Eosinophils: changing perspectives in health and disease

Helene F Rosenberg, Kimberly D Dyer, Paul S Foster, Helene F Rosenberg, Kimberly D Dyer, Paul S Foster

Abstract

Eosinophils have been traditionally perceived as terminally differentiated cytotoxic effector cells. Recent studies have profoundly altered this simplistic view of eosinophils and their function. New insights into the molecular pathways that control the development, trafficking and degranulation of eosinophils have improved our understanding of the immunomodulatory functions of these cells and their roles in promoting homeostasis. Likewise, recent developments have generated a more sophisticated view of how eosinophils contribute to the pathogenesis of different diseases, including asthma and primary hypereosinophilic syndromes, and have also provided us with a more complete appreciation of the activities of these cells during parasitic infection.

Conflict of interest statement

The authors declare no competing financial interests.

Figures

Figure 1. The eosinophil.
Figure 1. The eosinophil.
a | Human eosinophils from peripheral blood stained with modified Giemsa exhibit characteristic bilobed nuclei and large red-stained cytoplasmic secretory granules. The cells with multilobed nuclei and without large granules are neutrophils. Original magnification, ×100. b | The image shows eosinophils and neutrophils isolated from the spleen of a Cd2-interleukin-5-transgenic mouse and stained with modified Giemsa. c | The image shows a transmission electron micrograph of a mouse eosinophil. Cytoplasmic secretory granules are indicated by the arrows; the central core of these granules contains cationic major basic protein, and their periphery contains the remaining major cationic proteins, cytokines, chemokines, growth factors and enzymes. Original magnification, ×6,000.
Figure 2. Cellular features of eosinophils.
Figure 2. Cellular features of eosinophils.
Eosinophils are equipped with features that promote interactions with the environment. In one such interaction, eosinophils release the contents of their specific granules in response to external stimuli. Some of these granule contents are released via membrane-bound vesicles known as eosinophil sombrero vesicles. Eosinophils also synthesize lipid mediators for release in cytoplasmic lipid bodies and store Charcot–Leyden crystal protein (CLC) in primary granules. Although not highly biosynthetic, mature eosinophils have minimal numbers of mitochondria and a limited endoplasmic reticulum (ER) and Golgi, as well as a nucleus. Eosinophils express a wide variety of receptors that modulate adhesion, growth, survival, activation, migration and pattern recognition. Mouse eosinophils do not express CLC or Fcε receptor 1 (FcεR1) and have divergent homologues of sialic acid-binding immunoglobulin-like lectin 8 (SIGLEC-8) and the granule ribonucleases eosinophil-derived neurotoxin (EDN) and eosinophil cationic protein (ECP). APRIL, a proliferation-inducing ligand; CCL, CC-chemokine ligand; CCR, CC-chemokine receptor; CXCL, CXC-chemokine ligand; CXCR, CXC-chemokine receptor; EGF, epidermal growth factor; EPX, eosinophil peroxidase; FPR1, formyl peptide receptor 1; GM-CSF, granulocyte–macrophage colony-stimulating factor; IFN, interferon; IL, interleukin; MBP, major basic protein; NGF, nerve growth factor; NOD, nucleotide-binding oligomerization domain protein; PAR, proteinase-activated receptor; PDGF, platelet-derived growth factor; PIRB, paired immunoglobulin-like receptor B; PPARγ, peroxisome proliferator-activated receptor-γ; PRR, pattern-recognition receptor; PSGL1, P-selectin glycoprotein ligand 1; RAGE, receptor for advanced glycation end-products; RIG-I, retinoic acid-inducible gene I; TGF, transforming growth factor; TLR, Toll-like receptor; TNF, tumour necrosis factor; SCF, stem cell factor; VEGF, vascular endothelial growth factor.
Figure 3. Eosinophils modulate the function of…
Figure 3. Eosinophils modulate the function of other leukocytes.
Eosinophils not only respond to signals, but also have a definitive impact on the actions of other leukocytes. Eosinophils can express MHC class II and co-stimulatory molecules, process antigens and stimulate T cells to proliferate and produce cytokines in an antigen-specific manner. Furthermore, acting together with dendritic cells (DCs), eosinophils regulate the recruitment of T helper 2 (TH2) cells in response to allergen sensitization and challenge by producing CC-chemokine ligand 17 (CCL17) and CCL22 (Refs 40, 41). Eosinophils also prime B cells for antigen-specific IgM production and sustain long-lived plasma cells in mouse bone marrow via the production of a proliferation-inducing ligand (APRIL) and interleukin-6 (IL-6),. Eosinophils that are stimulated by CpG DNA induce DC maturation51. Indeed, the eosinophil granule protein eosinophil-derived neurotoxin (EDN) promotes the maturation and activation of DCs,. Major basic protein (MBP) released from eosinophils activates neutrophils, causing them to release superoxide and IL-8 and increase their expression of the cell-surface integrin complement receptor 3 (CR3). Eosinophils also maintain alternatively activated macrophages in adipose tissue by producing IL-4 and IL-13 (Ref. 50). The eosinophil granule proteins MBP, eosinophil cationic protein (ECP) and eosinophil peroxidase (EPX) activate mast cells, resulting in the release of histamine. Likewise, eosinophil-derived nerve growth factor (NGF) prolongs mast cell survival.

References

    1. Steinbach KH, et al. Estimation of kinetic parameters of neutrophilic, eosinophilic, and basophilic granulocytes in human blood. Blut. 1979;39:27–38. doi: 10.1007/BF01008072.
    1. Lamousé-Smith ES, Furuta GT. Eosinophils in the gastrointestinal tract. Curr. Gastroenterol. Rep. 2006;8:390–395. doi: 10.1007/s11894-006-0024-6.
    1. Hogan SP, et al. Eosinophils: biological properties and role in health and disease. Clin. Exp. Allergy. 2008;38:709–750. doi: 10.1111/j.1365-2222.2008.02958.x.
