Oxygen, pH, Lactate, and Metabolism-How Old Knowledge and New Insights Might Be Combined for New Wound Treatment

Herbert Leopold Haller, Frank Sander, Daniel Popp, Matthias Rapp, Bernd Hartmann, Mehmet Demircan, Sebastian Philipp Nischwitz, Lars Peter Kamolz, Herbert Leopold Haller, Frank Sander, Daniel Popp, Matthias Rapp, Bernd Hartmann, Mehmet Demircan, Sebastian Philipp Nischwitz, Lars Peter Kamolz

Abstract

Over time, we have come to recognize a very complex network of physiological changes enabling wound healing. An immunological process enables the body to distinguish damaged cells and begin a cleaning mechanism by separating damaged proteins and cells with matrix metalloproteinases, a complement reaction, and free radicals. A wide variety of cell functions help to rebuild new tissue, dependent on energy provision and oxygen supply. Like in an optimized "bio-reactor," disturbance can lead to prolonged healing. One of the earliest investigated local factors is the pH of wounds, studied in close relation to the local perfusion, oxygen tension, and lactate concentration. Granulation tissue with the wrong pH can hinder fibroblast and keratinocyte division and proliferation, as well as skin graft takes. Methods for influencing the pH have been tested, such as occlusion and acidification by the topical application of acidic media. In most trials, this has not changed the wound's pH to an acidic one, but it has reduced the strong alkalinity of deeper or chronic wounds. Energy provision is essential for all repair processes. New insights into the metabolism of cells have changed the definition of lactate from a waste product to an indispensable energy provider in normoxic and hypoxic conditions. Neovascularization depends on oxygen provision and lactate, signaling hypoxic conditions even under normoxic conditions. An appropriate pH is necessary for successful skin grafting; hypoxia can change the pH of wounds. This review describes the close interconnections between the local lactate levels, metabolism, healing mechanisms, and pH. Furthermore, it analyzes and evaluates the different possible ways to support metabolism, such as lactate enhancement and pH adjustment. The aim of wound treatment must be the optimization of all these components. Therefore, the role of lactate and its influence on wound healing in acute and chronic wounds will be assessed.

Keywords: ECM; acidosis; alkalosis; chronic wound; hypoxia; lactate; neoangiogenesis; polylactide; wound.

Conflict of interest statement

Herbert Leopold Haller and Matthias Rapp are consultants for training and teaching end research for Polymedics GmbH. The other authors did not have any conflict of interests. The companies had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References

    1. Las Heras K., Igartua M., Santos-Vizcaino E., Hernandez R.M. Chronic wounds: Current status, available strategies and emerging therapeutic solutions. J. Control. Release. 2020;328:532–550. doi: 10.1016/j.jconrel.2020.09.039.
    1. The Global Wound Care Market is Projected to Reach USD 27.8 n.d. [(accessed on 30 July 2021)]. Available online: .
    1. Burn Wound Chronicity Myth or Reality-Wounds International. Jacky Edwards n.d. [(accessed on 18 August 2021)]. Available online: .
    1. Saaiq M. Marjolin’s ulcers in the post-burned lesions and scars. World J. Clin. Cases. 2014;2:507. doi: 10.12998/wjcc.v2.i10.507.
    1. Sen C.K. Human Wounds and Its Burden: An Updated Compendium of Estimates. Adv. Wound Care. 2019;8:39–48. doi: 10.1089/wound.2019.0946.
    1. Fife C.E., Eckert K.A., Carter M.J. Publicly Reported Wound Healing Rates: The Fantasy and the Reality. Adv. Wound Care. 2018;7:77–94. doi: 10.1089/wound.2017.0743.
    1. Fluhr J.W., Elias P.M. Stratum corneum pH: Formation and function of the “acid mantle”. Exog Dermatol. 2002;1:163–175. doi: 10.1159/000066140.
    1. Wallace L.A., Gwynne L., Jenkins T. Challenges and opportunities of pH in chronic wounds. Ther. Deliv. 2019;10:719–735. doi: 10.4155/tde-2019-0066.
    1. Cañedo-Dorantes L., Cañedo-Ayala M. Skin acute wound healing: A comprehensive review. Int. J. Inflamm. 2019;2019:3706315. doi: 10.1155/2019/3706315.
