Cholinergic modulation of cognition: insights from human pharmacological functional neuroimaging

Paul Bentley, Jon Driver, Raymond J Dolan, Paul Bentley, Jon Driver, Raymond J Dolan

Abstract

Evidence from lesion and cortical-slice studies implicate the neocortical cholinergic system in the modulation of sensory, attentional and memory processing. In this review we consider findings from sixty-three healthy human cholinergic functional neuroimaging studies that probe interactions of cholinergic drugs with brain activation profiles, and relate these to contemporary neurobiological models. Consistent patterns that emerge are: (1) the direction of cholinergic modulation of sensory cortex activations depends upon top-down influences; (2) cholinergic hyperstimulation reduces top-down selective modulation of sensory cortices; (3) cholinergic hyperstimulation interacts with task-specific frontoparietal activations according to one of several patterns, including: suppression of parietal-mediated reorienting; decreasing 'effort'-associated activations in prefrontal regions; and deactivation of a 'resting-state network' in medial cortex, with reciprocal recruitment of dorsolateral frontoparietal regions during performance-challenging conditions; (4) encoding-related activations in both neocortical and hippocampal regions are disrupted by cholinergic blockade, or enhanced with cholinergic stimulation, while the opposite profile is observed during retrieval; (5) many examples exist of an 'inverted-U shaped' pattern of cholinergic influences by which the direction of functional neural activation (and performance) depends upon both task (e.g. relative difficulty) and subject (e.g. age) factors. Overall, human cholinergic functional neuroimaging studies both corroborate and extend physiological accounts of cholinergic function arising from other experimental contexts, while providing mechanistic insights into cholinergic-acting drugs and their potential clinical applications.

Copyright © 2011 Elsevier Ltd. All rights reserved.

Figures

Fig. 1
Fig. 1
Model that links effects of acetylcholine on sensory cortex as appreciated from non-human electrophysiological studies, with effects observed in human functional imaging paradigms following systemic cholinergic stimulation or antagonism. (A) Schematic configuration of neocortical cholinergic system showing how sensory cortex receives cholinergic modulation both directly and indirectly via cholinergic modulation of frontoparietal processing. (B) Effects of ACh on the sensory cortical circuits are known for ex vivo slices, often with selective layer IV input activation, that are arguably most representative of passive-stimulation paradigms when top-down inputs are relatively low. In these situations, ACh application causes net neural suppression, that corresponds with findings from human functional imaging paradigms in which pro-cholinergic drugs result in sensory cortex suppression (or vice versa for scopolamine). (C) Task-driven selective activation of sensory or parietal cortex (e.g. as guided by the rule: X not Y) is found in non-human studies to be acetylcholine dependent. Correspondingly, cholinergic antagonists decrease task-relevant sensory cortex activations under attention-demanding conditions in human functional imaging studies. In Alzheimer's disease, where task-driven sensory cortex activations are abnormally low, and a cortical cholinergic deficit exists, administration of physostigmine increases selective sensory cortex activations. (D) Cholinergic hyperstimulation increases activity in both task-relevant and task-irrelevant units, in non-human electrophysiological recordings. If task-relevant units are already close to maximal firing, then this may lead to a greater increment in task-irrelevant units, explaining why in hypercholinergic states there may be an actual reduction in task-driven selective activation of sensory cortex, as seen in human functional imaging paradigms under ChEI or nicotine. Abbreviations: ACh, acetylcholine; Glu, glutamate; GABA, gamma-amino butyric acid; ChEI, cholinesterase inhibitor.
Fig. 2
Fig. 2
Explanations for modulations of frontoparietal activations in cholinergic-functional imaging studies. (A) Decreases in parietal activation during re-orienting trials secondary to pro-cholinergic drugs (especially nicotine) may occur indirectly because of a hypercholinergic-induced reduction in spatial biasing. (B) Decreases in frontoparietal activation secondary to pro-cholinergic drugs may also be secondary to direct effects of cholinergic stimulation in sensory cortical regions, which result in heightened efficiency, and thus less ongoing need for executive control. (C) Decreases in medial frontal–parietal activations secondary to pro-cholinergic drugs overlap with a recognised resting-state network, which together with drug-induced reciprocal increases in activity in dorsolateral regions, suggests a state change from internally focused feedback-predominant mode to externally directed feedforward mode. (D) Increases in frontoparietal activations secondary to pro-cholinergic drugs, specifically during demanding task conditions, and sometimes with performance improvement, suggest recruitment of additional executive-attentional processes. Note that thick arrows are intended to show possible order by which processes are modulated, and not anatomical connectivity.
Fig. 3
Fig. 3
Overview of memory-related processes modulated by cholinergic drugs as revealed by cholinergic-functional imaging studies, and relationship with theoretical models in which high ACh levels facilitate encoding while suppressing retrieval (Hasselmo and McGaughy, 2004) as well as potentiate top-down control of sensory processing (Sarter et al., 2006). (A) Sensory regions, especially fusiform cortex, show enhanced activations with pro-cholinergic drugs (and vice versa with anti-cholinergics) during attention-demanding periods, including during encoding phases of working memory tasks, which correlates with subsequent memory. Sensory regions also demonstrate cholinergic sensitivity in several memory-related processes elicitable by functional imaging – sustained-activity, repetition decreases, and conditioning-induced sensory remapping. (B) Medial temporal regions show enhanced activation with pro-cholinergic therapies during encoding, but suppression during retrieval (or vice versa for anti-cholinergic therapies) – this profile corresponding to the discussed computational model of memory function. (C) Prefrontal regions show a similar pattern of responses as medial temporal regions: anti-cholinergic therapies decreasing activations during encoding or working memory paradigms, but increasing or not modulating activations during retrieval (and vice versa for pro-cholinergic therapies except in the case of one working memory paradigm* that was interpreted as increased efficiency – see Fig. 2B).
Fig. 4
Fig. 4
Modulations of functional imaging activations by cholinergic drugs often correspond to an inverted-U shaped pattern, depending upon both relative task demands (A) and subject-specific factors (B). In many cases, there is also a concordant effect on performance, e.g. in Alzheimer's disease where physostigmine increases task-related activations, reaction time and memory, or in healthy subjects where scopolamine decreases the same three parameters.

References

    1. Acquas E., Wilson C., Fibiger H.C. Conditioned and unconditioned stimuli increase frontal cortical and hippocampal acetylcholine release: effects of novelty, habituation, and fear. J. Neurosci. 1996;16(9):3089–3096.
    1. Adachi T., Inanami O., Ohno K., Sato A. Responses of regional cerebral blood flow following focal electrical stimulation of the nucleus basalis of Meynert and the medial septum using the [14C]iodoantipyrine method in rats. Neurosci. Lett. 1990;112(2–3):263–268.
    1. Anagnostaras S.G., Murphy G.G., Hamilton S.E., Mitchell S.L., Rahnama N.P., Nathanson N.M., Silva A.J. Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat. Neurosci. 2003;6(1):51–58.
    1. Antonova E., Parslow D., Brammer M., Simmons A., Williams S., Dawson G.R., Morris R.G. Scopolamine disrupts hippocampal activity during allocentric spatial memory in humans: an fMRI study using a virtual reality analogue of the Morris Water Maze. J. Psychopharmacol. 2010 September 7 (Epub ahead of print)
    1. Aoyagi M., Meyer J.S., Deshmukh V.D., Ott E.O., Tagashira Y., Kawamura Y., Matsuda M., Achari A.N., Chee A.N. Central cholinergic control of cerebral blood flow in the baboon. Effect of cholinesterase inhibition with neostigmine on autoregulation and CO2 responsiveness. J. Neurosurg. 1975;43(6):689–705.
    1. Apparsundaram S., Martinez V., Parikh V., Kozak R., Sarter M. Increased capacity and density of choline transporters situated in synaptic membranes of the right medial prefrontal cortex of attentional task-performing rats. J. Neurosci. 2005;25(15):3851–3856.
    1. Arnerić S.P., Honig M.A., Milner T.A., Greco S., Iadecola C., Reis D.J. Neuronal and endothelial sites of acetylcholine synthesis and release associated with microvessels in rat cerebral cortex: ultrastructural and neurochemical studies. Brain Res. 1988;454(1–2):11–30.
    1. Arnold H.M., Burk J.A., Hodgson E.M., Sarter M., Bruno J.P. Differential cortical acetylcholine release in rats performing a sustained attention task versus behavioral control tasks that do not explicitly tax attention. Neuroscience. 2002;114(2):451–460.
    1. Atri A., Sherman S., Norman K.A., Kirchhoff B.A., Nicolas M.M., Greicius M.D., Cramer S.C., Breiter H.C., Hasselmo M.E., Stern C.E. Blockade of central cholinergic receptors impairs new learning and increases proactive interference in a word paired-associate memory task. Behav. Neurosci. 2004;118:223–236.
    1. Azizian A., Nestor L.J., Payer D., Monterosso J.R., Brody A.L., London E.D. Smoking reduces conflict-related anterior cingulate activity in abstinent cigarette smokers performing a Stroop task. Neuropsychopharmacology. 2010;35(3):775–782.