    1. Blanchard C, Rothenberg ME. Biology of the eosinophil. Adv. Immunol. 2009;101:81–121. doi: 10.1016/S0065-2776(08)01003-1.
    1. Foster PS, et al. Elemental signals regulating eosinophil accumulation in the lung. Immunol. Rev. 2001;179:173–181. doi: 10.1034/j.1600-065X.2001.790117.x.
    1. Fabre V, et al. Eosinophil deficiency compromises parasite survival in chronic nematode infection. J. Immunol. 2009;182:1577–1583. doi: 10.4049/jimmunol.182.3.1577.
    1. Gebreselassie NG, et al. Eosinophils preserve parasitic nematode larvae by regulating local immunity. J. Immunol. 2012;188:417–425. doi: 10.4049/jimmunol.1101980.
    1. Wegmann M. Targeting eosinophil biology in asthma therapy. Am. J. Respir. Cell. Mol. Biol. 2011;45:667–674. doi: 10.1165/rcmb.2011-0013TR.
    1. Jacobsen EA, Ochkur SI, Lee NA, Lee JJ. Eosinophils and asthma. Curr. Allergy Asthma Rep. 2007;7:18–26. doi: 10.1007/s11882-007-0026-y.
    1. Yu C, et al. Targeted deletion of a high-affinity GATA-binding site in the GATA-1 promoter leads to selective loss of the eosinophil lineage in vivo. J. Exp. Med. 2002;195:1387–1395. doi: 10.1084/jem.20020656.
    1. Lee JJ, et al. Defining a link with asthma in mice congenitally deficient in eosinophils. Science. 2004;305:1773–1776. doi: 10.1126/science.1099472.
    1. Lee JJ, et al. Human versus mouse eosinophils: “that which we call an eosinophil, by any other name would stain as red”. J. Allergy Clin. Immunol. 2012;130:572–584. doi: 10.1016/j.jaci.2012.07.025.
    1. Shamri R, Xenakis JJ, Spencer LA. Eosinophils in innate immunity: an evolving story. Cell Tissue Res. 2011;343:57–83. doi: 10.1007/s00441-010-1049-6.
    1. Mould A, Matthaei K, Young I, Foster P. Relationship between interleukin-5 and eotaxin in regulating blood and tissue eosinophilia in mice. J. Clin. Invest. 1997;99:1064–1071. doi: 10.1172/JCI119234.
    1. Collins PD, Marleau S, Griffiths-Johnson DA, Jose PJ, Williams TJ. Cooperation between interleukin-5 and the chemokine eotaxin to induce eosinophil accumulation in vivo. J. Exp. Med. 1995;182:1169–1174. doi: 10.1084/jem.182.4.1169.
    1. Wong CK, Hu S, Cheung PF, Lam CW. Thymic stromal lymphopoietin induces chemotactic and prosurvival effects in eosinophils: implications in allergic inflammation. Am. J. Respir. Cell. Mol. Biol. 2010;43:305–315. doi: 10.1165/rcmb.2009-0168OC.
    1. Moro K, et al. Innate production of TH2 cytokines by adipose tissue-associated c- Kit+Sca-1+ lymphoid cells. Nature. 2010;463:540–544.
    1. Neill DR, et al. Nuocytes represent a new innate effector leukocyte that mediates type-2 immunity. Nature. 2010;464:1367–1370. doi: 10.1038/nature08900.
    1. Ikutani M, et al. Identification of innate IL-5-producing cells and their role in lung eosinophil regulation and antitumor immunity. J. Immunol. 2012;188:703–713. doi: 10.4049/jimmunol.1101270.
    1. Corrigan CJ, et al. Allergen-induced expression of IL-25 and IL-25 receptor in atopic asthmatic airways and late-phase cutaneous responses. J. Allergy Clin. Immunol. 2011;128:116–124. doi: 10.1016/j.jaci.2011.03.043.
    1. Terrier B, et al. Interleukin-25: a cytokine linking eosinophils and adaptive immunity in Churg-Strauss syndrome. Blood. 2010;116:4523–4531. doi: 10.1182/blood-2010-02-267542.
    1. Mirchandani AS, Salmond RJ, Liew FY. Interleukin-33 and the function of innate lymphoid cells. Trends Immunol. 2012;33:389–396. doi: 10.1016/j.it.2012.04.005.
    1. Cherry WB, Yoon J, Bartemes KR, Iijima K, Kita H. A novel IL-4 family cytokine, IL-33, potently activates human eosinophils. J. Allergy Clin. Immunol. 2008;121:1484–1490. doi: 10.1016/j.jaci.2008.04.005.
    1. Matsuba-Kitamura S, et al. Contribution of IL-33 to induction and augmentation of experimental allergic conjunctivitis. Int. Immunol. 2010;22:479–489. doi: 10.1093/intimm/dxq035.
    1. Mjösberg JM, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nature Immunol. 2011;12:1055–1062. doi: 10.1038/ni.2104.
    1. Li Y, et al. Silencing IL-23 expression by small hairpin RNA protects against asthma in mice. Exp. Mol. Med. 2011;43:197–204. doi: 10.3858/emm.2011.43.4.024.
    1. Peng J, Yang XO, Chang SH, Yang J, Dong C. IL-23 signaling enhances Th2 polarization and regulates allergic airway inflammation. Cell Res. 2010;20:62–71. doi: 10.1038/cr.2009.128.
    1. Szymczak WA, Sellers RS, Pirofski LA. IL-23 dampens theallergic response to Cryptococcus neoformans through IL-17-independent and -dependent mechanisms. Am. J. Pathol. 2012;180:1547–1559. doi: 10.1016/j.ajpath.2011.12.038.
    1. Lotfi R, Lee JJ, Lotze MT. Eosinophilic granulocytes and damage-associated molecular pattern molecules (DAMPs): role in the inflammatory response within tumors. J. Immunother. 2007;30:16–28. doi: 10.1097/01.cji.0000211324.53396.f6.
