Primary chronic cold agglutinin disease: an update on pathogenesis, clinical features and therapy

Sigbjørn Berentsen, Klaus Beiske, Geir E Tjønnfjord, Sigbjørn Berentsen, Klaus Beiske, Geir E Tjønnfjord

Abstract

Chronic cold agglutinin disease (CAD) is a subgroup of autoimmune hemolytic anemia. Primary CAD has traditionally been defined by the absence of any underlying or associated disease. The results of therapy with corticosteroids, alkylating agents and interferon-alpha have been poor. Cold reactive immunoglobulins against erythrocyte surface antigens are essential to pathogenesis of CAD. These cold agglutinins are monoclonal, usually IgMkappa autoantibodies with heavy chain variable regions encoded by the V(H)4-34 gene segment. By flowcytometric and immunohistochemical assessments, a monoclonal CD20+kappa+B-lymphocyte population has been demonstrated in the bone marrow of 90% of the patients, and lymphoplasmacytic lymphoma is a frequent finding. Novel attempts at treatment for primary CAD have mostly been directed against the clonal B-lymphocytes. Phase 2 studies have shown that therapy with the chimeric anti-CD20 antibody rituximab produced partial response rates of more than 50% and occasional complete responses. Median response duration, however, was only 11 months. In this review, we discuss the clinical and pathogenetic features of primary CAD, emphasizing the more recent data on its close association with clonal lymphoproliferative bone marrow disorders and implications for therapy. We also review the management and outline some perspectives on new therapy modalities.

Figures

Figure 1
Figure 1
Example of clinical course in primary CAD. Retrospective data from almost ten year follow-up of a female patient, now 74-years old. Abbreviations: Chloramb, chlorambucil; Chol, cholecystitis; Pred, prednisolone; Rit, rituximab.
Figure 2
Figure 2
Blood smear from patient with primary CAD. Most erythrocytes are agglutinated in variably large clumps. Giemsa, oil immersion, objective × 100.
Figure 3
Figure 3
During passage through acral blood vessels, cooling allows IgM cold agglutinin to bind to erythrocytes, causing agglutination and binding of complement C1 complex. C1 esterase activates C4 and C2, generating C3 convertase which binds and splits C3, leading to deposition of C3b on the erythrocyte surface. Upon subsequent warming, IgM removes from the cell surface and the agglutinated cells are detached from each other, while C3b remains bound. C3b may in turn activate C5, leading to the formation of the membrane attack complex and intra vascular cell lysis. Most destruction of C3b-coated erythrocytes, however, is mediated by reticulo-endothelial cells in the liver [15,16,32]. Intrahepatic conversion of C3b is responsible for the deposition of C3d on the surviving erythrocytes which are released into the systemic circulation.
Figure 4
Figure 4
Histopathological appearances in bone marrow trephine biopsy from a patient with primary CAD. Lymphoid infiltrates may be of variable size; large (A), medium-sized (B), or often small and poorly outlined (C) which renders them barely detectable within areas of hyperplastic erythropoiesis unless immunohistological staining is applied (D). A–C, HE-stain; D, Anti-CD20, horseradish peroxidase/diaminobenzidine. All photomicrographs are taken at identical magnification (× 40 objective) to enable comparison of individual infiltrates.