    1. Bahro M., Molchan S.E., Sunderland T., Herscovitch P., Schreurs B.G. The effects of scopolamine on changes in regional cerebral blood flow during classical conditioning of the human eyeblink response. Neuropsychobiology. 1999;39(4):187–195.
    1. Bartus R.T. On neurodegenerative diseases, models, and treatment strategies: lessons learned and lessons forgotten a generation following the cholinergic hypothesis. Exp. Neurol. 2000;163(2):495–529.
    1. Beglinger L.J., Tangphao-Daniels O., Kareken D.A., Zhang L., Mohs R., Siemers E.R. Neuropsychological test performance in healthy elderly volunteers before and after donepezil administration: a randomized, controlled study. J. Clin. Psychopharmacol. 2005;25(2):159–165.
    1. Bentley P., Driver J., Dolan R.J. Modulation of fusiform cortex activity by cholinesterase inhibition predicts effects on subsequent memory. Brain. 2009;132(Pt 9):2356–2371.
    1. Bentley P., Driver J., Dolan R.J. Cholinesterase inhibition modulates visual and attentional brain responses in Alzheimer's disease and health. Brain. 2008;131(Pt 2):409–424.
    1. Bentley P., Husain M., Dolan R.J. Effects of cholinergic enhancement on visual stimulation, spatial attention, and spatial working memory. Neuron. 2004;41(6):969–982.
    1. Bentley P., Vuilleumier P., Thiel C.M., Driver J., Dolan R.J. Cholinergic enhancement modulates neural correlates of selective attention and emotional processing. Neuroimage. 2003;20(1):58–70.
    1. Bentley P., Vuilleumier P., Thiel C.M., Driver J., Dolan R.J. Effects of attention and emotion on repetition priming and their modulation by cholinergic enhancement. J. Neurophysiol. 2003;90(2):1171–1181.
    1. Berntson G.G., Sarter M., Cacioppo J.T. Anxiety and cardiovascular reactivity: the basal forebrain cholinergic link. Behav. Brain Res. 1998;94:225–248.
    1. Berntson G.G., Shafi R., Knox D., Sarter M. Blockade of epinephrine priming of the cerebral auditory evoked response by cortical cholinergic deafferentation. Neuroscience. 2003;116(1):179–186.
    1. Biesold D., Inanami O., Sato A., Sato Y. Stimulation of the nucleus basalis of Meynert increases cerebral cortical blood flow in rats. Neurosci. Lett. 1989;98(1):39–44.
    1. Bizzarro A., Marra C., Acciarri A., Valenza A., Tiziano F.D., Brahe C., Masullo C. Apolipoprotein E epsilon4 allele differentiates the clinical response to donepezil in Alzheimer's disease. Dement. Geriatr. Cogn. Disord. 2005;20(4):254–261.
    1. Blin J., Ivanoiu A., Coppens A., De Volder A., Labar D., Michel C., Laterre E.C. Cholinergic neurotransmission has different effects on cerebral glucose consumption and blood flow in young normals, aged normals, and Alzheimer's disease patients. Neuroimage. 1997;6(4):335–343.
    1. Blin J., Ray C.A., Piercey M.F., Bartko J.J., Mouradian M.M., Chase T.N. Comparison of cholinergic drug effects on regional brain glucose consumption in rats and humans by means of autoradiography and position emission tomography. Brain Res. 1994;635(1–2):196–202.
    1. Bond A., Lader M. The use of analogue scales in rating subjective feelings. B J Med Psychol. 1974;47:211–218.
    1. Börgers C., Epstein S., Kopell N.J. Background gamma rhythmicity and attention in cortical local circuits: a computational study. Proc. Natl. Acad. Sci. U. S. A. 2005;102(19):7002–7007.
    1. Botly L.C., De Rosa E. Cholinergic deafferentation of the neocortex using 192 IgG-saporin impairs feature binding in rats. J. Neurosci. 2009;29(13):4120–4130.
    1. Bozzali M., MacPherson S.E., Dolan R.J., Shallice T. Left prefrontal cortex control of novel occurrences during recollection: a psychopharmacological study using scopolamine and event-related fMRI. Neuroimage. 2006;33(1):286–295.
    1. Bröcher S., Artola A., Singer W. Agonists of cholinergic and noradrenergic receptors facilitate synergistically the induction of long-term potentiation in slices of rat visual cortex. Brain Res. 1992;573:27–36.
    1. Brody A.L., Mandelkern M.A., London E.D., Olmstead R.E., Farahi J., Scheibal D., Jou J., Allen V., Tiongson E., Chefer S.I., Koren A.O., Mukhin A.G. Cigarette smoking saturates brain alpha 4 beta 2 nicotinic acetylcholine receptors. Arch. Gen. Psychiatry. 2006;63(8):907–915.
    1. Broussard J.I., Karelina K., Sarter M., Givens B. Cholinergic optimization of cue-evoked parietal activity during challenged attentional performance. Eur. J. Neurosci. 2009;29(8):1711–1722.
    1. Brown G.G., Eyler Zorrilla L.T., Georgy B., Kindermann S.S., Wong E.C., Buxton R.B. BOLD and perfusion response to finger-thumb apposition after acetazolamide administration: differential relationship to global perfusion. J. Cereb. Blood Flow Metab. 2003;23(7):829–837.
    1. Bucci D.J., Holland P.C., Gallagher M. Removal of cholinergic input to rat posterior parietal cortex disrupts incremental processing of conditioned stimuli. J. Neurosci. 1998;18(19):8038–8046.
    1. Bullmore E., Suckling J., Zelaya F., Long C., Honey G., Reed L., Routledge C., Ng V., Fletcher P., Brown J., Williams S.C. Practice and difficulty evoke anatomically and pharmacologically dissociable brain activation dynamics. Cereb. Cortex. 2003;13(2):54–144.
    1. Bunce J.G., Sabolek H.R., Chrobak J.J. Timing of administration mediates the memory effects of intraseptal carbachol infusion. Neuroscience. 2004;127(3):593–600.
    1. Burke M., Bührle Ch. BOLD response during uncoupling of neuronal activity and CBF. Neuroimage. 2006;32(1):1–8.
    1. Bushnell P.J., Chiba A.A., Oshiro W.M. Effects of unilateral removal of basal forebrain cholinergic neurons on cued target detection in rats. Behav. Brain Res. 1998;90(1):57–71.
    1. Buzsàki G., Gage F.H. The cholinergic nucleus basalis: a key structure in neocortical arousal. EXS. 1989;57:159–171.
    1. Cabrera S.M., Chavez C.M., Corley S.R., Kitto M.R., Butt A.E. Selective lesions of the nucleus basalis magnocellularis impair cognitive flexibility. Behav. Neurosci. 2006;120(2):298–306.
    1. Chédotal A., Umbriaco D., Descarries L., Hartman B.K., Hamel E. Light and electron microscopic immunocytochemical analysis of the neurovascular relationships of choline acetyltransferase and vasoactive intestical polypeptide nerve terminals in the rat cerebral cortex. J. Comp. Neurol. 1994;343:57–71.
    1. Chuah L.Y., Chee M.W. Cholinergic augmentation modulates visual task performance in sleep-deprived young adults. J. Neurosci. 2008;28(44):11369–11377.
    1. Chudasama Y., Dalley J.W., Nathwani F., Bouger P., Robbins T.W. Cholinergic modulation of visual attention and working memory: dissociable effects of basal forebrain 192-IgG saporin lesions and intraprefrontal infusions of scopolamine. Learn. Mem. 2004;11(1):78–86.
    1. Cohen E.R., Ugurbil K., Kim S.G. Effect of basal conditions on the magnitude and dynamics of the blood oxygenation level-dependent fMRI response. J. Cereb. Blood Flow Metab. 2002;22(9):1042–1053.
    1. Cohen R.M., Gross M., Semple W.E., Nordahl T.E., Sunderland T. The metabolic brain pattern of young subjects given scopolamine. Exp. Brain Res. 1994;100(1):133–143.
    1. Cole D.M., Beckmann C.F., Long C.J., Matthews P.M., Durcan M.J., Beaver J.D. Nicotine replacement in abstinent smokers improves cognitive withdrawal symptoms with modulation of resting brain network dynamics. Neuroimage. 2010;52(2):590–599.
    1. Conner J.M., Culberson A., Packowski C., Chiba A.A., Tuszynski M.H. Lesions of the basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron. 2003;38(5):819–829.
    1. Corbetta M., Kincade J.M., Ollinger J.M., McAvoy M.P., Shulman G.L. Voluntary orienting is dissociated from target detection in human posterior parietal cortex. Nat. Neurosci. 2000;3(3):292–297.
    1. Courtney S.M., Ungerleider L.G., Keil K., Haxby J.V. Transient and sustained activity in a distributed neural system for human working memory. Nature. 1997;386(6625):608–611.
    1. Craig M.C., Brammer M., Maki P.M., Fletcher P.C., Daly E.M., Rymer J., Giampietro V., Picchioni M., Stahl D., Murphy D.G. The interactive effect of acute ovarian suppression and the cholinergic system on visuospatial working memory in young women. Psychoneuroendocrinology. 2010;35(7):987–1000.