    1. Dvorak AM, Estrella P, Ishizaka T. Vesicular transport of peroxidase in human eosinophilic myelocytes. Clin. Exp. Allergy. 1994;24:10–18. doi: 10.1111/j.1365-2222.1994.tb00910.x.
    1. Melo RC, et al. Human eosinophils secrete preformed, granule-stored interleukin-4 through distinct vesicular compartments. Traffic. 2005;6:1047–1057. doi: 10.1111/j.1600-0854.2005.00344.x.
    1. Spencer LA, et al. Cytokine receptor-mediated trafficking of preformed IL-4 in eosinophils identifies an innate immune mechanism of cytokine secretion. Proc. Natl Acad. Sci. USA. 2006;103:3333–3338. doi: 10.1073/pnas.0508946103.
    1. Lacy P, Stow JL. Cytokine release from innate immune cells: association with diverse membrane trafficking pathways. Blood. 2011;118:9–18. doi: 10.1182/blood-2010-08-265892.
    1. Neves JS, et al. Eosinophil granules function extracellularly as receptor-mediated secretory organelles. Proc. Natl Acad. Sci. USA. 2008;105:18478–18483. doi: 10.1073/pnas.0804547105.
    1. Neves JS, Weller PF. Functional extracellular eosinophil granules: novel implications in eosinophil immunobiology. Curr. Opin. Immunol. 2009;21:694–699. doi: 10.1016/j.coi.2009.07.011.
    1. Walsh GM. Antagonism of eosinophil accumulation in asthma. Recent Pat. Inflamm. Allergy Drug Discov. 2010;4:210–213. doi: 10.2174/187221310793564263.
    1. Mackenzie J, Mattes J, Dent L, Foster P. Eosinophils promote allergic disease of the lung by regulating CD4+ Th2 lymphocyte function. J. Immunol. 2001;167:3146–3155. doi: 10.4049/jimmunol.167.6.3146.
    1. Mattes J, et al. Intrinsic defect in T cell production of interleukin (IL)-13 in the absence of both IL-5 and eotaxin precludes the development of eosinophilia and airways hyperreactivity in experimental asthma. J. Exp. Med. 2002;195:1433–1444. doi: 10.1084/jem.20020009.
    1. Wang HB, Ghiran I, Matthaei K, Weller PF. Airway eosinophils: allergic inflammation recruited professional antigen-presenting cells. J. Immunol. 2007;179:7585–7592. doi: 10.4049/jimmunol.179.11.7585.
    1. Jacobsen EA, et al. Allergic pulmonary inflammation in mice is dependent on eosinophil-induced recruitment of effector T cells. J. Exp. Med. 2008;205:699–710. doi: 10.1084/jem.20071840.
    1. Jacobsen EA, Zellner KR, Colbert D, Lee NA, Lee JJ. Eosinophils regulate dendritic cells and Th2 pulmonary immune responses following allergen provocation. J. Immunol. 2011;87:6059–6068. doi: 10.4049/jimmunol.1102299.
    1. Spencer LA, et al. Human eosinophils constitutively express multiple Th1,Th2 and immunoregulatory cytokines that are secreted rapidly and differentially. J. Leukoc. Biol. 2009;85:117–123. doi: 10.1189/jlb.0108058.
    1. Wang HB, Weller PF. Pivotal advance: eosinophils mediate early alum adjuvant-elicited B cell priming and IgM production. J. Leukoc. Biol. 2008;83:817–821. doi: 10.1189/jlb.0607392.
    1. Chu VT, et al. Eosinophils are required for the maintenance of plasma cells in the bone marrow. Nature Immunol. 2011;12:151–159. doi: 10.1038/ni.1981.
    1. Chu VT, Berek C. Immunization induces activation of bone marrow eosinophil required for plasma cell survival. Eur. J. Immunol. 2012;42:130–137. doi: 10.1002/eji.201141953.
    1. Voehringer D, van Rooijen N, Locksley RM. Eosinophils develop in distinct stages and are recruited to peripheral sites by alternatively activated macrophages. J. Leukoc. Biol. 2007;81:1434–1444. doi: 10.1189/jlb.1106686.
    1. Dasgupta P, Keegan AD. Contribution of alternatively activated macrophages to allergic lung inflammation: a tale of mice and men. J. Innate Immun. 2012;4:478–488. doi: 10.1159/000336025.
    1. Falcone FH, et al. Brugia malayi homolog of macrophage migration inhibitory factor reveals an important link between macrophages and eosinophil recruitment during nematode infection. J. Immunol. 2001;167:5348–5354. doi: 10.4049/jimmunol.167.9.5348.
    1. Webb D, et al. Expression of the Ym2 lectin-binding protein is dependent on interleukin (IL)-4 and IL-13 signal transduction: identification of a novel allergy-associated protein. J. Biol. Chem. 2001;276:41969–41976. doi: 10.1074/jbc.M106223200.
    1. Wu D, et al. Eosinophils sustain adipose alternatively activated macrophages associated with glucose homeostasis. Science. 2011;332:243–247. doi: 10.1126/science.1201475.
    1. Lotfi R, Lotze M. Eosinophils induce DC maturation, regulating immunity. J. Leukoc. Biol. 2008;83:456–460. doi: 10.1189/jlb.0607366.
    1. Yang D, et al. Eosinophil-derived neurotoxin (EDN), an antimicrobial protein with chemotactic activities for dendritic cells. Blood. 2003;102:3396–3403. doi: 10.1182/blood-2003-01-0151.
    1. Yang D, et al. Eosinophil-derived neurotoxin acts as an alarmin to activate the TLR2–MyD88 signal pathway in dendritic cells and enhances Th2 immune responses. J. Exp. Med. 2008;205:79–90. doi: 10.1084/jem.20062027.
