee HJ, Yun PY. Improved oral hygiene care attenuates the cardiovascular risk of oral health disease: a population-based study from Korea. Eur Heart J. 2019;40(14):1138–1145. PubMed PMID: 30561631. doi:10.1093/eurheartj/ehy836. Epub 2018/12/19.
    1. Bordenstein SR, Theis KR. Host biology in light of the microbiome: ten principles of holobionts and hologenomes. PLoS Biol. 2015;13(8):e1002226. PubMed PMID: 26284777; PubMed Central PMCID: PMCPMC4540581. doi:10.1371/journal.pbio.1002226. Epub 2015/08/19.
    1. Blekhman R, Goodrich JK, Huang K, Sun Q, Bukowski R, Bell JT. Host genetic variation impacts microbiome composition across human body sites. Genome Biol. 2015;16(1):191. PubMed PMID: 26374288; PubMed Central PMCID: PMCPMC4570153. doi:10.1186/s13059-015-0759-1. Epub 2015/09/17.
    1. Muegge BD, Kuczynski J, Knights D, Clemente JC, González A, Fontana L. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans. Science. 2011;332(6032):970–974. PubMed PMID: 21596990; PubMed Central PMCID: PMCPMC3303602. doi:10.1126/science.1198719. Epub 2011/05/21.
    1. Moeller AH, Foerster S, Wilson ML, Pusey AE, Hahn BH, Ochman H. Social behavior shapes the chimpanzee pan-microbiome. Sci Adv. 2016;2(1):e1500997. PubMed PMID: 26824072; PubMed Central PMCID: PMCPMC4730854. doi:10.1126/sciadv.1500997. Epub 2016/01/30.
    1. Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC, Storer CE. Virus-plus-susceptibility gene interaction determines Crohn’s disease gene Atg16L1 phenotypes in intestine. Cell. 2010;141(7):1135–1145. PubMed PMID: 20602997; PubMed Central PMCID: PMCPMC2908380. doi:10.1016/j.cell.2010.05.009. Epub 2010/07/07.
    1. Hehemann JH, Correc G, Barbeyron T, Helbert W, Czjzek M, Michel G. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota. Nature. 2010;464(7290):908–912. PubMed PMID: 20376150. doi:10.1038/nature08937. Epub 2010/04/09.
    1. Szilagyi A. Adaptation to lactose in lactase non persistent people: effects on intolerance and the relationship between dairy food consumption and evaluation of diseases. Nutrients. 2015;7(8):6751–6779. PubMed PMID: 26287234; PubMed Central PMCID: PMCPMC4555148. doi:10.3390/nu7085309. Epub 2015/08/20.
    1. Ze X, Duncan SH, Louis P, Flint HJ. Ruminococcus bromii is a keystone species for the degradation of resistant starch in the human colon. ISME J. 2012;6(8):1535–1543. PubMed PMID: 22343308; PubMed Central PMCID: PMCPMC3400402. doi:10.1038/ismej.2012.4. Epub 2012/02/22.
    1. Suzuki TA, Ley RE. The role of the microbiota in human genetic adaptation. Science. 2020;370(6521). Epub 2020/12/05. doi: 10.1126/science.aaz6827. PubMed PMID: 33273073.
    1. Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E. Non-lethal inhibition of gut microbial Trimethylamine production for the treatment of Atherosclerosis. Cell. 2015;163(7):1585–1595. PubMed PMID: 26687352; PubMed Central PMCID: PMCPMC4871610. doi:10.1016/j.cell.2015.11.055. Epub 2015/12/22.
    1. Tang WHW, Li DY, Hazen SL. Dietary metabolism, the gut microbiome, and heart failure. Nat Rev Cardiol. 2019;16(3):137–154. PubMed PMID: 30410105; PubMed Central PMCID: PMCPMC6377322. doi:10.1038/s41569-018-0108-7. Epub 2018/11/10.
    1. Eblimit Z, Thevananther S, Karpen SJ, Taegtmeyer H, Moore DD, Adorini L. TGR5 activation induces cytoprotective changes in the heart and improves myocardial adaptability to physiologic, inotropic, and pressure-induced stress in mice. Cardiovasc Ther. 2018;36(5):e12462. PubMed PMID: 30070769; PubMed Central PMCID: PMCPMC6800140. doi:10.1111/1755-5922.12462. Epub 2018/08/03.
    1. Durack J, Lynch SV. The gut microbiome: relationships with disease and opportunities for therapy. J Exp Med. 2019;216(1):20–40. PubMed PMID: 30322864; PubMed Central PMCID: PMCPMC6314516. doi:10.1084/jem.20180448. Epub 2018/10/17.
    1. De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L. High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut. 2016;65(11):1812–1821. PubMed PMID: 26416813. doi:10.1136/gutjnl-2015-309957. Epub 2015/09/30.
    1. Marques FZ, Nelson E, Chu PY, Horlock D, Fiedler A, Ziemann M. High-fiber diet and Acetate supplementation change the gut microbiota and prevent the development of hypertension and heart failure in hypertensive mice. Circulation. 2017;135(10):964–977. PubMed PMID: 27927713. doi:10.1161/circulationaha.116.024545. Epub 2016/12/09.
    1. Human Microbiome Project Consortium. Structure, function and diversity of the healthy human microbiome. Nature. 2012;486(7402):207–214. Epub 2012/06/16. doi: 10.1038/nature11234. PubMed PMID: 22699609; PubMed Central PMCID: PMCPMC3564958.
    1. Zeevi D, Korem T, Zmora N, Israeli D, Rothschild D, Weinberger A. Personalized nutrition by prediction of glycemic responses. Cell. 2015;163(5):1079–1094. PubMed PMID: 26590418. doi:10.1016/j.cell.2015.11.001. Epub 2015/11/23.
    1. Kolodziejczyk AA, Zheng D, Elinav E. Diet-microbiota interactions and personalized nutrition. Nat Rev Microbiol. 2019;17(12):742–753. PubMed PMID: 31541197. doi:10.1038/s41579-019-0256-8. Epub 2019/09/22.

Source: PubMed

3
Se inscrever