    1. Craig M.C., Fletcher P.C., Daly E.M., Rymer J., Brammer M., Giampietro V., Stahl D., Maki P.M., Murphy D.G. The interactive effect of the cholinergic system and acute ovarian suppression on the brain: an fMRI study. Horm. Behav. 2009;55(1):41–49.
    1. Dalley J.W., McGaughy J., O’Connell M.T., Cardinal R.N., Levita L., Robbins T.W. Distinct changes in cortical acetylcholine and noradrenaline efflux during contingent and noncontingent performance of a visual attentional task. J. Neurosci. 2001;21(13):4908–4914.
    1. Davis S.W., Dennis N.A., Daselaar S.M., Fleck M.S., Cabeza R. Que PASA? The posterior–anterior shift in aging. Cereb. Cortex. 2008;18(5):1201–1209.
    1. Davis T.L., Kwong K.K., Weisskoff R.M., Rosen B.R. Calibrated functional MRI: mapping the dynamics of oxidative metabolism. Proc. Natl. Acad. Sci. U. S. A. 1998;95:1834–1839.
    1. Davidson M.C., Marrocco R.T. Local infusion of scopolamine into intraparietal cortex slows covert orienting in rhesus monkeys. J. Neurophysiol. 2000;83(3):1536–1549.
    1. De Rosa E., Hasselmo M.E., Baxter M.G. Contribution of the cholinergic basal forebrain to proactive interference from stored odor memories during associative learning in rats. Behav. Neurosci. 2001;115(2):314–327.
    1. Descarries L., Gisiger V., Steriade M. Diffuse transmission by acetylcholine in the CNS. Prog. Neurobiol. 1997;53:603–625.
    1. Dewey S.L., Smith G.S., Logan J., Brodie J.D., Simkowitz P., MacGregor R.R., Fowler J.S., Volkow N.D., Wolf A.P. Effects of central cholinergic blockade on striatal dopamine release measured with positron emission tomography in normal human subjects. Proc. Natl. Acad. Sci. U. S. A. 1993;90(24):11816–11820.
    1. DeYoe E.A., Carman G.J., Bandettini P., Glickman S., Wieser J., Cox R., Miller D., Neitz J. Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl. Acad. Sci. U. S. A. 1996;93(6):2382–2386.
    1. Dickerson B.C. Functional magnetic resonance imaging of cholinergic modulation in mild cognitive impairment. Curr. Opin. Psychiatry. 2006;19(3):299–306.
    1. Disney A.A., Domakonda K.V., Aoki C. Differential expression of muscarinic acetylcholine receptors across excitatory and inhibitory cells in visual cortical areas V1 and V2 of the macaque monkey. J. Comp. Neurol. 2006;499(1):49–63.
    1. Dringenberg H.C., Hamze B., Wilson A., Speechley W., Kuo M.-C. Heterosynaptic facilitation of in vivo thalamocortical long-term potentiation in the adult rat visual cortex by acetylcholine. Cereb. Cortex. 2007;17:839–848.
    1. Dumas J.A., Saykin A.J., McDonald B.C., McAllister T.W., Hynes M.L., Newhouse P.A. Nicotinic versus muscarinic blockade alters verbal working memory-related brain activity in older women. Am. J. Geriatr. Psychiatry. 2008;16(4):272–282.
    1. Dumas J.A., McDonald B.C., Saykin A.J., McAllister T.W., Hynes M.L., West J.D., Newhouse P.A. Cholinergic modulation of hippocampal activity during episodic memory encoding in postmenopausal women: a pilot study. Menopause. 2010;17(4):852–859.
    1. Dunnett S.B., Rogers D.C., Jones G.H. Effects of nucleus basalis magnocellularis lesions in rats on delayed matching and non-matching to position tasks. Eur. J. Neurosci. 1989;1(4):395–406.
    1. Edvinsson L., MacKenzie E.T., McCulloch J., Uddman R. Perivascular innervation and receptor mechanisms in cerebrovascular bed. In: Wood J.H., editor. Cerebral Blood Flow. Physiologic and Clinical Aspects. McGraw-Hill; New York: 1987. pp. 145–172.
    1. Egorov A.V., Hamam B.N., Fransén E., Hasselmo M.E., Alonso A.A. Graded persistent activity in entorhinal cortex neurons. Nature. 2002;420(6912):173–178.
    1. Ernst M., Matochik J.A., Heishman S.J., Van Horn J.D., Jons P.H., Henningfield J.E., London E.D. Effect of nicotine on brain activation during performance of a working memory task. Proc. Natl. Acad. Sci. U. S. A. 2001;98(8):4728–4733.
    1. Ernst M., Heishman S.J., Spurgeon L., London E.D. Smoking history and nicotine effects on cognitive performance. Neuropsychopharmacology. 2001;25(3):313–319.
    1. Erskine F.F., Ellis J.R., Ellis K.A., Stuber E., Hogan K., Miller V., Moore E., Bartholomeusz C., Harrison B.J., Lee B., Phan K.L., Liley D., Nathan P.J. Evidence for synergistic modulation of early information processing by nicotinic and muscarinic receptors in humans. Hum. Psychopharmacol. 2004;19(7):503–509.
    1. Ettinger U., Williams S.C., Patel D., Michel T.M., Nwaigwe A., Caceres A., Mehta M.A., Anilkumar A.P., Kumari V. Effects of acute nicotine on brain function in healthy smokers and non-smokers: estimation of inter-individual response heterogeneity. Neuroimage. 2009;45(2):549–561.
    1. Everitt B.J., Robbins T.W. Central cholinergic systems and cognition. Annu. Rev. Psychol. 1997;48:649–684.
    1. Eysenck M.W., Derakshan N., Santos R., Calvo M.G. Anxiety and cognitive performance: attentional control theory. Emotion. 2007;7(2):336–353.
    1. FitzGerald D.B., Crucian G.P., Mielke J.B., Shenal B.V., Burks D., Womack K.B., Ghacibeh G., Drago V., Foster P.S., Valenstein E., Heilman K.M. Effects of donepezil on verbal memory after semantic processing in healthy older adults. Cogn. Behav. Neurol. 2008;21(2):57–64.
    1. Fournier G.N., Semba K., Rasmusson D.D. Modality- and region-specific acetylcholine release in the rat neocortex. Neuroscience. 2004;126(2):257–262.
    1. Foster P.S., Drago V., Webster D.G., Harrison D.W., Crucian G.P., Heilman K.M. Emotional influences on spatial attention. Neuropsychology. 2008;22(1):127–135.
    1. Franklin T., Wang Z., Suh J.J., Hazan R., Cruz J., Li Y., Goldman M., Detre J.A., O’Brien C.P., Childress A.R. Effects of varenicline on smoking cue-triggered neural and craving responses. Arch. Gen. Psychiatry. 2011 January 3 (Epub ahead of print)
    1. Fransen E., Alonso A.A., Hasselmo M.E. Simulations of the role of the muscarinic activated calcium-sensitive nonspecific cation current INCM in entorhinal neuronal activity during delayed matching tasks. J. Neurosci. 2002;22:1081–1097.
    1. Freo U., Ricciardi E., Pietrini P., Schapiro M.B., Rapoport S.I., Furey M.L. Pharmacological modulation of prefrontal cortical activity during a working memory task in young and older humans: a PET study with physostigmine. Am. J. Psychiatry. 2005;162(11):2061–2070.
    1. Friston K.J., Harrison L., Penny W. Dynamic causal modelling. Neuroimage. 2003;19(4):1273–1302.
    1. Frohlich S., Franco C.A. The consciousness circuit – an approach to the hard problem. Adv. Exp. Med. Biol. 2010;657:285–301.
    1. Fukuyama H., Ouchi Y., Matsuzaki S., Ogawa M., Yamauchi H., Nagahama Y., Kimura J., Yonekura Y., Shibasaki H., Tsukada H. Focal cortical blood flow activation is regulated by intrinsic cortical cholinergic neurons. Neuroimage. 1996;3(3 Pt 1):195–201.
    1. Furchgott R.F., Zawadzki J.V. The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature. 1980;288(5789):373–376.
    1. Furey M.L., Pietrini P., Haxby J.V., Alexander G.E., Lee H.C., VanMeter J., Grady C.L., Shetty U., Rapoport S.I., Schapiro M.B., Freo U. Cholinergic stimulation alters performance and task-specific regional cerebral blood flow during working memory. Proc. Natl. Acad. Sci. U. S. A. 1997;94(12):6512–6516.
    1. Furey M.L., Pietrini P., Haxby J.V. Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science. 2000;290(5500):2315–2319.
    1. Furey M.L., Pietrini P., Alexander G.E., Schapiro M.B., Horwitz B. Cholinergic enhancement improves performance on working memory by modulating the functional activity in distinct brain regions: a positron emission tomography regional cerebral blood flow study in healthy humans. Brain Res. Bull. 2000;51(3):213–218.
    1. Furey M.L., Pietrini P., Alexander G.E., Mentis M.J., Szczepanik J., Shetty U., Greig N.H., Holloway H.W., Schapiro M.B., Freo U. Time course of pharmacodynamic and pharmacokinetic effects of physostigmine assessed by functional brain imaging in humans. Pharmacol. Biochem. Behav. 2000;66(3):475–481.