    1. Elishmereni M, et al. Physical interactions between mast cells and eosinophils: a novel mechanism enhancing eosinophil survival in vitro. Allergy. 2011;66:376–385. doi: 10.1111/j.1398-9995.2010.02494.x.
    1. Pearce EJ, MacDonald AS. The immunobiology of schistosomiasis. Nature Rev. Immunol. 2002;2:499–511. doi: 10.1038/nri843.
    1. Sher A, Coffman RL, Hieny S, Cheever AW. Ablation of eosinophil and IgE responses with anti-IL-5 or anti-IL-4 antibodies fails to affect immunity against Schistosoma mansoni in the mouse. J. Immunol. 1990;145:3911–3916.
    1. Swartz JM, et al. Schistosoma mansoni infection in eosinophil lineage-ablated mice. Blood. 2006;108:2420–2427. doi: 10.1182/blood-2006-04-015933.
    1. Sasaki O, Sugaya H, Ishida K, Yoshimura K. Ablation of eosinophils with anti-IL-5 antibody enhances the survival of intracranial worms of Angiostrongylus cantonensis in the mouse. Parasite Immunol. 1993;15:349–454. doi: 10.1111/j.1365-3024.1993.tb00619.x.
    1. Rotman HL, et al. Strongyloides stercoralis: eosinophil-dependent immune-mediated killing of third stage larvae in BALB/cByJ mice. Exp. Parasitol. 1996;82:267–278. doi: 10.1006/expr.1996.0034.
    1. Eriksson J, et al. The 434(G>C) polymorphism within the coding sequence of eosinophil cationic protein (ECP) correlates with the natural course of Schistosoma mansoni infection. Int. J. Parasitol. 2007;37:1359–1366. doi: 10.1016/j.ijpara.2007.04.001.
    1. Adu B, et al. Polymorphisms in the RNASE3 gene are associated with susceptibility to cerebral malaria in Ghanaian children. PLoS ONE. 2011;6:e29465. doi: 10.1371/journal.pone.0029465.
    1. Lehrer RI, et al. Antibacterial properties of eosinophil major basic protein and eosinophil cationic protein. J. Immunol. 1989;142:4428–4434.
    1. Rosenberg HF. Recombinant human eosinophil cationic protein: ribonuclease activity is not essential for cytotoxicity. J. Biol. Chem. 1995;270:7876–7881. doi: 10.1074/jbc.270.14.7876.
    1. Torrent M, Navarro S, Moussaoui M, Boix E. Eosinophil cationic protein high-affinity binding to bacteria-wall lipopolysaccharides and peptidoglycans. Biochemistry. 2008;47:3544–3555. doi: 10.1021/bi702065b.
    1. Yousefi S, et al. Catapult-like release of mitochondrial DNA by eosinophils contributes to antibacterial defense. Nature Med. 2008;14:949–953. doi: 10.1038/nm.1855.
    1. Nizet V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J. Mol. Med. 2009;87:775–783. doi: 10.1007/s00109-009-0481-0.
    1. Linch SN, et al. Mouse eosinophils possess potent antibacterial properties in vivo. Infect. Immun. 2009;77:4976–4982. doi: 10.1128/IAI.00306-09.
    1. Linch SN, et al. IL-5 is protective during sepsis in an eosinophil-independent manner. Am. J. Respir. Crit. Care Med. 2012;186:246–254. doi: 10.1164/rccm.201201-0134OC.
    1. Huang J, et al. The effects of probiotics supplementation timing on an ovalbumin-sensitized rat model. FEMS Immunol. Med. Microbiol. 2010;60:132–141. doi: 10.1111/j.1574-695X.2010.00727.x.
    1. Yu J, et al. The effects of Lactobacillus rhamnosus on the prevention of asthma in a murine model. Allergy Asthma Immunol. Res. 2010;2:199–205. doi: 10.4168/aair.2010.2.3.199.
    1. Rose MA, Schubert R, Schulze J, Zielen S. Follow-up of probiotic Lactobacillus GG effects on allergic sensitization and asthma in infants at risk. Clin. Exp. Allergy. 2011;41:1819–1821. doi: 10.1111/j.1365-2222.2011.03876.x.
    1. Herbst T, et al. Dysregulation of allergic airway inflammation in the absence of microbial colonization. Am. J. Respir. Crit. Care Med. 2011;184:198–205. doi: 10.1164/rccm.201010-1574OC.
    1. Bisgaard H, et al. Reduced diversity of the intestinal microbiota during infancy is associated with increased risk of allergic disease at school age. J. Allergy Clin. Immunol. 2011;128:646–652. doi: 10.1016/j.jaci.2011.04.060.
    1. Domachowske JB, Dyer KD, Bonville CA, Rosenberg HF. Recombinant human eosinophil-derived neurotoxin/RNase 2 functions as an effective antiviral agent against respiratory syncytial virus. J. Infect. Dis. 1998;177:1458–1464. doi: 10.1086/515322.
    1. Adamko DJ, Yost BL, Gleich GJ, Fryer AD, Jacoby DB. Ovalbumin sensitization changes the inflammatory response to subsequent parainfluenza infection. Eosinophils mediate airway hyperresponsiveness, M2 muscarinic receptor dysfunction, and antiviral effects. J. Exp. Med. 1999;190:1465–1478. doi: 10.1084/jem.190.10.1465.
    1. Phipps S, et al. Eosinophils contribute to innate antiviral immunity and promote clearance of respiratory syncytial virus. Blood. 2007;110:1578–1586. doi: 10.1182/blood-2007-01-071340.
    1. Davoine F, et al. Virus-induced eosinophil mediator release requires antigen-presenting and CD4+ T cells. J. Allergy Clin. Immunol. 2008;122:69–77. doi: 10.1016/j.jaci.2008.03.028.