References

    1. Dacie J. The auto-immune haemolytic anaemias: Introduction. In: Dacie J, editor. The haemolytic anaemias. vol. 3. London: Churchill Livingstone; 1992. pp. 1–5.
    1. Petz LD, Garratty G. Classification and clinical characteristics of autoimmune hemolytic anemias. In: Petz LD, Garratty G, editors. Immune hemolytic anemias. Philadelphia, PA: Churchill Livingstone; 2004. pp. 61–131.
    1. Berentsen S, Ulvestad E, Langholm R, Beiske K, Hjorth-Hansen H, Ghanima W, Sorbo JH, Tjonnfjord GE. Primary chronic cold agglutinin disease: A population based clinical study of 86 patients. Haematologica. 2006;91(4):460–466.
    1. Ulvestad E, Berentsen S, Bo K, Shammas FV. Clinical immunology of chronic cold agglutinin disease. Eur J Haematol. 1999;63(4):259–266.
    1. Gertz MA. Cold hemolytic syndrome. Hematology Am Soc Hematol Educ Program. 2006:19–23.
    1. Landsteiner K. Über Beziehungen zwischen dem Blutserum und den Körperzellen. Münchener medizinische Wochenschrift. 1903;50:1812–1814.
    1. Clough MC, Richter IM. A study of an auto-agglutinin occurring in human serum. Johns Hopkins Hosp Bull. 1918;29:86–93.
    1. Rosenthal F, Corten M. Über das Phänomen der Auto-hämagglutination und über die Eigenscaften der Kältehämagglutinine. Folia Haematol (Leipzig) 1937;58:64–90.
    1. Dacie J. Auto-immune haemolytic anaemia (AIHA): Cold antibody syndromes I: Idiopathic types: Clinical presentation and haematological and serological findings. In: Dacie J, editor. The haemolytic anaemias. Vol. 3. London: Churchill Livingstone; 1992. pp. 210–239.
    1. Schubothe H. The cold hemagglutinin disease. Semin Hematol. 1966;3(1):27–47.
    1. Olesen H. Thermodynamics of the cold agglutinin reaction. Scand J Clin Lab Invest. 1966;18(1):1–15.
    1. Rosse WF, Adams JP. The variability of hemolysis in the cold agglutinin syndrome. Blood. 1980;56(3):409–416.
    1. Zilow G, Kirschfink M, Roelcke D. Red cell destruction in cold agglutinin disease. Infusionsther Transfusionsmed. 1994;21(6):410–415.
    1. Rorvik K. The syndrome of high-titre cold haemagglutination; a survey and a case report. Acta Med Scand. 1954;148(4):299–308.
    1. Jaffe CJ, Atkinson JP, Frank MM. The role of complement in the clearance of cold agglutinin-sensitized erythrocytes in man. J Clin Invest. 1976;58(4):942–949.
    1. Kirschfink M, Knoblauch K, Roelcke D. Activation of complement by cold agglutinins. Infusionsther Transfusionsmed. 1994;21(6):405–409.
    1. Nydegger UE, Kazatchkine MD, Miescher PA. Immunopathologic and clinical features of hemolytic anemia due to cold agglutinins. Semin Hematol. 1991;28(1):66–77.
    1. Gertz MA. Cold agglutinin disease. Haematologica. 2006;91(4):439–441.
    1. Dacie J. Treatment and prognosis of cold-antibody AIHA. In: Dacie J, editor. The haemolytic anaemias. Vol. 3. London: Churchill Livingstone; 1992. pp. 502–508.
    1. Petz LD, Garratty G. Management of autoimmune hemolytic anemias. In: Petz LD, Garratty G, editors. Immune hemolytic anemias. Philadelphia, PA: Churchill Livingstone; 2004. pp. 401–458.
    1. Sokol RJ, Hewitt S, Stamps BK. Autoimmune haemolysis: An 18-year study of 865 cases referred to a regional transfusion centre. Br Med J (Clin Res Ed) 1981;282(6281):2023–2027.
    1. Genty I, Michel M, Hermine O, Schaeffer A, Godeau B, Rochant H. Characteristics of autoimmune hemolytic anemia in adults: Retrospective analysis of 83 cases. Rev Med Interne. 2002;23(11):901–909.
    1. Lyckholm LJ, Edmond MB. Seasonal hemolysis due to cold-agglutinin syndrome. N Engl J Med. 1996;334(7):437.
    1. Ulvestad E. Paradoxical haemolysis in a patient with cold agglutinin disease. Eur J Haematol. 1998;60(2):93–100.
    1. Ulvestad E, Berentsen S, Mollnes TE. Acute phase haemolysis in chronic cold agglutinin disease. Scand J Immunol. 2001;54(1–2):239–242.
    1. Wiener AS, Unger LJ, Cohen L, Feldman J. Type-specific cold auto-antibodies as a cause of acquired hemolytic anemia and hemolytic transfusion reactions: Biologic test with bovine red cells. Ann Intern Med. 1956;44(2):221–240.