    1. Furey M.L., Ricciardi E., Schapiro M.B., Rapoport S.I., Pietrini P. Cholinergic enhancement eliminates modulation of neural activity by task difficulty in the prefrontal cortex during working memory. J. Cogn. Neurosci. 2008;20(7):1342–1353.
    1. Furey M.L., Pietrini P., Haxby J.V., Drevets W.C. Selective effects of cholinergic modulation on task performance during selective attention. Neuropsychopharmacology. 2008;33(4):913–923.
    1. Gais S., Born J. Low acetylcholine during slow-wave sleep is critical for declarative memory consolidation. Proc. Natl. Acad. Sci. U. S. A. 2004;101(7):2140–2144.
    1. Geaney D.P., Soper N., Shepstone B.J., Cowen P.J. Effect of central cholinergic stimulation on regional cerebral blood flow in Alzheimer disease. Lancet. 1990;335(8704):1484–1487.
    1. Ghatan P.H., Ingvar M., Eriksson L., Stone-Elander S., Serrander M., Ekberg K., Wahren J. Cerebral effects of nicotine during cognition in smokers and non-smokers. Psychopharmacology (Berl.) 1998;136(2):179–189.
    1. Ghoneim M.M., Mewaldt S.P. Effects of diazepam and scopolamine on storage, retrieval and organizational processes in memory. Psychopharmacologia. 1975;44(3):257–262.
    1. Giessing C., Thiel C.M., Rösler F., Fink G.R. The modulatory effects of nicotine on parietal cortex activity in a cued target detection task depend on cue reliability. Neuroscience. 2006;137(3):853–864.
    1. Giessing C., Fink G.R., Rösler F., Thiel C.M. fMRI data predict individual differences of behavioral effects of nicotine: a partial least square analysis. J. Cogn. Neurosci. 2007;19(4):658–670.
    1. Gil Z., Connors B.W., Amitai Y. Differential regulation of neocortical synapses by neuromodulators and activity. Neuron. 1997;19(3):679–686.
    1. Gill T.M., Sarter M., Givens B. Sustained visual attention performance-associated prefrontal neuronal activity: evidence for cholinergic modulation. J. Neurosci. 2000;20(12):4745–4757.
    1. Gitelman D.R., Prohovnik I. Muscarinic and nicotinic contributions to cognitive function and cortical blood flow. Neurobiol. Aging. 1992;13(2):313–318.
    1. Goekoop R., Rombouts S.A., Jonker C., Hibbel A., Knol D.L., Truyen L., Barkhof F., Scheltens P. Challenging the cholinergic system in mild cognitive impairment: a pharmacological fMRI study. Neuroimage. 2004;23(4):1450–1459.
    1. Goekoop R., Scheltens P., Barkhof F., Rombouts S.A. Cholinergic challenge in Alzheimer patients and mild cognitive impairment differentially affects hippocampal activation – a pharmacological fMRI study. Brain. 2006;129(Pt 1):141–157.
    1. Goense J.B., Logothetis N.K. Neurophysiology of the BOLD fMRI signal in awake monkeys. Curr. Biol. 2008;18(9):631–640.
    1. Gollub R.L., Breiter H.C., Kantor H., Kennedy D., Gastfriend D., Mathew R.T., Makris N., Guimaraes A., Riorden J., Campbell T., Foley M., Hyman S.E., Rosen B., Weisskoff R. Cocaine decreases cortical cerebral blood flow but does not obscure regional activation in functional magnetic resonance imaging in human subjects. J. Cereb. Blood Flow Metab. 1998;18(7):724–734.
    1. Golmayo L., Nunez A., Zaborszky L. Electrophysiological evidence for the existence of a posterior cortical–prefrontal–basal forebrain circuitry in modulating sensory responses in visual and somatosensory rat cortical areas. Neuroscience. 2003;119:597–609.
    1. Gozzi A., Jain A., Giovanelli A., Bertollini C., Crestan V., Schwarz A.J., Tsetsenis T., Ragozzino D., Gross C.T., Bifone A. A neural switch for active and passive fear. Neuron. 2010;67(4):656–666.
    1. Grady C.L., Horwitz B., Pietrini P., Mentis M.J., Ungerleider L.G., Rapoport S.I., Haxby J.V. Effect of task difficulty on cerebral blood flow during perceptual matching of faces. Hum. Brain Mapp. 1996;4:227–239.
    1. Grady C.L., McIntosh A.R., Rajah M.N., Craik F.I. Neural correlates of the episodic encoding of pictures and words. Proc. Natl. Acad. Sci. U. S. A. 1998;95(5):2703–2708.
    1. Grasby P.M., Frith C.D., Paulesu E., Friston K.J., Frackowiak R.S., Dolan R.J. The effect of the muscarinic antagonist scopolamine on regional cerebral blood flow during the performance of a memory task. Exp. Brain Res. 1995;104(2):337–348.
    1. Greuel J.M., Luhmann H.J., Singer W. Pharmacological induction of use-dependent receptive field modifications in the visual cortex. Science. 1988;242:74–77.
    1. Grön G., Brandenburg I., Wunderlich A.P., Riepe M.W. Inhibition of hippocampal function in mild cognitive impairment: targeting the cholinergic hypothesis. Neurobiol. Aging. 2006;27(1):78–87.
    1. Gu Q. Contribution of acetylcholine to visual cortex plasticity. Neurobiol. Learn. Mem. 2003;80(3):291–301.
    1. Gulledge A.T., Park S.B., Kawaguchi Y., Stuart G.J. Heterogeneity of phasic cholinergic signaling in neocortical neurons. J. Neurophysiol. 2007;97(3):2215–2229.
    1. Gustafson L., Edvinsson L., Dahlgren N., Hagberg B., Risberg J., Rosén I., Fernö H. Intravenous physostigmine treatment of Alzheimer's disease evaluated by psychometric testing, regional cerebral blood flow (rCBF) measurement, and EEG. Psychopharmacology (Berl.) 1987;93(1):31–35.
    1. Hahn B., Ross T.J., Wolkenberg F.A., Shakleya D.M., Huestis M.A., Stein E.A. Performance effects of nicotine during selective attention, divided attention, and simple stimulus detection: an fMRI study. Cereb. Cortex. 2009;19(9):1990–2000.
    1. Hahn B., Ross T.J., Yang Y., Kim I., Huestis M.A., Stein E.A. Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network. J. Neurosci. 2007;27(13):3477–3489.
    1. Hallstrom A., Sato A., Sato Y., Ungerstedt U. Effect of stimulation of the nucleus basalis of Meynert on blood flow and extracellular lactate in the cerebral cortex with special reference to the effect of noxious stimulation of skin and hypoxia. Neurosci. Lett. 1990;116:227–232.
    1. Hasenfratz M., Bättig K. Action profiles of smoking and caffeine: Stroop effect. EEG, and peripheral physiology. Pharmacol. Biochem. Behav. 1992;42(1):155–161.
    1. Hasselmo M.E. Neuromodulation and cortical function: modeling the physiological basis of behavior. Behav. Brain Res. 1995;67:1–27.
    1. Hasselmo M.E. Neuromodulation: acetylcholine and memory consolidation. Trends Cogn. Sci. 1999;3(9):351–359.
    1. Hasselmo M.E., Bodelón C., Wyble B.P. A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Comput. 2002;14(4):793–817.
    1. Hasselmo M.E., Cekic M. Suppression of synaptic transmission may allow combination of associative feedback and self-organizing feedforward connections in the neocortex. Behav. Brain Res. 1996;79(1–2):153–161.
    1. Hasselmo M.E., McGaughy J. High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog. Brain Res. 2004;145:207–231.
    1. Hasselmo M.E., Sarter M. Modes and models of forebrain cholinergic neuromodulation of cognition. Neuropsychopharmacology. 2011;36(1):52–73.
    1. Hasselmo M.E., Stern C.E. Mechanisms underlying working memory for novel information. Trends Cogn. Sci. 2006;10:487–493.
    1. Hasselmo M.E., Wyble B.P. Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function. Behav. Brain Res. 1997;89:1–34.
    1. Henson R.N., Rugg M.D. Neural response suppression, haemodynamic repetition effects, and behavioural priming. Neuropsychologia. 2003;41(3):263–270.
    1. Herath P., Young J., Roland P. Two mechanisms of protracted reaction times mediated by dissociable cortical networks. Eur J Neurosci. 2002;16(3):529–539.
    1. Herrero J.L., Roberts M.J., Delicato L.S., Gieselmann M.A., Dayan P., Thiele A. Acetylcholine contributes through muscarinic receptors to attentional modulation in V1. Nature. 2008;454(7208):1110–1114.
    1. Himmelheber A.M., Sarter M., Bruno J.P. Increases in cortical acetylcholine release during sustained attention performance in rats. Brain Res. Cogn. Brain Res. 2000;9(3):313–325.
    1. Himmelheber A.M., Sarter M., Bruno J.P. The effects of manipulations of attentional demand on cortical acetylcholine release. Brain Res. Cogn. Brain Res. 2001;12(3):353–370.