    1. Dyer KD, Percopo CM, Fischer ER, Gabryszewski SJ, Rosenberg HF. Pneumoviruses infect eosinophils and elicit MyD88-dependent release of chemoattractant cytokines and interleukin-6. Blood. 2009;114:2649–2656. doi: 10.1182/blood-2009-01-199497.
    1. Skiest DJ, Keiser P. Clinical significance of eosinophilia in HIV-infected individuals. Am. J. Med. 1997;102:449–453. doi: 10.1016/S0002-9343(97)00048-X.
    1. Manetti R, et al. CD30 expression by CD8+ T cells producting type 2 helper cytokines. Evidence for large numbers of CD8+CD30+ T cell clones in human immunodeficiency virus infection. J. Exp. Med. 1994;180:2407–2411. doi: 10.1084/jem.180.6.2407.
    1. Empson M, Bishop GA, Nightingale B, Garsia R. Atopy, anergic status, and cytokine expression in HIV-infected subjects. J. Allergy Clin. Immunol. 1999;103:833–842. doi: 10.1016/S0091-6749(99)70427-6.
    1. Rugeles MT, et al. Ribonuclease is partly responsible for the HIV-1 inhibitory effect activated by HLA alloantigen recognition. AIDS. 2003;17:481–486. doi: 10.1097/00002030-200303070-00002.
    1. Bochner BS, et al. Workshop report from the National Institutes of Health Taskforce on the Research Needs of Eosinophil-Associated Diseases (TREAD) J. Allergy Clin. Immunol. 2012;130:587–596. doi: 10.1016/j.jaci.2012.07.024.
    1. Bochner BS, Gleich GJ. What targeting eosinophils has taught us about their role in diseases. J. Allergy Clin. Immunol. 2010;126:16–25. doi: 10.1016/j.jaci.2010.02.026.
    1. Foster PS, Rosenberg HF, Asquith KL, Kumar RK. Targeting eosinophils in asthma. Curr. Mol. Med. 2008;8:585–590. doi: 10.2174/156652408785748013.
    1. Flood-Page P, et al. Anti-IL-5 treatment reduces deposition of ECM proteins in the bronchial subepithelial basement membrane of mild atopic asthmatics. J. Clin. Invest. 2003;112:1029–1036. doi: 10.1172/JCI17974.
    1. Menzies-Gow A, et al. Anti-IL-5 (mepolizumab) therapy induces bone marrow eosinophil maturational arrest and decreases eosinophil progenitors in the bronchial mucosa of atopic asthmatics. J. Allergy Clin. Immunol. 2003;111:714–719. doi: 10.1067/mai.2003.1382.
    1. Leckie MJ, et al. Effects of an interleukin-5 blocking monoclonal antibody on eosinophils, airway hyper-responsiveness, and the late asthmatic response. Lancet. 2000;356:2144–2148. doi: 10.1016/S0140-6736(00)03496-6.
    1. Flood-Page P, et al. A study to evaluate safety and efficacy of mepolizumab in patients with moderate persistent asthma. Am. J. Respir. Crit. Care Med. 2007;176:1062–1071. doi: 10.1164/rccm.200701-085OC.
    1. Gibson PG. Inflammatory phenotypes in adult asthma: clinical applications. Clin. Respir. J. 2009;3:198–206. doi: 10.1111/j.1752-699X.2009.00162.x.
    1. Anderson GP. Endotyping asthma: new insights into key pathogenic mechanisms in a complex, heterogeneous disease. Lancet. 2008;372:1107–1109. doi: 10.1016/S0140-6736(08)61452-X.
    1. Nair P, et al. Mepolizumab for prednisone-dependent asthma with sputum eosinophilia. N. Engl. J. Med. 2009;360:985–993. doi: 10.1056/NEJMoa0805435.
    1. Haldar P, et al. Mepolizumab and exacerbations of refractory eosinophilic asthma. N. Engl. J. Med. 2009;360:973–984. doi: 10.1056/NEJMoa0808991.
    1. Castro M, et al. Reslizumab for poorly controlled, eosinophilic asthma: a randomized, placebo-controlled study. Am. J. Respir. Crit. Care Med. 2011;184:1125–1132. doi: 10.1164/rccm.201103-0396OC.
    1. Pavord ID, et al. Mepoliuzmab for severe eosinophilic asthma (DREAM): a multicenter, double-blind, placebo-controlled trial. Lancet. 2012;380:651–659. doi: 10.1016/S0140-6736(12)60988-X.
    1. Molfino NA, Gossage D, Kolbeck R, Parker JM, Geba GP. Molecular and clinical rationale for therapeutic targeting of interleukin-5 and its receptor. Clin. Exp. Allergy. 2012;42:712–737. doi: 10.1111/j.1365-2222.2011.03854.x.
    1. Corren J, et al. Lebrikizumab treatment in adults with asthma. N. Engl. J. Med. 2011;365:1088–1098. doi: 10.1056/NEJMoa1106469.
    1. Furuta GT. Eosinophilic esophagitis: update on clinicopathological manifestations and pathophysiology. Curr. Opin. Gastroenterol. 2011;27:383–388. doi: 10.1097/MOG.0b013e328347bb10.
    1. Mueller S, Aigner T, Neureiter D, Stolte M. Eosinophil infiltration and degranulation in oesophageal mucosa from adult patients with eosinophilic oesophagitis: a retrospective and comparative study on pathological biopsy. J. Clin. Pathol. 2006;59:1175–1180. doi: 10.1136/jcp.2005.031922.
    1. Blanchard C, et al. Eotaxin-3 and a uniquely conserved gene-expression profile in eosinophilic esophagitis. J. Clin. Invest. 2006;116:536–547. doi: 10.1172/JCI26679.
    1. Sherrill JD, et al. Variants of thymic stromal lymphopoietin and its receptor associate with eosinophilic esophagitis. J. Allergy Clin. Immunol. 2010;126:160–165. doi: 10.1016/j.jaci.2010.04.037.