    1. Pakyari M., Farrokhi A., Maharlooei M.K., Ghahary A. Critical Role of Transforming Growth Factor Beta in Different Phases of Wound Healing. Adv. Wound Care. 2013;2:215–224. doi: 10.1089/wound.2012.0406.
    1. Hunt T.K., Aslam R.S., Beckert S., Wagner S., Ghani Q.P., Hussain M.Z., Roy S., Sen C.K. Aerobically derived lactate stimulates revascularization and tissue repair via redox mechanisms. Antioxid. Redox Signal. 2007;9:1115–1124. doi: 10.1089/ars.2007.1674.
    1. Teller P., White T.K. The Physiology of Wound Healing: Injury Through Maturation. Surg. Clin. N. Am. 2009;89:599–610. doi: 10.1016/j.suc.2009.03.006.
    1. Reyhani V., Seddigh P., Guss B., Gustafsson R., Rask L., Rubin K. Fibrin binds to collagen and provides a bridge for αVβ3 integrin-dependent contraction of collagen gels. Biochem. J. 2014;462:113–123. doi: 10.1042/BJ20140201.
    1. Clark R.A.F., Lanigan J.M., DellaPelle P., Manseau E., Dvorak H.F., Colvin R.B. Fibronectin and Fibrin Provide a Provisional Matrix for Epidermal Cell Migration During Wound Reepithelialization. J. Investig. Dermatol. 1982;79:264–269. doi: 10.1111/1523-1747.ep12500075.
    1. Velnar T., Bailey T., Smrkolj V. The wound healing process: An overview of the cellular and molecular mechanisms. J. Int. Med. Res. 2009;37:1528–1542. doi: 10.1177/147323000903700531.
    1. Kalinin A.E., Kajava A.V., Steinert P.M. Epithelial barrier function: Assembly and structural features of the cornified cell envelope. BioEssays. 2002;24:789–800. doi: 10.1002/bies.10144.
    1. Freedberg I.M., Tomic-Canic M., Komine M., Blumenberg M. Keratins and the keratinocyte activation cycle. J. Investig. Dermatol. 2001;116:633–640. doi: 10.1046/j.1523-1747.2001.01327.x.
    1. McKelvey K., Jackson C.J., Xue M. Activated protein C: A regulator of human skin epidermal keratinocyte function. World J. Biol. Chem. 2014;5:169–179. doi: 10.4331/wjbc.v5.i2.169.
    1. Rousselle P., Braye F., Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies. Adv. Drug Deliv. Rev. 2019;146:344–365. doi: 10.1016/j.addr.2018.06.019.
    1. Safferling K., Sütterlin T., Westphal K., Ernst C., Breuhahn K., James M., Jäger D., Halama N., Grabe N. Wound healing revised: A novel reepithelialization mechanism revealed by in vitro and in silico models. J. Cell. Biol. 2013;203:691–709. doi: 10.1083/jcb.201212020.
    1. Pastar I., Stojadinovic O., Yin N.C., Ramirez H., Nusbaum A.G., Sawaya A., Patel S.B., Khalid L., Isseroff R.R., Tomic-Canic M. Epithelialization in Wound Healing: A Comprehensive Review. Adv. Wound Care. 2014;3:445–464. doi: 10.1089/wound.2013.0473.
    1. Werner S., Krieg T., Smola H. Keratinocyte-fibroblast interactions in wound healing. J. Investig. Dermatol. 2007;127:998–1008. doi: 10.1038/sj.jid.5700786.
    1. Ogawa R., Akaishi S. Endothelial dysfunction may play a key role in keloid and hypertrophic scar pathogenesis—Keloids and hypertrophic scars may be vascular disorders. Med. Hypotheses. 2016;96:51–60. doi: 10.1016/j.mehy.2016.09.024.
    1. Ogawa R. Keloid and hypertrophic scars are the result of chronic inflammation in the reticular dermis. Int. J. Mol. Sci. 2017;18:606. doi: 10.3390/ijms18030606.
    1. Gangemi E.N., Gregori D., Berchialla P., Zingarelli E., Cairo M., Bollero D., Ganem J., Capocelli R., Cuccuru F., Cassano P., et al. Epidemiology and Risk Factors for Pathologic Scarring After Burn Wounds. Arch. Facial Plast. Surg. 2008;12:205–217. doi: 10.1001/archfaci.10.2.93.