    1. Holland P.C., Gallagher M. Different roles for amygdala central nucleus and substantia innominata in the surprise-induced enhancement of learning. J. Neurosci. 2006;26(14):3791–3797.
    1. Holley L.A., Turchi J., Apple C., Sarter M. Dissociation between the attentional effects of infusions of a benzodiazepine receptor agonist and an inverse agonist into the basal forebrain. Psychopharmacology (Berl) 1995;120(1):99–108.
    1. Holzman R.S. The legacy of Atropos, the fate who cut the thread of life. Anesthesiology. 1998;89(1):241–249.
    1. Honer W.G., Prohovnik I., Smith G., Lucas L.R. Scopolamine reduces frontal cortex perfusion. J. Cereb. Blood Flow Metab. 1988;8(5):635–641.
    1. Hong L.E., Schroeder M., Ross T.J., Buchholz B., Salmeron B.J., Wonodi I., Thaker G.K., Stein E.A. Nicotine enhances but does not normalize visual sustained attention and the associated brain network in schizophrenia. Schizophr. Bull. 2009 August 27 (Epub ahead of print)
    1. Hopfinger J.B., Buonocore M.H., Mangun G.R. The neural mechanisms of top-down attentional control. Nat. Neurosci. 2000;3(3):284–291.
    1. Hoss W., Messer W.S., Jr., Monsma F.J., Jr., Miller M.D., Ellerbrock B.R., Scranton T., Ghodsi-Hovsepian S., Price M.A., Balan S., Mazloum Z. Biochemical and behavioral evidence for muscarinic autoreceptors in the CNS. Brain Res. 1990;517(1–2):195–201.
    1. Hsieh C.Y., Cruikshank S.J., Metherate R. Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist. Brain Res. 2000;880:51–64.
    1. Huerta P.T., Lisman J.E. Heightened synaptic plasticity of hippocampal CA1 neurons during a cholinergically induced rhythmic state. Nature. 1993;364(6439):723–725.
    1. Iannetti G.D., Wise R.G. BOLD functional MRI in disease and pharmacological studies: room for improvement? Magn. Reson. Imaging. 2007;25(6):978–988.
    1. Introini-Collison I.B., McGaugh J.L. Epinephrine modulates long term retention of an aversively motivated discrimination. Behav. Neural Biol. 1986;45:358–365.
    1. Jacobsen L.K., Gore J.C., Skudlarski P., Lacadie C.M., Jatlow P., Krystal J.H. Impact of intravenous nicotine on BOLD signal response to photic stimulation. Magn. Reson. Imaging. 2002;20(2):141–145.
    1. Jacobsen L.K., D'Souza D.C., Mencl W.E., Pugh K.R., Skudlarski P., Krystal J.H. Nicotine effects on brain function and functional connectivity in schizophrenia. Biol. Psychiatry. 2004;55(8):850–858.
    1. Jacobsen L.K., Pugh K.R., Mencl W.E., Gelernter J. C957T polymorphism of the dopamine D2 receptor gene modulates the effect of nicotine on working memory performance and cortical processing efficiency. Psychopharmacology (Berl.) 2006;188(4):530–540.
    1. Kamboj S.K., Curran H.V. Scopolamine induces impairments in the recognition of human facial expressions of anger and disgust. Psychopharmacology (Berl.) 2006;185(4):529–535.
    1. Kanwisher N., McDermott J., Chun M.M. The fusiform face area: a module in human extrastriate cortex specialized for face perception. J. Neurosci. 1997;17(11):4302–4311.
    1. Kilgard M.P., Merzenich M.M. Cortical map reorganization enabled by nucleus basalis activity. Science. 1998;279(5357):1714–1718.
    1. Kim E.J., Jeong D.U. Transdermal scopolamine alters phasic REM activity in normal young adults. Sleep. 1999;22(4):515–520.
    1. Kimura A., Sato A., Takano Y. Stimulation of the nucleus basalis of Meynert does not influence glucose utilization of the cerebral cortex in anesthetized rats. Neurosci. Lett. 1990;119(1):101–104.
    1. Kimura F., Fukuda M., Tsumoto T. Acetylcholine suppresses the spread of excitation in the visual cortex revealed by optical recording: possible differential effect depending on the source of input. Eur. J. Neurosci. 1999;11:3597–3609.
    1. Klink R., Alonso A. Muscarinic modulation of the oscillatory and repetitive firing properties of entorhinal cortex layer II neurons. J. Neurophysiol. 1997;77:1813–1828.
    1. Kobiella A., Ulshöfer D.E., Vollmert C., Vollstädt-Klein S., Bühler M., Esslinger C., Smolka M.N. Nicotine increases neural response to unpleasant stimuli and anxiety in non-smokers. Addict. Biol. 2011;16(2):285–295.
    1. Koene R.A., Gorchetchnikov A., Cannon R.C., Hasselmo M.E. Modeling goal-directed spatial navigation in the rat based on physiological data from the hippocampal formation. Neural Netw. 2003;16:577–584.
    1. Kopelman M.D. The cholinergic neurotransmitter system in human memory and dementia: a review. Q. J. Exp. Psychol. A. 1986;38:535–573.
    1. Kozak R., Bruno J.P., Sarter M. Augmented prefrontal acetylcholine release during challenged attentional performance. Cereb. Cortex. 2006;16(1):9–17.
    1. Krnjević K., Phillis J.W. Acetylcholine-sensitive cells in the cerebral cortex. J. Physiol. 1963;166:296–327.
    1. Krnjević K., Pumain R., Renaud L. The mechanism of excitation by acetylcholine in the cerebral cortex. J. Physiol. 1971;215(1):247–268.
    1. Kukolja J., Thiel C.M., Fink G.R. Cholinergic stimulation enhances neural activity associated with encoding but reduces neural activity associated with retrieval in humans. J. Neurosci. 2009;29(25):8119–8128.
    1. Kumari V., Gray J.A., ffytche D.H., Mitterschiffthaler M.T., Das M., Zachariah E., Vythelingum G.N., Williams S.C., Simmons A., Sharma T. Cognitive effects of nicotine in humans: an fMRI study. Neuroimage. 2003;19(3):1002–1013.
    1. Kumari V., Aasen I., ffytche D., Williams S.C., Sharma T. Neural correlates of adjunctive rivastigmine treatment to antipsychotics in schizophrenia: a randomized, placebo-controlled, double-blind fMRI study. Neuroimage. 2006;29(2):545–556.
    1. Kuo M.C., Rasmusson D.D., Dringenberg H.C. Input-selective potentiation and rebalancing of primary sensory cortex afferents by endogenous acetylcholine. Neuroscience. 2009;163(1):430–441.
    1. Lacombe P., Sercombe R., Verrecchia C., Philipson V., MacKenzie E.T., Seylaz J. Cortical blood flow increases induced by stimulation of the substantia innominata in the unanesthetized rat. Brain Res. 1989;491:1–14.
    1. Lambe E.K., Picciotto M.R., Aghajanian G.K. Nicotine induces glutamate release from thalamocortical terminals in prefrontal cortex. Neuropsychopharmacology. 2003;28:216–225.
    1. Laplante F., Morin Y., Quirion R., Vaucher E. Acetylcholine release is elicited in the visual cortex, but not in the prefrontal cortex, by patterned visual stimulation: a dual in vivo microdialysis study with functional correlates in the rat brain. Neuroscience. 2005;132(2):501–510.
    1. Lawrence N.S., Ross T.J., Stein E.A. Cognitive mechanisms of nicotine on visual attention. Neuron. 2002;36(3):539–548.
    1. Leithner C., Royl G., Offenhauser N., Füchtemeier M., Kohl-Bareis M., Villringer A., Dirnagl U., Lindauer U. Pharmacological uncoupling of activation induced increases in CBF and CMRO(2) J. Cereb. Blood Flow Metab. 2009 September 30 (Epub ahead of print)
    1. Lewandowski M.H., Müller C.M., Singer W. Reticular facilitation of cat visual cortical responses is mediated by nicotinic and muscarinic cholinergic mechanisms. Exp. Brain Res. 1993;96:1–7.
    1. Lidow M.S., Gallager D.W., Rakic P., Goldman-Rakic P.S. Regional differences in the distribution of muscarinic cholinergic receptors in the macaque cerebral cortex. J. Comp. Neurol. 1989;289(2):247–259.
    1. Linville D.G., Williams S., Raszkiewicz J.L., Arneric S.P. Nicotinic agonists modulate basal forebrain control of cortical cerebral blood flow in anesthetized rats. J. Pharmacol. Exp. Ther. 1993;267(1):440–448.
    1. Logothetis N.K. The neural basis of the blood-oxygen-level-dependent functional magnetic resonance imaging signal. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 2002;357(1424):1003–1037.
    1. Lörincz M.L., Crunelli V., Hughes S.W. Cellular dynamics of cholinergically induced alpha (8–13 Hz) rhythms in sensory thalamic nuclei in vitro. J. Neurosci. 2008;28(3):660–671.
    1. Loughead J., Wileyto E.P., Valdez J.N., Sanborn P., Tang K., Strasser A.A., Ruparel K., Ray R., Gur R.C., Lerman C. Effect of abstinence challenge on brain function and cognition in smokers differs by COMT genotype. Mol. Psychiatry. 2009;14(8):820–826.