    1. Mishra A, Schlotman J, Wang M, Rothenberg ME. Critical role for adaptive T cell immunity in experimental eosinophilic esophagitis in mice. J. Leukoc. Biol. 2007;81:916–924. doi: 10.1189/jlb.1106653.
    1. Rayapudi M, et al. Indoor insect allergens are potent inducers of experimental eosinophilic esophagitis in mice. J. Leukoc. Biol. 2010;88:337–346. doi: 10.1189/jlb.0110025.
    1. Rubinstein E, et al. Siglec-F inhibition reduces esophageal eosinophilia and angiogenesis in a mouse model of eosinophilic esophagitis. J. Pediatr. Gastroenterol. Nutr. 2011;53:409–416. doi: 10.1097/MPG.0b013e3182182ff8.
    1. Zuo L, et al. IL-13 induces esophageal remodeling and gene expression by an eosinophil-independent, IL-13Rα2-inhibited pathway. J. Immunol. 2010;185:660–669. doi: 10.4049/jimmunol.1000471.
    1. Lucendo AJ, De Rezende L, Comas C, Caballero T, Bellón T. Treatment with topical steroids downregulates IL-5, eotaxin-1/CCL11, and eotaxin-3/CCL26 gene expression in eosinophilic esophagitis. Am. J. Gastroenterol. 2008;103:2184–2193. doi: 10.1111/j.1572-0241.2008.01937.x.
    1. Straumann A, et al. Anti-interleukin-5 antibody treatment (mepolizumab) in active eosinophilic oesophagitis: a randomised, placebo-controlled, double-blind trial. Gut. 2010;59:21–30. doi: 10.1136/gut.2009.178558.
    1. Assa'ad AH, et al. An antibody against IL-5 reduces numbers of esophageal intraepithelial eosinophils in children with eosinophilic esophagitis. Gastroenterology. 2011;141:1593–1604. doi: 10.1053/j.gastro.2011.07.044.
    1. Conus S, Straumann A, Bettler E, Simon HU. Mepolizumab does not alter levels of eosinophils, T cells, and mast cells in the duodenal mucosa in eosinophilic esophagitis. J. Allergy Clin. Immunol. 2010;126:175–177. doi: 10.1016/j.jaci.2010.04.029.
    1. Varga J, Kahari VM. Eosinophilia–myalgia syndrome, eosinophilic fasciitis, and related fibrosing disorders. Curr. Opin. Rheumatol. 1997;9:562–570. doi: 10.1097/00002281-199711000-00013.
    1. Krahn M, et al. CAPN3 mutations in patients with idiopathic eosinophilic myositis. Ann. Neurol. 2006;59:905–911. doi: 10.1002/ana.20833.
    1. Kramerova I, Kudryashova E, Tidball JG, Spencer MJ. Null mutation of calpain 3 (p94) in mice causes abnormal sarcomere formation in vivo and in vitro. Hum. Mol. Genet. 2004;13:1373–1388. doi: 10.1093/hmg/ddh153.
    1. Cools J, et al. A tyrosine kinase created by fusion of the PDGFRA and FIP1L1 genes as a therapeutic target of imatinib in idiopathic hypereosinophilic syndrome. N. Engl. J. Med. 2003;348:1201–1214. doi: 10.1056/NEJMoa025217.
    1. Valent P, et al. Pathogenesis and classification of eosinophil disorders: a review of recent developments in the field. Expert Rev. Hematol. 2012;5:157–176. doi: 10.1586/ehm.11.81.
    1. Cools J, et al. The EOL-1 cell line as an in vitro model for the study of FIP1L1-PDGFRA-positive chronic eosinophilic leukemia. Blood. 2004;103:2802–2805. doi: 10.1182/blood-2003-07-2479.
    1. Stover EH, et al. Activation of FIP1L1–PDGFRα requires disruption of the juxtamembrane domain of PDGFRα and is FIP1L1-independent. Proc. Natl Acad. Sci. USA. 2006;103:8078–8083. doi: 10.1073/pnas.0601192103.
    1. Roufosse F, et al. Mepolizumab as a corticosteroid-sparing agent in lymphocytic variant hypereosinophilic syndrome. J. Allergy Clin. Immunol. 2010;126:828–835. doi: 10.1016/j.jaci.2010.06.049.
    1. Ogbogu PU, et al. Hypereosinophilic syndrome: a multicenter, retrospective analysis of clinical characteristics and response to therapy. J. Allergy Clin. Immunol. 2009;124:1319–1325. doi: 10.1016/j.jaci.2009.09.022.
    1. Valent P, et al. Contemporary consensus proposal on criteria and classification of eosinophilic disorders and related syndromes. J. Allergy Clin. Immunol. 2012;130:607–612. doi: 10.1016/j.jaci.2012.02.019.
    1. Cools J, et al. PKC412 overcomes resistance to imatinib in a murine model of FIP1L1–PDGFRα-induced myeloproliferative disease. Cancer Cell. 2003;3:459–469. doi: 10.1016/S1535-6108(03)00108-9.
    1. Yamada Y, Cancelas JA, Rothenberg ME. Murine model of hypereosinophilic syndromes/chronic eosinophilic leukemia. Int. Arch. Allergy Immunol. 2009;149(Suppl. 1):102–107. doi: 10.1159/000211381.
    1. Häcker H, Chi L, Rehg JE, Redecke V. NIK prevents the development of hypereosinophilic syndrome-like disease in mice independent of IKKα activation. J. Immunol. 2012;188:4602–4610. doi: 10.4049/jimmunol.1200021.
    1. Pease JE, Williams TJ. Eotaxin and asthma. Curr. Opin. Pharmacol. 2001;1:248–253. doi: 10.1016/S1471-4892(01)00044-3.
    1. Takatsu K, Kouro T, Nagai Y. Interleukin-5 in the link between innate and acquired immune response. Adv. Immunol. 2009;101:191–236. doi: 10.1016/S0065-2776(08)01006-7.