    1. Saunders R., Astifidis R.P., McClinton M.A. Hand and Upper Extremity Rehabilitation. 4th ed. Elsevier; Amsterdam, The Netherlands: 2016.
    1. Broughton G., Janis J.E., Attinger C.E., Broughton I.I.G., Janis J.E., Attinger C.E., Christopher E.M.D. The basic science of wound healing. Plast. Reconstr. Surg. 2006;117:12S–34S. doi: 10.1097/01.prs.0000225430.42531.c2.
    1. Judge J.L., Lacy S.H., Kub W.-Y., Owensb K.M., Hernadya E., Thatcher T.H., Williams J.P., Phipps R.P., Sime P.J., Kottmann R.M. The Lactate Dehydrogenase Inhibitor Gossypol Inhibits Radiation-Induced Pulmonary Fibrosis. Radiat. Res. 2017;188:35–43. doi: 10.1667/RR14620.1.
    1. Knighton D.R., Silver I.A., Hunt T.K. Regulation of wound-healing angiogenesis-Effect of oxygen gradients and inspired oxygen concentration. Surgery. 1981;90:262–270.
    1. Nguyen T.T., Mobashery S., Chang M. Roles of Matrix Metalloproteinases in Cutaneous Wound Healing. In: Alexandrescu V.A., editor. Wound Healing-New Insights into Ancient Challenges. IntechOpen; London, UK: 2016.
    1. Barrientos S., Stojadinovic O., Golinko M.S., Brem H., Tomic-Canic M. Growth factors and cytokines in wound healing. Wound Repair Regen. 2008;16:585–601. doi: 10.1111/j.1524-475X.2008.00410.x.
    1. Rayment E.A., Upton Z. Review: Finding the culprit: A review of the influences of proteases on the chronic wound environment. Int. J. Low. Extrem. Wounds. 2009;8:19–27. doi: 10.1177/1534734609331596.
    1. Stojadinovic O., Pastar I., Vukelic S., Mahoney M.G., Brennan D., Krzyzanowska A., Golinko M., Brem H., Tomic-Camic M. Deregulation of keratinocyte differentiation and activation: A hallmark of venous ulcers. J. Cell. Mol. Med. 2008;12:2675–2690. doi: 10.1111/j.1582-4934.2008.00321.x.
    1. Schreml S., Szeimies R.M., Prantl L., Karrer S., Landthaler M., Babilas P. Oxygen in acute and chronic wound healing. Br. J. Dermatol. 2010;163:257–268. doi: 10.1111/j.1365-2133.2010.09804.x.
    1. Hunt T.K., Aslam R., Hussain Z., Beckert S. Lactate, with oxygen, incites angiogenesis. Adv. Exp. Med. Biol. 2008;614:73–80. doi: 10.1007/978-0-387-74911-2_9.
    1. LaVan F.B., Hunt T.K. Oxygen and Wound Healing. Clin. Plast. Surg. 1990;17:463–472. doi: 10.1016/S0094-1298(20)30621-0.
    1. Marcinek D.J., Kushmerick M.J., Conley K.E. Lactic acidosis in vivo: Testing the link between lactate generation and H+ accumulation in ischemic mouse muscle. J. Appl. Physiol. 2010;108:1479–1486. doi: 10.1152/japplphysiol.01189.2009.
    1. Trabold O., Wagner S., Wicke C., Scheuenstuhl H., Hussain M.Z., Rosen N., Seremetiev A., Becker H.D., Hunt T.K. Lactate and oxygen constitute a fundamental regulatory mechanism in wound healing. Wound Repair Regen. 2003;11:504–509. doi: 10.1046/j.1524-475X.2003.11621.x.
    1. Aslam R.S., Beckert S., Scheuenstuhl H., Hussain Z., Hunt T. High lactate in wounds may initiate vasculogenesis via stem cell homing. Am. Coll. Surg. 2005;201:S58. doi: 10.1016/j.jamcollsurg.2005.06.128.
    1. Stern R., Shuster S., Neudecker B.A., Formby B. Lactate stimulates fibroblast expression of hyaluronan and CD44: The Warburg effect revisited. Exp. Cell. Res. 2002;276:24–31. doi: 10.1006/excr.2002.5508.