    1. Loughead J., Ray R., Wileyto E.P., Ruparel K., Sanborn P., Siegel S., Gur R.C., Lerman C. Effects of the alpha4beta2 partial agonist varenicline on brain activity and working memory in abstinent smokers. Biol. Psychiatry. 2010;67(8):715–721.
    1. Loughead J., Ray R., Wileyto E.P., Ruparel K., O’Donnell G.P., Senecal N., Siegel S., Gur R.C., Lerman C. Brain activity and emotional processing in smokers treated with varenicline. Addict. Biol. 2011
    1. Martinez A., DiRusso F., Anllo-Vento L., Sereno M.I., Buxton R.B., Hillyard S.A. Putting spatial attention on the map: timing and localization of stimulus selection processes in striate and extrastriate visual areas. Vision Res. 2001;41:1437–1457.
    1. Matsuda M., Meyer J.S., Deshmukh V.D., Tagashira Y. Effect of acetylcholine on cerebral circulation. J. Neurosurg. 1976;45(4):423–431.
    1. Mattay V.S., Callicott J.H., Bertolino A., Heaton I., Frank J.A., Coppola R., Berman K.F., Goldberg T.E., Weinberger D.R. Effects of dextroamphetamine on cognitive performance and cortical activation. Neuroimage. 2000;12(3):268–275.
    1. McCormick D.A. Cellular mechanisms underlying cholinergic and noradrenergic modulation of neuronal firing mode in the cat and guinea pig dorsal lateral geniculate nucleus. J. Neurosci. 1992;12(1):278–289.
    1. McCormick D.A., Prince D.A. Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. J. Physiol. 1986;375:169–194.
    1. McGaughy J., Dalley J.W., Morrison C.H., Everitt B.J., Robbins T.W. Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. J. Neurosci. 2002;22(5):1905–1913.
    1. McGaughy J., Koene R.A., Eichenbaum H., Hasselmo M.E. Cholinergic deafferentation of the entorhinal cortex in rats impairs encoding of novel but not familiar stimuli in a delayed nonmatch-to-sample task. J. Neurosci. 2005;25(44):10273–10281.
    1. McNamara D., Larson D.M., Rapoport S.I., Soncrant T.T. Preferential metabolic activation of subcortical brain areas by acute administration of nicotine to rats. J. Cereb. Blood Flow Metab. 1990;10(1):48–56.
    1. Mentis M.J., Sunderland T., Lai J., Connolly C., Krasuski J., Levine B., Friz J., Sobti S., Schapiro M., Rapoport S.I. Muscarinic versus nicotinic modulation of a visual task: a pet study using drug probes. Neuropsychopharmacology. 2001;25(4):555–564.
    1. Mesulam M.M., Volicer L., Marquis J.K., Mufson E.J., Green R.C. Systematic regional differences in the cholinergic innervation of the primate cerebral cortex: distribution of enzyme activities and some behavioural implications. Ann. Neurol. 1986;19(2):144–151.
    1. Mesulam M.M., Geula C. Acetylcholinesterase-rich neurons of the human cerebral cortex: cytoarchitectonic and ontogenetic patterns of distribution. J. Comp. Neurol. 1991;306(2):193–220.
    1. Miller E.K., Desimone R. Scopolamine affects short-term memory but not inferior temporal neurons. Neuroreport. 1993;4(1):81–84.
    1. Mishima K., Iwasaki K., Tsukikawa H., Matsumoto Y.T., Egashira N., Abe K., Egawa T., Fujiwara M. The scopolamine-induced impairment of spatial cognition parallels the acetylcholine release in the ventral hippocampus in rats. Jpn. J. Pharmacol. 2000;84(2):163–173.
    1. Moore H., Sarter M., Bruno J.P. Bidirectional modulation of cortical acetylcholine efflux by infusion of benzodiazepine receptor ligands into the basal forebrain. Neurosci. Lett. 1995;189:31–34.
    1. Morris J.S., Friston K.J., Dolan R.J. Experience-dependent modulation of tonotopic neural responses in human auditory cortex. Proc. R. Soc. Lond. B: Biol. Sci. 1998;265:649–657.
    1. Muir J.L., Everitt B.J., Robbins T.W. AMPA-induced excitotoxic lesions of the basal forebrain: a significant role for the cortical cholinergic system in attentional function. J. Neurosci. 1994;14(4):2313–2326.
    1. Murphy P.C., Sillito P.C. Cholinergic enhancement of direction selectivity in the visual cortex of the cat. Neuroscience. 1991;40(1):13–20.
    1. Nakahata K., Kinoshita H., Hama-Tomioka K., Ishida Y., Matsuda N., Hatakeyama N., Haba M., Kondo T., Hatano Y. Cholinesterase inhibitor donepezil dilates cerebral parenchymal arterioles via the activation of neuronal nitric oxide synthase. Anesthesiology. 2008;109(1):124–129.
    1. Nelson C.L., Sarter M., Bruno J.P. Prefrontal cortical modulation of acetylcholine release in posterior parietal cortex. Neuroscience. 2005;132(2):347–359.
    1. Newhouse P.A., Potter A., Singh A. Effects of nicotinic stimulation on cognitive performance. Curr. Opin. Pharmacol. 2004;4:36–46.
    1. Nordberg A. Functional studies of cholinergic activity in normal and Alzheimer disease states by imaging technique. Prog. Brain Res. 2004;145:301–310.
    1. Ogawa M., Fukuyama H., Ouchi Y., Yamauchi H., Matsuzaki S., Kimura J., Tsukada H. Uncoupling between cortical glucose metabolism and blood flow after ibotenate lesion of the rat basal forebrain: a PET study. Neurosci. Lett. 1996;204(3):193–196.
    1. Ogawa M., Magata Y., Ouchi Y., Fukuyama H., Yamauchi H., Kimura J., Yonekura Y., Konishi J. Scopolamine abolishes cerebral blood flow response to somatosensory stimulation in anesthetized cats: PET study. Brain Res. 1994;650(2):249–252.
    1. Ouchi Y., Fukuyama H., Ogawa M., Yamauchi H., Kimura J., Magata Y., Yonekura Y., Konishi J. Cholinergic projection from the basal forebrain and cerebral glucose metabolism in rats: a dynamic PET study. J. Cereb. Blood Flow Metab. 1996;16(1):34–41.
    1. Parent M.B., Baxter M.G. Septohippocampal acetylcholine: involved in but not necessary for learning and memory? Learn. Mem. 2004;11(1):9–20.
    1. Parikh V., Man K., Decker M.W., Sarter M. Glutamatergic contributions to nicotinic acetylcholine receptor agonist-evoked cholinergic transients in the prefrontal cortex. J. Neurosci. 2008;28(14):3769–3780.
    1. Parnavelas J.G., Kelly W., Burnstock G. Ultrastructural localization of choline acetyltransferase in vascular endothelial cells in rat brain. Nature. 1985;316(6030):724–725.
    1. Passetti F., Dalley J.W., O’Connell M.T., Everitt B.J., Robbins T.W. Increased acetylcholine release in the rat medial prefrontal cortex during performance of a visual attentional task. Eur. J. Neurosci. 2000;12(8):3051–3058.
    1. Paterson D., Nordberg A. Neuronal nicotinic receptors in the human brain. Prog. Neurobiol. 2000;61(1):75–111.
    1. Phillips J.M., McAlonan K., Robb W.G., Brown V.J. Cholinergic neurotransmission influences covert orientation of visuospatial attention in the rat. Psychopharmacology (Berl.) 2000;150(1):112–116.
    1. Phillis J.W., Chong G.C. Acetylcholine release from the cerebral and cerebellar cortices: its role in cortical arousal. Nature. 1965;207(5003):1253–1255.
    1. Polli F.E., Barton J.J., Cain M.S., Thakkar K.N., Rauch S.L., Manoach D.S. Rostral and dorsal anterior cingulate cortex make dissociable contributions during antisaccade error commission. Proc. Natl. Acad. Sci. U. S. A. 2005;102:15700–15705.
    1. Potkin S.G., Anand R., Fleming K., Alva G., Keator D., Carreon D., Messina J., Wu J.C., Hartman R., Fallon J.H. Brain metabolic and clinical effects of rivastigmine in Alzheimer's disease. Int. J. Neuropsychopharmacol. 2001;4(3):223–230.
    1. Postma P., Gray J.A., Sharma T., Geyer M., Mehrotra R., Das M., Zachariah E., Hines M., Williams S.C., Kumari V. A behavioural and functional neuroimaging investigation into the effects of nicotine on sensorimotor gating in healthy subjects and persons with schizophrenia. Psychopharmacology (Berl) 2006;184(3–4):589–599.
    1. Power A.E. Muscarinic cholinergic contribution to memory consolidation: with attention to involvement of the basolateral amygdala. Curr. Med. Chem. 2004;11(8):987–996.
    1. Quigley K.S., Sarter M.F., Hart S.L., Berntson G.G. Cardiovascular effects of the benzodiazepine receptor partial inverse agonist FG 7142 in rats. Behav. Brain Res. 1994;62:11–20.