    1. Wechsler ME, et al. Novel targeted therapies for eosinophilic disorders. J. Allergy Clin. Immunol. 2012;130:563–571. doi: 10.1016/j.jaci.2012.07.027.
    1. Lloyd CM, Rankin SM. Chemokines in allergic airway disease. Curr. Opin. Pharmacol. 2003;3:443–448. doi: 10.1016/S1471-4892(03)00069-9.
    1. Bochner BS. Siglec-8 on human eosinophils and mast cells, and Siglec-F on murine eosinophils, are functionally related inhibitory receptors. Clin. Exp. Allergy. 2009;39:317–324. doi: 10.1111/j.1365-2222.2008.03173.x.
    1. Kiwamoto T, Kawasaki N, Paulson JC, Bochner BS. Siglec-8 as a drugable target to treat eosinophil and mast cell-associated conditions. Pharmacol. Ther. 2012;135:327–336. doi: 10.1016/j.pharmthera.2012.06.005.
    1. Hudson SA, Bovin NV, Schnaar RL, Crocker PR, Bochner BS. Eosinophil-selective binding and proapoptotic effect in vitro of a synthetic Siglec-8 ligand, polymeric 6′- sulfated sialyl Lewis X. J. Pharmacol. Exp. Ther. 2009;330:608–612. doi: 10.1124/jpet.109.152439.
    1. Kvarnhammar AM, Cardell LO. Pattern recognition receptors in human eosinophils. Immunology. 2012;136:11–20. doi: 10.1111/j.1365-2567.2012.03556.x.
    1. Cardell LO. Role of atopic status in Toll-like receptor (TLR)7- and TLR9-mediated activation of human eosinophils. J. Leukoc. Biol. 2009;85:719–727. doi: 10.1189/jlb.0808494.
    1. Ackerman SJ, Bochner BS. Mechanisms of eosinophilia in the pathogenesis of hypereosinophilic disorders. Immunol. Allergy Clin. North Am. 2007;27:357–375. doi: 10.1016/j.iac.2007.07.004.
    1. Bedi R, Du J, Sharma AK, Gomes I, Ackerman SJ. Human C/EBP-ε activator and repressor isoforms differentially reprogram myeloid lineage commitment and differentiation. Blood. 2009;113:317–327. doi: 10.1182/blood-2008-02-139741.
    1. Mori Y, et al. Identification of the human eosinophil lineage-committed progenitor: revision of phenotypic definition of the human common myeloid progenitor. J. Exp. Med. 2009;206:183–193. doi: 10.1084/jem.20081756.
    1. Iwasaki H, et al. Identification of eosinophil lineage-committed progenitors in the murine bone marrow. J. Exp. Med. 2005;201:1891–1897. doi: 10.1084/jem.20050548.
    1. Southam DS, et al. Increased eosinophil-lineage committed progenitors in the lung of allergen-challenged mice. J. Allergy Clin. Immunol. 2005;115:95–102. doi: 10.1016/j.jaci.2004.09.022.
    1. Busse WW, Ring J, Huss-Marp J, Kahn JE. A review of treatment with mepolizumab, an anti-IL-5 mAb, in hypereosinophilic syndromes and asthma. J. Allergy Clin. Immunol. 2010;125:803–813. doi: 10.1016/j.jaci.2009.11.048.
    1. Foster P, Hogan S, Ramsay A, Matthaei K, Young I. Interleukin-5 deficiency abolishes eosinophilia, airways hyperreactivity, and lung damage in a mouse asthma model. J. Exp. Med. 1996;183:195–201. doi: 10.1084/jem.183.1.195.
    1. Humbles AA, et al. A critical role for eosinophils in allergic airways remodeling. Science. 2004;305:1776–1779. doi: 10.1126/science.1100283.
    1. Walsh ER, et al. Strain-specific requirement for eosinophils in the recruitment of T cells to the lung during the development of allergic asthma. J. Exp. Med. 2008;205:1285–1292. doi: 10.1084/jem.20071836.
    1. Hertzman PA, et al. Association of the eosinophilia–myalgia syndrome with the ingestion of tryptophan. N. Engl. J. Med. 1990;322:869–873. doi: 10.1056/NEJM199003293221301.
    1. Mayeno AN, et al. Characterization of “peak E”, a novel amino acid associated with eosinophilia–myalgia syndrome. Science. 1990;250:1707–1708. doi: 10.1126/science.2270484.
    1. Smith MJ, Garrett RH. A heretofore undisclosed crux of eosinophilia–myalgia syndrome: compromised histamine degradation. Inflamm. Res. 2005;54:435–450. doi: 10.1007/s00011-005-1380-7.
    1. Okada S, et al. Immunogenetic risk and protective factors for development of L-tryptophan-associated eosinophilia–myalgia syndrome and associated symptoms. Arthritis Rheum. 2009;61:1305–1311. doi: 10.1002/art.24460.
    1. Allen JA. Post-epidemic eosinophilia–myalgia syndrome associated with L-tryptophan. Arthritis Rheum. 2011;63:3633–3639. doi: 10.1002/art.30514.
    1. Haskell MD, Moy JN, Gleich GJ, Thomas LL. Analysis of signaling events associated with activation of neutrophil superoxide anion production by eosinophil granule major basic protein. Blood. 1995;86:4627–4637.
    1. Munitz A, Levi-Schaffer F. Eosinophils: 'new' roles for 'old' cells. Allergy. 2004;59:268–275. doi: 10.1111/j.1398-9995.2003.00442.x.
    1. Dyer KD, Garcia-Crespo KE, Killoran KE, Rosenberg HF. Antigen profiles for the quantitative assessment of eosinophils in mouse tissues by flow cytometry. J. Immunol. Methods. 2011;369:91–97. doi: 10.1016/j.jim.2011.04.009.