    1. DeBerardinis R.J., Chandel N.S. We need to talk about the Warburg effect. Nat. Metab. 2020;2:127–129. doi: 10.1038/s42255-020-0172-2.
    1. Gladden L.B. Lactate metabolism: A new paradigm for the third millennium. J. Physiol. 2004;558:5–30. doi: 10.1113/jphysiol.2003.058701.
    1. Gertz E.W., Wisneski J.A., Stanley W.C., Neese R.A. Myocardial substrate utilization during exercise in humans. Dual carbon-labeled carbohydrate isotope experiments. J. Clin. Investig. 1988;82:2017–2025. doi: 10.1172/JCI113822.
    1. Stanley W.C., Gertz E.W., Wisneski J.A., Morris D.L., Neese R.A., Brooks G.A. Systemic lactate kinetics during graded exercise in man. Am. J. Physiol. Metab. 1985;249:E595–E602. doi: 10.1152/ajpendo.1985.249.6.E595.
    1. Brooks G.A. Lactate as a fulcrum of metabolism. Redox Biol. 2020;35:101454. doi: 10.1016/j.redox.2020.101454.
    1. Brooks G.A. The Science and Translation of Lactate Shuttle Theory. Cell. Metab. 2018;27:757–785. doi: 10.1016/j.cmet.2018.03.008.
    1. Rabinowitz J.D., Enerbäck S. Lactate: The ugly duckling of energy metabolism. Nat. Metab. 2020;2:566–571. doi: 10.1038/s42255-020-0243-4.
    1. Liguori C., Stefani A., Sancesario G., Sancesario G.M., Marciani M.G., Pierantozzi M. CSF lactate levels, τ proteins, cognitive decline: A dynamic relationship in Alzheimer’s disease. J. Neurol. Neurosurg. Psych. 2015;86:655–659. doi: 10.1136/jnnp-2014-308577.
    1. Draoui N., Feron O. Lactate shuttles at a glance: From physiological paradigms to anti-cancer treatments. DMM Dis. Model. Mech. 2011;4:727–732. doi: 10.1242/dmm.007724.
    1. Juel G., Halestrap A.P. Lactate transport in skeletal muscle—Role and regulation of the monocarboxylate transporter. J. Physiol. 1999;517:633–642. doi: 10.1111/j.1469-7793.1999.0633s.x.
    1. Glancy B., Kane D.A., Kavazis A.N., Goodwin M.L., Willis W.T., Gladden L.B. Mitochondrial lactate metabolism: History and implications for exercise and disease. J. Physiol. 2021;599:863–888. doi: 10.1113/JP278930.
    1. Zhang D., Tang Z., Huang H., Zhou G., Cui C., Weng Y., Liu W., Kim S., Lee S., Kim S., et al. Metabolic regulation of gene expression by histone lactylation. Nature. 2019;574:575–580. doi: 10.1038/s41586-019-1678-1.
    1. Ring A., Goertz O., Al-Benna S., Ottomann C., Langer S., Steinstraesser L., Schmitz I., Tilkorn D. Accelerated angiogenic induction and vascular integration in a novel synthetic scaffolding matrix for tissue replacement. Int. J. Artif. Organs. 2010;33:877–884. doi: 10.1177/039139881003301206.
    1. Ring A., Langer S., Homann H.H., Kuhnen C., Schmitz I., Steinau H.U., Drücke D. Analysis of neovascularization of PEGT/PBT-copolymer dermis substitutes in balb/c-mice. Burns. 2006;32:35–41. doi: 10.1016/j.burns.2005.07.009.
    1. Ring A., Steinstraesser L., Muhr G., Steinau H.U., Hauser J., Langer S. Improved neovascularization of PEGT/PBT copolymer matrices in response to surface modification by biomimetic coating. Eur. Surg. Res. 2007;39:75–81. doi: 10.1159/000099146.
    1. Hunt T.K., Conolly W.B., Aronson S.B., Goldstein P. Anaerobic metabolism and wound healing: An hypothesis for the initiation and cessation of collagen synthesis in wounds. Am. J. Surg. 1978;135:328–332. doi: 10.1016/0002-9610(78)90061-2.