    1. Raichle M.E., Snyder A.Z. A default mode of brain function: a brief history of an evolving idea. Neuroimage; 2007;37(4):1083–1090.
    1. Rasch B.H., Born J., Gais S. Combined blockade of cholinergic receptors shifts the brain from stimulus encoding to memory consolidation. J. Cogn. Neurosci. 2006;18:793–802.
    1. Rauch A., Rainer G., Logothetis N.K. The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proc. Natl. Acad. Sci. U. S. A. 2008;105(18):6759–6764.
    1. Ricciardi E., Pietrini P., Schapiro M.B., Rapoport S.I., Furey M.L. Cholinergic modulation of visual working memory during aging: a parametric PET study. Brain Res. Bull. 2009;79(5):322–332.
    1. Richardson R.T., DeLong M.R. Context-dependent responses of primate nucleus basalis neurons in a go/no-go task. J. Neurosci. 1990;10(8):2528–2540.
    1. Ridley R.M., Baker H.F., Leow-Dyke A., Cummings R.M. Further analysis of the effects of immunotoxic lesions of the basal nucleus of Meynert reveals substantial impairment on visual discrimination learning in monkeys. Brain Res. Bull. 2005;65(5):433–442.
    1. Robbins T.W., Everitt B.J., Marston H.M., Wilkinson J., Jones G.H., Page K.J. Comparative effects of ibotenic acid- and quisqualic acid-induced lesions of the substantia innominata on attentional function in the rat: further implications for the role of the cholinergic neurons of the nucleus basalis in cognitive processes. Behav. Brain Res. 1989;35(3):221–240.
    1. Roberts M.J., Zinke W., Guo K., Robertson R., McDonald J.S., Thiele A. Acetylcholine dynamically controls spatial integration in marmoset primary visual cortex. J. Neurophysiol. 2005;93(4):2062–2072.
    1. Rodriguez R., Kallenbach U., Singer W., Munk M.H. Short- and long-term effects of cholinergic modulation on gamma oscillations and response synchronization in the visual cortex. J. Neurosci. 2004;24(46):10369–10378.
    1. Rogers J.L., Kesner R.P. Cholinergic modulation of the hippocampus during encoding and retrieval. Neurobiol. Learn. Mem. 2003;80(3):332–342.
    1. Rombouts S.A., Goekoop R., Stam C.J., Barkhof F., Scheltens P. Delayed rather than decreased BOLD response as a marker for early Alzheimer's disease. Neuroimage. 2005;26(4):1078–1085.
    1. Rose E.J., Ross T.J., Kurup P.K., Stein E.A. Nicotine modulation of information processing is not limited to input (attention) but extends to output (intention) Psychopharmacology (Berl.) 2010;209(4):291–302.
    1. Rosier A.M., Cornette L., Dupont P., Bormans G., Mortelmans L., Orban G.A. Regional brain activity during shape recognition impaired by a scopolamine challenge to encoding. Eur. J. Neurosci. 1999;11(10):3701–3714.
    1. Rycroft N., Rusted J.M., Hutton S.B. Acute effects of nicotine on visual search tasks in young adult smokers. Psychopharmacology (Berl.) 2005;181:160–169.
    1. Rypma B., Berger J.S., Prabhakaran V., Bly B.M., Kimberg D.Y., Biswal B.B., D’Esposito M. Neural correlates of cognitive efficiency. Neuroimage. 2006;33(3):969–979.
    1. Sarter M., Hasselmo M.E., Bruno J.P., Givens B. Unraveling the attentional functions of cortical cholinergic inputs: interactions between signal-driven and cognitive modulation of signal detection. Brain Res. Brain Res. Rev. 2005;48:98–111.
    1. Sarter M., Gehring W.J., Kozak R. More attention must be paid: the neurobiology of attentional effort. Brain Res. Rev. 2006;51(2):145–160.
    1. Sarter M., Givens B., Bruno J.P. The cognitive neuroscience of sustained attention: where top-down meets bottom-up. Brain Res. Brain Res. Rev. 2001;35(2):146–160.
    1. Sarter M., Parikh V., Howe W.M. Phasic acetylcholine release and the volume transmission hypothesis: time to move on. Nat. Rev. Neurosci. 2009;10(5):383–390.
    1. Sato H., Hata Y., Hagihara K., Tsumoto T. Effects of cholinergic depletion on neuron activities in the cat visual cortex. J. Neurophysiol. 1987;58(4):781–794.
    1. Sato H., Hata Y., Masui H., Tsumoto T. A functional role of cholinergic innervation to neurons in the cat visual cortex. J. Neurophysiol. 1987;58(4):765–780.
    1. Sato A., Sato Y., Uchida S. Activation of the intracerebral cholinergic nerve fibers originating in the basal forebrain increases regional cerebral blood flow in the rat's cortex and hippocampus. Neurosci. Lett. 2004;361(1–3):90–93.
    1. Schon K., Atri A., Hasselmo M.E., Tricarico M.D., LoPresti M.L., Stern C.E. Scopolamine reduces persistent activity related to long-term encoding in the parahippocampal gyrus during delayed matching in humans. J. Neurosci. 2005;25(40):9112–9123.
    1. Scremin O.U., Rovere A.A., Raynald A.C., Giardini A. Cholinergic control of blood flow in the cerebral cortex of the rat. Stroke. 1973;4(2):233–239.
    1. Scremin O.U., Sonnenschein R.R., Rubinstein E.H. Cholinergic cerebral vasodilatation in the rabbit: absence of concomitant metabolic activation. J. Cereb. Blood Flow Metab. 1982;2(2):241–247.
    1. Scremin O.U., Torres C., Scremin A.M., O’Neal M., Heuser D., Blisard K.S. Role of nucleus basalis in cholinergic control of cortical blood flow. J. Neurosci. Res. 1991;28(3):382–390.
    1. Selden N.R., Gitelman D.R., Salamon-Murayama N., Parrish T.B., Mesulam M.M. Trajectories of cholinergic pathways within the cerebral hemispheres of the human brain. Brain. 1998;121(12):2249–2257.
    1. Sillito A.M., Kemp J.A. Cholinergic modulation of the functional organization of the cat visual cortex. Brain Res. 1983;289(1–2):143–155.
    1. Silver M.A., Shenhav A., D’Esposito M. Cholinergic enhancement reduces spatial spread of visual responses in human early visual cortex. Neuron. 2008;60(5):904–914.
    1. Smiley J.F., Morrell F., Mesulam M.M. Cholinergic synapses in human cerebral cortex: an ultrastructural study in serial sections. Exp. Neurol. 1997;144(2):361–368.
    1. Sperling R., Greve D., Dale A., Killiany R., Holmes J., Rosas H.D., Cocchiarella A., Firth P., Rosen B., Lake S., Lange N., Routledge C., Albert M. Functional MRI detection of pharmacologically induced memory impairment. Proc. Natl. Acad. Sci. U. S. A. 2002;99(1):455–460.
    1. Stein E.A., Pankiewicz J., Harsch H.H., Cho J.K., Fuller S.A., Hoffmann R.G., Hawkins M., Rao S.M., Bandettini P.A., Bloom A.S. Nicotine-induced limbic cortical activation in the human brain: a functional MRI study. Am. J. Psychiatry. 1998;155(8):1009–1015.
    1. Suckling J., Wink A.M., Bernard F.A., Barnes A., Bullmore E. Endogenous multifractal brain dynamics are modulated by age, cholinergic blockade and cognitive performance. J. Neurosci. Methods. 2008;174(2):292–300.
    1. Sutherland M.T., Ross T.J., Shakleya D.M., Huestis M.A., Stein E.A. Chronic smoking, but not acute nicotine administration, modulates neural correlates of working memory. Psychopharmacology (Berl.) 2011;213(1):29–42.
    1. Sweet L.H., Mulligan R.C., Finnerty C.E., Jerskey B.A., David S.P., Cohen R.A., Niaura R.S. Effects of nicotine withdrawal on verbal working memory and associated brain response. Psychiatry Res. 2010;183(1):69–74.
    1. Tang Y., Mishkin M., Aigner T.G. Effects of muscarinic blockade in perirhinal cortex during visual recognition. Proc. Natl. Acad. Sci. U. S. A. 1997;94(23):12667–12669.
    1. Teipel S.J., Drzezga A., Bartenstein P., Möller H.J., Schwaiger M., Hampel H. Effects of donepezil on cortical metabolic response to activation during (18)FDG-PET in Alzheimer's disease: a double-blind cross-over trial. Psychopharmacology (Berl.) 2006;187(1):86–94.
    1. Thiel C.M., Henson R.N., Morris J.S., Friston K.J., Dolan R.J. Pharmacological modulation of behavioral and neuronal correlates of repetition priming. J. Neurosci. 2001;21(17):6846–6852.
    1. Thiel C.M., Bentley P., Dolan R.J. Effects of cholinergic enhancement on conditioning-related responses in human auditory cortex. Eur. J. Neurosci. 2002;16(11):2199–2206.
    1. Thiel C.M., Friston K.J., Dolan R.J. Cholinergic modulation of experience-dependent plasticity in human auditory cortex. Neuron. 2002;35(3):567–574.