    1. Meyerholz DK, Griffin MA, Castilow EM, Varga SM. Comparison of histochemical methods for murine eosinophil detection in an RSV vaccine-enhanced inflammation model. Toxicol. Pathol. 2009;37:249–255. doi: 10.1177/0192623308329342.
    1. Yamaguchi Y, et al. Models of lineage switching in hematopoietic development: a new myeloid-committed eosinophil cell line (YJ) demonstrates trilineage potential. Leukemia. 1998;12:1430–1439. doi: 10.1038/sj.leu.2401115.
    1. Histoshi Y, et al. Distribution of IL-5 receptor-positive B cells. Expression of IL-5 receptor on Ly-1(CD5)+ B cells. J. Immunol. 1990;144:4218–4225.
    1. Wise EL, Bonner KT, William TJ, Pease JE. A single nucleotide polymorphism in the CCR3 gene ablates receptor export to the plasma membrane. J. Allergy Clin. Immunol. 2010;126:150–157. doi: 10.1016/j.jaci.2010.04.015.
    1. Willetts L, et al. Immunodetection of occult eosinophils in lung tissue biopsies may help predict survival in acute lung injury. Respir. Res. 2011;12:116. doi: 10.1186/1465-9921-12-116.
    1. Macias MP, et al. Identification of a new murine eosinophil major basic protein (mMBP) gene: cloning and characterization of mMBP-2. J. Leukoc. Biol. 2000;67:567–576. doi: 10.1002/jlb.67.4.567.
    1. Ito W, et al. Hepatocyte growth factor suppresses production of reactive oxygen species and release of eosinophil-derived neurotoxin from human eosinophils. Int. Arch. Allergy Immunol. 2008;147:331–337. doi: 10.1159/000144041.
    1. Ochkur SI, et al. The development of a sensitive and specific ELISA for mouse eosinophil peroxidase: assessment of eosinophil degranulation ex vivo and in models of human disease. J. Immunol. Methods. 2012;375:138–147. doi: 10.1016/j.jim.2011.10.002.
    1. Blyth DI, Wharton TF, Pedrick MS, Savage TJ, Sanjar S. Airway subepithelial fibrosis in a murine model of atopic asthma: suppression by dexamethasone or anti-interleukin-5 antibody. Am. J. Respir. Cell. Mol. Biol. 2000;23:241–246. doi: 10.1165/ajrcmb.23.2.3999.
    1. Grimaldi JC, et al. Depletion of eosinophils in mice through the use of antibodies specific for C-C chemokine receptor 3 (CCR3) J. Leukoc. Biol. 1999;65:846–853. doi: 10.1002/jlb.65.6.846.
    1. Song DJ, et al. Anti-Siglec-F antibody reduces allergen-induced eosinophilic inflammation and airway remodeling. J. Immunol. 2009;183:5333–5341. doi: 10.4049/jimmunol.0801421.
    1. Dyer KD, et al. Functionally competent eosinophils differentiated ex vivo in high purity from normal mouse bone marrow. J. Immunol. 2008;181:4004–4009. doi: 10.4049/jimmunol.181.6.4004.
    1. Kopf M, et al. IL-5-deficient mice have a developmental defect in CD5+ B-1 cells and lack eosinophilia but have normal antibody and cytotoxic T cell responses. Immunity. 1996;4:15–24. doi: 10.1016/S1074-7613(00)80294-0.
    1. Yoshida T, et al. Defective B-1 cell development and impaired immunity against Angiostrongylus cantonensis in IL-5Rα-deficient mice. Immunity. 1996;4:483–494. doi: 10.1016/S1074-7613(00)80414-8.
    1. Dent LA, Strath M, Mellor AL, Sanderson CJ. Eosinophilia in transgenic mice expressing interleukin 5. J. Exp. Med. 1990;172:1425–1431. doi: 10.1084/jem.172.5.1425.
    1. Lee NA, et al. Expression of IL-5 in thymocytes/ T cells leads to the development of a massive eosinophilia, extramedullary eosinophilopoiesis, and unique histopathologies. J. Immunol. 1997;158:1332–1344.
    1. Rothenberg ME, MacLean JA, Pearlman E, Luster AD, Leder P. Targeted disruption of the chemokine eotaxin partially reduces antigen-induced tissue eosinophilia. J. Exp. Med. 1995;185:785–790. doi: 10.1084/jem.185.4.785.
    1. Pope SM, et al. Identification of a cooperative mechanism involving interleukin-13 and eotaxin-2 in experimental allergic lung inflammation. J. Biol. Chem. 2005;280:13952–13961. doi: 10.1074/jbc.M406037200.
    1. Pope SM, Zimmermann N, Stringer KF, Karow ML, Rothenberg ME. The eotaxin chemokines and CCR3 are fundamental regulators of allergen-induced pulmonary eosinophilia. J. Immunol. 2005;175:5341–5350. doi: 10.4049/jimmunol.175.8.5341.
    1. Ochkur SI, et al. Coexpression of IL-5 and eotaxin-2 in mice creates an eosinophil-dependent model of respiratory inflammation with characteristics of severe asthma. J. Immunol. 2007;178:7879–7889. doi: 10.4049/jimmunol.178.12.7879.
    1. Humbles AA, et al. The murine CCR3 receptor regulates both the role of eosinophils and mast cells in allergen-induced airway inflammation and hyperresponsiveness. Proc. Natl Acad. Sci. USA. 2002;99:1479–1484. doi: 10.1073/pnas.261462598.
    1. Zhang M, et al. Defining the in vivo function of Siglec-F, a CD33-related Siglec expressed on mouse eoisnophils. Blood. 2007;109:4280–4287. doi: 10.1182/blood-2006-08-039255.
    1. Leckie MJ. Anti-interleukin-5 monoclonal antibodies: preclinical and clinical evidence in asthma models. Am. J. Resp. Med. 2003;2:245–259. doi: 10.1007/BF03256653.

Source: PubMed

3
Se inscrever