    1. Liu Q., Berchner-Pfannschmidt U., Möller U., Brecht M., Wotzlaw C., Acker H., Jungermann K., Kietzmann T. A Fenton reaction at the endoplasmic reticulum is involved in the redox control of hypoxia-inducible gene expression. Proc. Natl. Acad. Sci. USA. 2004;101:4302–4307. doi: 10.1073/pnas.0400265101.
    1. Vural E., Berbée M., Acott A., Blagg R., Fan C.Y., Hauer-Jensen M. Skin graft take rates, granulation, and epithelialization: Dependence on myeloid cell hypoxia-inducible factor 1α. Arch. Otolaryngol. Head. Neck. Surg. 2010;136:720–723. doi: 10.1001/archoto.2010.103.
    1. Groussard C., Morel I., Chevanne M., Monnier M., Cillard J., Delamarche A. Free radical scavenging and antioxidant effects of lactate ion: An in vitro study. J. Appl. Physiol. 2000;89:169–175. doi: 10.1152/jappl.2000.89.1.169.
    1. Herz H., Blake D.R., Grootveld M. Multicomponent investigations of the hydrogen peroxide-and hydroxyl radical-scavenging antioxidant capacities of biofluids: The roles of endogenous pyruvate and lactate. Free Radic. Res. 1997;26:19–35. doi: 10.3109/10715769709097781.
    1. Beckert S., Farrahi F., Aslam R.S., Scheuenstuhl H., Königsrainer A., Hussain M.Z., Hunt T.K. Lactate stimulates endothelial cell migration. Wound Repair Regen. 2006;14:321–324. doi: 10.1111/j.1743-6109.2006.00127.x.
    1. Liarte S., Bernabé-García Á., Nicolás F.J. Role of TGF-β in Skin Chronic Wounds: A Keratinocyte Perspective. Cells. 2020;9:306. doi: 10.3390/cells9020306.
    1. Dalton S.J., Whiting C.V., Bailey J.R., Mitchell D.C., Tarlton J.F. Mechanisms of chronic skin ulceration linking lactate, transforming growth factor-beta, vascular endothelial growth factor, collagen remodeling, collagen stability, and defective angiogenesis. J. Investig. Dermatol. 2007;127:958–968. doi: 10.1038/sj.jid.5700651.
    1. Lyons R.M., Keski-Oja J., Moses H.L. Proteolytic activation of latent transforming growth factor-beta from fibroblast-conditioned medium. J. Cell. Biol. 1988;106:1659–1665. doi: 10.1083/jcb.106.5.1659.
    1. Barcellos-Hoff M.H., Dix T.A. Redox-mediated activation of latent transforming growth factor-β1. Mol. Endocrinol. 1996;10:1077–1083. doi: 10.1210/me.10.9.1077.
    1. Murphy-Ullrich J.E., Suto M.J. Thrombospondin-1 regulation of latent TGF-β activation: A therapeutic target for fibrotic disease. Matrix Biol. 2018;68–69:28–43. doi: 10.1016/j.matbio.2017.12.009.
    1. Roberts A.B. TGF-β signaling from receptors to the nucleus. Microbes Infect. 1999;1:1265–1273. doi: 10.1016/S1286-4579(99)00258-0.
    1. Gordon S., Taylor P.R. Monocyte and macrophage heterogeneity. Nat. Rev. Immunol. 2005;5:953–964. doi: 10.1038/nri1733.
    1. Rendl M., Mayer C., Weninger W., Tschachler E. Topically applied lactic acid increases spontaneous secretion of vascular endothelial growth factor by human reconstructed epidermis. Br. J. Dermatol. 2001;145:3–9. doi: 10.1046/j.1365-2133.2001.04274.x.
    1. Porporato P.E., Payen V.L., De Saedeleer C.J., Préat V., Thissen J.-P., Feron O., Sonveaux P. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis. 2012;15:581–592. doi: 10.1007/s10456-012-9282-0.
    1. Fong T.A.T., Shawver L.K., Sun L., Tang C., App H., Powell T.J., Kim Y.H., Schreck R., Wang X., Risau W., et al. SU5416 is a potent and selective inhibitor of the vascular endothelial growth factor receptor (Flk-1/KDR) that inhibits tyrosine kinase catalysis, tumor vascularization, and growth of multiple tumor types. Cancer Res. 1999;59:99–106.