    1. Dacie J. Auto-immune haemolytic anaemia (AIHA): Cold-antibody syndromes II: Immunochemistry and specificity of the antibodies; serum complement in auto-immune haemolytic anaemia. In: Dacie J, editor. The haemolytic anaemias. Vol. 3. London: Churchill Livingstone; 1992. pp. 240–295.
    1. Dellagi K, Brouet JC, Schenmetzler C, Praloran V. Chronic hemolytic anemia due to a monoclonal IgG cold agglutinin with anti-Pr specificity. Blood. 1981;57(1):189–191.
    1. Monteverde A, Rivano MT, Allegra GC, Monteverde AI, Zigrossi P, Baglioni P, Gobbi M, Falini B, Bordin G, Pileri S. Essential mixed cryoglobulinemia, type II: A manifestation of a low-grade malignant lymphoma? Clinical–morphological study of 12 cases with special reference to immunohistochemical findings in liver frozen sections. Acta Haematol. 1988;79(1):20–25.
    1. Kuenn JW, Weber R, Teague PO, Keitt AS. Cryopathic gangrene with an IgM lambda cryoprecipitating cold agglutinin. Cancer. 1978;42(4):1826–1833.
    1. Berentsen S, Bo K, Shammas FV, Myking AO, Ulvestad E. Chronic cold agglutinin disease of the “idiopathic” type is a premalignant or low-grade malignant lymphoproliferative disease. APMIS. 1997;105(5):354–362.
    1. Lewis SM, Szur L, Dacie JV. The pattern of erythrocyte destruction in haemolytic anaemia, as studied with radioactive chromium. Br J Haematol. 1960;6:122–139.
    1. Rosse WF, Adams J, Logue G. Hemolysis by complement and cold-reacting antibodies: Time and temperature requirements. Am J Hematol. 1977;2(3):259–270.
    1. Rosse WF, Hillmen P, Schreiber AD. Immune-mediated hemolyticanemia. Hematology Am Soc Hematol Educ Program. 2004:48–62.
    1. Christenson WN, Dacie JV, Croucher BE, Charlwood PA. Electrophoretic studies on sera containing high-titre cold haemagglutinins: Identification of the antibody as the cause of an abnormal gamma 1 peak. Br J Haematol. 1957;3(3):262–275.
    1. Fudenberg HH, Kunkel HH. Physical properties of the red cell agglutinins in acquired hemolytic anemia. J Exp Med. 1957;106(5):689–702.
    1. Harboe M, Deverill J. Immunochemical properties of cold haemagglutinins. Scand J Haematol. 1964;61:223–237.
    1. Harboe M, van Furth R, Schubothe H, Lind K, Evans RS. Exclusive occurrence of K chains in isolated cold haemagglutinins. Scand J Haematol. 1965;2(3):259–266.
    1. Harboe M, Torsvik H. Protein abnormalities in the cold haemagglutinin syndrome. Scand J Haematol. 1969;6(6):416–426.
    1. Stone MJ, McElroy YG, Pestronk A, Reynolds JL, Newman JT, Tong AW. Human monoclonal macroglobulins with antibody activity. Semin Oncol. 2003;30(2):318–324.
    1. Hughey CT, Brewer JW, Colosia AD, Rosse WF, Corley RB. Production of IgM hexamers by normal and autoimmune B cells: Implications for the physiologic role of hexameric IgM. J Immunol. 1998;161(8):4091–4097.
    1. Randall TD, King LB, Corley RB. The biological effects of IgM hexamer formation. Eur J Immunol. 1990;20(9):1971–1979.
    1. Pascual V, Victor K, Spellerberg M, Hamblin TJ, Stevenson FK, Capra JD. VH restriction among human cold agglutinins. The VH4-21 gene segment is required to encode anti-I and anti-I specificities. J Immunol. 1992;149(7):2337–2344.
    1. Thorpe SJ, Boult CE, Stevenson FK, Scott ML, Sutherland J, Spellerberg MB, Natvig JB, Thompson KM. Cold agglutinin activity is common among human monoclonal IgM Rh system antibodies using the V4-34 heavy chain variable gene segment. Transfusion. 1997;37(11–12):1111–1116.
    1. Potter KN. Molecular characterization of cold agglutinins. Transfus Sci. 2000;22(1–2):113–119.
    1. Jefferies LC, Carchidi CM, Silberstein LE. Naturally occurring anti-i/I cold agglutinins may be encoded by different VH3 genes as well as the VH4.21 gene segment. J Clin Invest. 1993;92(6):2821–2833.
    1. Jonsen J, Kass E, Harboe M. Complement and complement components in acquired hemolytic anemia with high titer cold antibodies. Acta Med Scand. 1961;170:725–729.
    1. Berentsen S, Ulvestad E, Gjertsen BT, Hjorth-Hansen H, Langholm R, Knutsen H, Ghanima W, Shammas FV, Tjonnfjord GE. Rituximab for primary chronic cold agglutinin disease: A prospective study of 37 courses of therapy in 27 patients. Blood. 2004;103(8):2925–2928.