    1. Thiel C.M., Henson R.N., Dolan R.J. Scopolamine but not lorazepam modulates face repetition priming: a psychopharmacological fMRI study. Neuropsychopharmacology. 2002;27(2):282–292.
    1. Thiel C.M., Zilles K., Fink G.R. Nicotine modulates reorienting of visuospatial attention and neural activity in human parietal cortex. Neuropsychopharmacology. 2005;30(4):810–820.
    1. Thiel C.M., Fink G.R. Visual and auditory alertness: modality-specific and supramodal neural mechanisms and their modulation by nicotine. J. Neurophysiol. 2007;97(4):2758–2768.
    1. Thiel C.M., Fink G.R. Effects of the cholinergic agonist nicotine on reorienting of visual spatial attention and top-down attentional control. Neuroscience. 2008;152(2):381–390.
    1. Thienel R., Kellermann T., Schall U., Voss B., Reske M., Halfter S., Sheldrick A.J., Radenbach K., Habel U., Shah N.J., Kircher T. Muscarinic antagonist effects on executive control of attention. Int. J. Neuropsychopharmacol. 2009;12(10):1307–1317.
    1. Thienel R., Voss B., Kellermann T., Reske M., Halfter S., Sheldrick A.J., Radenbach K., Habel U., Shah N.J., Schall U., Kircher T Nicotinic antagonist effects on functional attention networks. Int. J. Neuropsychopharmacol. 2009;12(10):1295–1305.
    1. Tsukada H., Kakiuchi T., Ando I., Shizuno H., Nakanishi S., Ouchi Y. Regulation of cerebral blood flow response to somatosensory stimulation through the cholinergic system: a positron emission tomography study in unanesthetized monkeys. Brain Res. 1997;749(1):10–17.
    1. Tsukada H., Sato K., Kakiuchi T., Nishiyama S. Age-related impairment of coupling mechanism between neuronal activation and functional cerebral blood flow response was restored by cholinesterase inhibition: PET study with microdialysis in the awake monkey brain. Brain Res. 2000;857(1–2):158–164.
    1. Tsukada H., Nishiyama S., Fukumoto D., Ohba H., Sato K., Kakiuchi T. Effects of acute acetylcholinesterase inhibition on the cerebral cholinergic neuronal system and cognitive function: functional imaging of the conscious monkey brain using animal PET in combination with microdialysis. Synapse. 2004;52(1):1–10.
    1. Uchida S., Hotta H. Cerebral cortical vasodilatation mediated by nicotinic cholinergic receptors: effects of old age and of chronic nicotine exposure. Biol. Pharm. Bull. 2009;32(3):341–344.
    1. Uchida S., Kagitani F., Nakayama H., Sato A. Effect of stimulation of nicotinic cholinergic receptors on cortical cerebral blood flow and changes in the effect during aging in anesthetized rats. Neurosci. Lett. 1997;228(3):203–206.
    1. van Eijsden P., Hyder F., Rothman D.L., Shulman R.G. Neurophysiology of functional imaging. Neuroimage. 2009;45(4):1047–1054.
    1. van Turennout M., Bielamowicz L., Martin A. Modulation of neural activity during object naming: effects of time and practice. Cereb. Cortex. 2003;13(4):381–391.
    1. Vaucher E., Borredon J., Bonvento G., Seylaz J., Lacombe P. Autoradiographic evidence for flow-metabolism uncoupling during stimulation of the nucleus basalis of Meynert in the conscious rat. J. Cereb. Blood Flow Metab. 1997;17(6):686–694.
    1. Vidal C., Changeux J.P. Nicotinic and muscarinic modulations of excitatory synaptic transmission in the rat prefrontal cortex in vitro. Neuroscience. 1993;56(1):23–32.
    1. Vinberg J., Grill-Spector K. Representation of shapes, edges, and surfaces across multiple cues in the human visual cortex. J. Neurophysiol. 2008;99(3):1380–1393.
    1. von Engelhardt J., Eliava M., Meyer A.H., Rozov A., Monyer H. Functional characterization of intrinsic cholinergic interneurons in the cortex. J. Neurosci. 2007;27(21):5633–5642.
    1. Vossel S., Thiel C.M., Fink G.R. Cue validity modulates the neural correlates of covert endogenous orienting of attention in parietal and frontal cortex. Neuroimage. 2006;32(3):1257–1264.
    1. Vossel S., Thiel C.M., Fink G.R. Behavioral and neural effects of nicotine on visuospatial attentional reorienting in non-smoking subjects. Neuropsychopharmacology. 2008;33(4):731–738.
    1. Wagner A.D., Koutstaal W., Schacter D.L. When encoding yields remembering: insights from event-related neuroimaging. Philos. Trans. R. Soc. Lond. B: Biol. Sci. 1999;354(1387):1307–1324.
    1. Warburton D.M., Skinner A., Martin C.D. Improved incidental memory with nicotine after semantic processing, but not after phonological processing. Psychopharmacology (Berl.) 2001;153(2):258–263.
    1. Weinberger N.M. Associative representational plasticity in the auditory cortex: a synthesis of two disciplines. Learn. Mem. 2007;14(1–2):1–16.
    1. Wesnes K., Warburton D.M. Effects of scopolamine and nicotine on human rapid information processing performance. Psychopharmacology. 1984;82:147–150.
    1. Williams G.V., Castner S.A. Under the curve: critical issues for elucidating D1 receptor function in working memory. Neuroscience. 2006;139(1):263–276.
    1. Wilson F.A., Rolls E.T. Neuronal responses related to the novelty and familiarity of visual stimuli in the substantia innominata, diagonal band of Broca and periventricular region of the primate basal forebrain. Exp. Brain Res. 1990;80(1):104–120.
    1. Wink A.M., Bernard F., Salvador R., Bullmore E., Suckling J. Age and cholinergic effects on hemodynamics and functional coherence of human hippocampus. Neurobiol. Aging. 2006;27(10):1395–1404.
    1. Witte E.A., Davidson M.C., Marrocco R.T. Effects of altering brain cholinergic activity on covert orienting of attention: comparison of monkey and human performance. Psychopharmacology (Berl.) 1997;132(4):324–334.
    1. Womelsdorf T., Fries P., Mitra P.P., Desimone R. Gamma-band synchronization in visual cortex predicts speed of change detection. Nature. 2006;439(7077):733–736.
    1. Wonnacott S., Barik J., Dickinson J., Jones I.W. Nicotinic receptors modulate transmitter cross talk in the CNS: nicotinic modulation of transmitters. J. Mol. Neurosci. 2006;30:137–140.
    1. Xiang Z., Huguenard J.R., Prince D.A. Cholinergic switching within neocortical inhibitory networks. Science. 1998;281(5379):985–988.
    1. Xu J., Mendrek A., Cohen M.S., Monterosso J., Rodriguez P., Simon S.L., Brody A., Jarvik M., Domier C.P., Olmstead R., Ernst M., London E.D. Brain activity in cigarette smokers performing a working memory task: effect of smoking abstinence. Biol. Psychiatry. 2005;58(2):143–150.
    1. Xu J., Mendrek A., Cohen M.S., Monterosso J., Simon S., Brody A.L., Jarvik M., Rodriguez P., Ernst M., London E.D. Effects of acute smoking on brain activity vary with abstinence in smokers performing the N-Back task: a preliminary study. Psychiatry Res. 2006;148(2–3):103–109.
    1. Xu J., Mendrek A., Cohen M.S., Monterosso J., Simon S., Jarvik M., Olmstead R., Brody A.L., Ernst M., London E.D. Effect of cigarette smoking on prefrontal cortical function in nondeprived smokers performing the Stroop Task. Neuropsychopharmacology. 2007;32(6):1421–1428.
    1. Yantis S., Schwarzbach J., Serences J.T., Carlson R.L., Steinmetz M.A., Pekar J.J., Courtney S.M. Transient neural activity in human parietal cortex during spatial attention shifts. Nat. Neurosci. 2002;5(10):995–1002.
    1. Young B.J., Otto T., Fox G.D., Eichenbaum H. Memory representation within the parahippocampal region. J. Neurosci. 1997;17(13):5183–5195.
    1. Yu A.J., Dayan P. Uncertainty neuromodulation, and attention. Neuron. 2005;46(4):681–692.
    1. Zilles K., Palomero-Gallagher N., Grefkes C., Scheperjans F., Boy C., Amunts K., Schleicher A. Architectonics of the human cerebral cortex and transmitter receptor fingerprints: reconciling functional neuroanatomy and neurochemistry. Eur. Neuropsychopharmacol. 2002;12(6):587–599.
    1. Zilles K., Wree A. Dausch N-D Anatomy of the neocortex: neurochemical organization. In: Kolb B., Tees R.C., editors. The Cerebral Cortex of the Rat. MIT Press; Cambridge, MA: 1990. pp. 113–150.
    1. Zinke W., Roberts M.J., Guo K., McDonald J.S., Robertson R., Thiele A. Cholinergic modulation of response properties and orientation tuning of neurons in primary visual cortex of anaesthetized Marmoset monkeys. Eur. J. Neurosci. 2006;24(1):314–328.

Source: PubMed

3
Se inscrever