    1. Gürünlüoğlu K., Demircan M., Taşçi A., Üremiş M.M., Türköz Y., Bağ H.G. The effects of different burn dressings on length of telomere and expression of telomerase in children with thermal burns. J. Burn Care Res. 2019;40:302–311. doi: 10.1093/jbcr/irz019.
    1. Gürünlüoğlu K., Demircan M., Taşçı A., Üremiş M.M., Türköz Y., Bağ H.G., Akinci A., Bayrakçı E. The Effects of Two Different Burn Dressings on Serum Oxidative Stress Indicators in Children with Partial Burn. J. Burn Care Res. 2019;40:444–450. doi: 10.1093/jbcr/irz037.
    1. Demircan M., Gürünlüoğlu K., Gözükara Bağ H.G., Koçbıyık A., Gül M., Üremiş N., Gül S., Gürünlüoğlu S., Türköz Y., Taşçı A. Impaction of the polylactic membrane or hydrofiber factor-α, transforming growth factor-b3 with silver dressings on the interleukin-6, tumor necrosis and tissues of pediatric patients with burns. Ulus. Travma Acil Cerrahi Derg. 2020;27:122–131. doi: 10.14744/tjtes.2020.30483.
    1. Leveen H.H., Falk G., Borek B., Diaz C., Lynfield Y., Wynkoop B.J., Mabunda C., Rubricius I., Ieanette L.M.D., Christoudias G. Chemical acidification of wounds. An adjuvant to healing and the unfavorable action of alkalinity and ammonia. Ann. Surg. 1973;178:745–753. doi: 10.1097/00000658-197312000-00011.
    1. Lloyd D.A., Mickel R.E., Kritzinger N.A. Topical treatment of burns using Aserbine. Burns. 1989;15:125–128. doi: 10.1016/0305-4179(89)90144-7.
    1. Kaufman T., Eichenlaub E.H.H., Angel M.F.F., Levin M., Futrell J.W.W. Topical acidification promotes healing of experimental deep partial thickness skin burns: A randomized double-blind preliminary study. Burns. 1985;12:84–90. doi: 10.1016/0305-4179(85)90032-4.
    1. Strohal R., Mittlböck M., Hämmerle G. The Management of Critically Colonized and Locally Infected Leg Ulcers with an Acid-Oxidizing Solution: A Pilot Study. Adv. Skin Wound Care. 2018;31:163–171. doi: 10.1097/.
    1. Smith R.F., Blasi D., Dayton S.L., Chipps D.D. Effects of sodium hypochlorite on the microbial flora of burns and normal skin. J. Trauma Inj. Infect. Crit. Care. 1974;14:938–944. doi: 10.1097/00005373-197411000-00005.
    1. Heling I., Rotstein I., Dinur T., Szwec-Levine Y., Steinberg D. Bactericidal and cytotoxic effects of sodium hypochlorite and sodium dichloroisocyanurate solutions in vitro. J. Endod. 2001;27:278–280. doi: 10.1097/00004770-200104000-00009.
    1. Hunt T.K., Gimbel M., Sen C.K. Revascularization of Wounds: The oxygen-Hypoxia Paradox. In: Figg W.D., Folkman J., editors. Angiogenesis. Springer; Boston, MA, USA: 2008. pp. 541–559.
    1. Gethin G.T., Cowman S., Conroy R.M. The impact of Manuka honey dressings on the surface pH of chronic wounds. Int. Wound J. 2008;5:185–194. doi: 10.1111/j.1742-481X.2007.00424.x.
    1. Silvetti A.N. An Effective Method of Treating Long-Enduring Wounds and Ulcers by Topical Applications of Solutions of Nutrients. J. Dermatol. Surg. Oncol. 1981;7:501–508. doi: 10.1111/j.1524-4725.1981.tb00685.x.
    1. Bergman A., Yanai J., Weiss J., Bell D., David M.P. Acceleration of wound healing by topical application of honey. An animal model. Am. J. Surg. 1983;145:374–376. doi: 10.1016/0002-9610(83)90204-0.
    1. Kruse C.R., Singh M., Targosinski S., Sinha I., Sørensen J.A., Eriksson E., Nuutila K. The effect of pH on cell viability, cell migration, cell proliferation, wound closure, and wound reepithelialization: In vitro and in vivo study. Wound Repair Regen. 2017;25:260–269. doi: 10.1111/wrr.12526.
    1. Sharpe J.R., Harris K.L., Jubin K., Bainbridge N.J., Jordan N.R. The effect of pH in modulating skin cell behaviour. Br. J. Dermatol. 2009;161:671–673. doi: 10.1111/j.1365-2133.2009.09168.x.
    1. Lönnqvist S., Emanuelsson P., Kratz G. Influence of acidic pH on keratinocyte function and re-epithelialisation of human in vitro wounds. J. Plast. Surg. Hand Surg. 2015;49:346–352. doi: 10.3109/2000656X.2015.1053397.
    1. Chai J.K. The pH value of granulating wound and skin graft in burn patients. Zhonghua Zheng Xing Shao Shang Wai Ke Za Zhi Chin. J. Plast. Surg. Burns. 1992;8:177–178.
    1. Richard C.Y. The relationship of ph of the granulation tissue and the take of the skin graft. Plast. Reconstr. Surg. 1957;19:213–217. doi: 10.1097/00006534-195703000-00004.
    1. Allen D.B. Wound Hypoxia and Acidosis Limit Neutrophil Bacterial Killing Mechanisms. Arch. Surg. 1997;132:991. doi: 10.1001/archsurg.1997.01430330057009.
    1. Jain R., Jain P.C. Production and partial characterization of collagenase of Streptomyces exfoliatus CFS 1068 using poultry feather. Indian J. Exp. Biol. 2010;48:174–178.
    1. Weimer M.S. Master’s Thesis. Oregon State University; Corvallis, OR, USA: 1967. Purification and Kinetics of Gelatinase Obtained from an Obligately Psychrophilic Marine Vibrio.
    1. Makinen P.L., Clewell D.B., An F., Makinen K.K. Purification and substrate specificity of a strongly hydrophobic extracellular metalloendopeptidase (‘gelatinase’) from Streptococcus faecalis (strain 0G1-10) J. Biol. Chem. 1989;264:3325–3334. doi: 10.1016/S0021-9258(18)94069-X.
    1. Cha J., Pedersen M.V., Auld D.S. Metal and pH dependence of heptapeptide catalysis by human matrilysin. Biochemistry. 1996;35:15831–18538. doi: 10.1021/bi962085f.
    1. Ring A., Tilkorn D., Ottomann C., Geomelas M., Steinstraesser L., Langer S., Goertz O. Intravital monitoring of microcirculatory and angiogenic response to lactocapromer terpolymer matrix in a wound model. Int. Wound J. 2011;8:112–117. doi: 10.1111/j.1742-481X.2010.00742.x.
    1. Demircan M., Gürünluoglu K., Gözde H., Bağ G., Koçbıyık A., Gül M., Üremiş N., Gül S., Gürünlüoğlu S., Türköz Y., et al. Impaction of the polylactic membrane or hydrofiber with silver dressings on the Interleukin-6, Tumor necrosis factor-α, Transforming growth factor-3 levels in the blood and tissues of pediatric patients with burns. Ulus. Travma Acil Cerrahi Derg. 2021;27:122–131.
    1. Jacobsen J.A., Major Jourden J.L., Miller M.T., Cohen S.M. To bind zinc or not to bind zinc: An examination of innovative approaches to improved metalloproteinase inhibition. Biochim. Biophys. Acta. Mol. Cell. Res. 2010;1803:72–94. doi: 10.1016/j.bbamcr.2009.08.006.
    1. Fields G.B. The Rebirth of Matrix Metalloproteinase Inhibitors: Moving Beyond the Dogma. Cells. 2019;8:984. doi: 10.3390/cells8090984.
    1. Greener B., Hughes A.A., Bannister N.P., Douglass J. Proteases and pH in chronic wounds. J. Wound Care. 2005;14:59–61. doi: 10.12968/jowc.2005.14.2.26739.
    1. Trengove N.J., Stacey M.C., Macauley S., Bennett N., Gibson J., Burslem F., Murphy G., Schultz G. Analysis of the acute and chronic wound environments: The role of proteases and their inhibitors. Wound Repair Regen. 1999;7:442–452. doi: 10.1046/j.1524-475X.1999.00442.x.
    1. Schultz G., Mozingo D., Romanelli M., Claxton K. Wound healing and TIME; new concepts and scientific applications. Wound Repair Regen. 2005;13:S1–S11. doi: 10.1111/j.1067-1927.2005.1304S1.x.
    1. Dunn K., Edwards-Jones V. The role of ActicoatTM with nanocrystalline silver in the management of burns. Burns. 2004;30((Suppl. S1)):S1–S9. doi: 10.1016/S0305-4179(04)90000-9.
    1. Ryssel H., Kloeters O., Germann G., Schäfer T., Wiedemann G., Oehlbauer M. The antimicrobial effect of acetic acid-An alternative to common local antiseptics? Burns. 2009;35:695–700. doi: 10.1016/j.burns.2008.11.009.
    1. Ryssel H., Andreas Radu C., Germann G., Kloeters O., Riedel K., Otte M., Kremer T. Suprathel-antiseptic matrix: In vitro model for local antiseptic treatment? Adv. Skin Wound Care. 2011;24:64–67. doi: 10.1097/01.ASW.0000394029.72400.b0.
    1. Blome-Eberwein S.A., Amani H., Lozano D.D., Gogal C., Boorse D., Pagella P. A bio-degradable synthetic membrane to treat superficial and deep second degree burn wounds in adults and children—4 year experience. Burns. 2021;47:838–846. doi: 10.1016/j.burns.2020.08.008.
    1. Braverman I.M. The cutaneous microcirculation. J. Investig. Dermatol. Symp. Proc. 2000;5:3–9. doi: 10.1046/j.1087-0024.2000.00010.x.
    1. Gladden L.B. Current Trends in Lactate Metabolism: Introduction. Med. Sci. Sports Exerc. 2008;40:475–476. doi: 10.1249/MSS.0b013e31816154c9.
    1. Lee D.C., Sohn H.A., Park Z.Y., Oh S., Kang Y.K., Lee K.M., Kang M., Jang J.Y., Yang S.-J., Noh H., et al. A lactate-induced response to hypoxia. Cell. 2015;161:595–609. doi: 10.1016/j.cell.2015.03.011.
    1. Falanga V., Zhou L., Yufit T. Low oxygen tension stimulates collagen synthesis and COL1A1 transcription through the action of TGF-β1. J. Cell. Physiol. 2002;191:42–50. doi: 10.1002/jcp.10065.
    1. Reinke J.M., Sorg H. Wound repair and regeneration. Eur. Surg. Res. 2012;49:35–43. doi: 10.1159/000339613.
    1. Chatham J.C. Lactate-The forgotten fuel! J. Physiol. 2002;542:333. doi: 10.1113/jphysiol.2002.020974.
    1. Lu Y., Wahl L.M. Oxidative Stress Augments the Production of Matrix Metalloproteinase-1, Cyclooxygenase-2, and Prostaglandin E 2 through Enhancement of NF-κB Activity in Lipopolysaccharide-Activated Human Primary Monocytes. J. Immunol. 2005;175:5423–5429. doi: 10.4049/jimmunol.175.8.5423.
    1. Marty P., Chatelain B., Lihoreau T., Tissot M., Dirand Z., Humbert P., Senez C., Secomandi E., Isidoro C., Rolin G. Halofuginone regulates keloid fibroblast fibrotic response to TGF-β induction. Biomed. Pharmacother. 2021;135:111182. doi: 10.1016/j.biopha.2020.111182.
    1. Nischwitz S., Popp D., Shubitidze D., Luze H., Haller H., Kamolz L. The successful use of polylactide wound dressings for chronic lower leg wounds—A retrospective analysis. Int. Wound J. 2021 in press.
    1. Haller H.L., Blome-Eberwein S.E., Branski L.K., Carson J.S., Crombie R.E., Hickerson W.L., Kamolz L.P., King B.T., Nischwitz S.P., Popp D., et al. Porcine xenograft and epidermal fully synthetic skin substitutes in the treatment of partial-thickness burns: A literature review. Medicina. 2021;57:432. doi: 10.3390/medicina57050432.

Source: PubMed

3
Se inscrever