    1. Golay J, Cittera E, Di Gaetano N, Manganini M, Mosca M, Nebuloni M, van Rooijen N, Vago L, Introna M. The role of complement in the therapeutic activity of rituximab in amurine B lymphoma model homing in lymph nodes. Haematologica. 2006;91(2):176–183.
    1. Harjunpaa A, Junnikkala S, Meri S. Rituximab (anti-CD20) therapy of B-cell lymphomas: Direct complement killing is superior to cellular effector mechanisms. Scand J Immunol. 2000;51(6):634–641.
    1. Silberstein LE, Robertson GA, Harris AC, Moreau L, Besa E, Nowell PC. Etiologic aspects of cold agglutinin disease: Evidence for cytogenetically defined clones of lymphoid cells and the demonstration that an anti-Pr cold auto antibody is derived from a chromosomally aberrant B cell clone. Blood. 1986;67(6):1705–1709.
    1. Berentsen S. Chronic cold agglutinin disease. Tidsskr Nor Laegeforen. 1995;115(4):473–475.
    1. Isaksson E, Bjorkholm M, Holm G, Johansson B, Nilsson B, Mellstedt H, Osterborg A. Blood clonal B-cell excess in patients with monoclonal gammopathy of undetermined significance (MGUS): Association with malignant transformation. Br J Haematol. 1996;92(1):71–76.
    1. Berger F, Isaacson PG, Piris MA, Harris NL, Müller-Hermelink HK, Nathwani BN, Swerdlow SH. Lymphoplasmacytic lymphoma/Waldenström macro-globulinemia. In: Jaffe ES, Harris NL, Stein H, Vardiman J, editors. Pathology and genetics of tumours of the haematopoietic and lymphoid tissues. WHO classification of tumours. Vol. 3. Lyon: IARC Press; 2001. pp. 132–134.
    1. Owen RG, Treon SP, Al Katib A, Fonseca R, Greipp PR, McMaster ML, Morra E, Pangalis GA, San Miguel JF, Branagan AR, Dimopoulos MA. Clinicopathological definition of Waldenstrom's macroglobulinemia: Consensus panel recommendations from the Second International Workshop on Waldenstrom's Macroglobulinemia. Semin Oncol. 2003;30(2):110–115.
    1. Michaux L, Dierlamm J, Wlodarska L, Criel A, Louwagie A, Ferrant A, Hagemeijer A, Vanden BH. Trisomy 3q11–q29 is recurrently observed in B-cell non-Hodgkin's lymphomas associated with cold agglutinin syndrome. Ann Hematol. 1998;76(5):201–204.
    1. Chng WJ, Chen J, Lim S, Chong SM, Kueh YK, Lee SH. Translocation (8;22) in cold agglutinin disease associated with B-cell lymphoma. Cancer Genet Cytogenet. 2004;152(1):66–69.
    1. Crisp D, Pruzanski W. B-cell neoplasms with homogeneous cold-reacting antibodies (cold agglutinins) Am J Med. 1982;72(6):915–922.
    1. Dacie J. Haemolytic anaemias associated with malignant lymphomas other than Hodgkin's disease and chronic lymphocytic leukaemia (CLL) In: Dacie J, editor. The haemolytic anaemias. Vol. 4. London: Churchill Livingstone; 1995. pp. 27–40.
    1. Gehrs BC, Friedberg RC. Autoimmune hemolytic anemia. Am J Hematol. 2002;69(4):258–271.
    1. O'Connor BM, Clifford JS, Lawrence WD, Logue GL. Alpha-interferon for severe cold agglutinin disease. Ann Intern Med. 1989;111(3):255–256.
    1. Hillen HF, Bakker SJ. Failure of interferon-alpha-2b therapy in chronic cold agglutinin disease. Eur J Haematol. 1994;53(4):242–243.
    1. Berentsen S, Tjonnfjord GE, Shammas FV, Bergheim J, Hammerstrom J, Langholm R, Ulvestad E. No response to cladribine in five patients with chronic cold agglutinin disease. Eur J Haematol. 2000;65(1):88–90.
    1. Maloney DG, Grillo-Lopez AJ, Bodkin DJ, White CA, Liles TM, Royston I, Varns C, Rosenberg J, Levy R. IDEC-C2B8: Results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin's lymphoma. J Clin Oncol. 1997;15(10):3266–3274.
    1. McLaughlin P, Grillo-Lopez AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, Bence-Bruckler I, White CA, Cabanillas F, Jain V, Ho AD, Lister J, Wey K, Shen D, Dallaire BK. Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: Half of patients respond to a four-dose treatment program. J Clin Oncol. 1998;16(8):2825–2833.
    1. Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, Hanna N, Anderson DR. Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood. 1994;83(2):435–445.
    1. Berentsen S, Tjonnfjord GE, Brudevold R, Gjertsen BT, Langholm R, Lokkevik E, Sorbo JH, Ulvestad E. Favourable response to therapy with the anti-CD20 monoclonal antibody rituximab in primary chronic cold agglutinin disease. Br J Haematol. 2001;115(1):79–83.
    1. Schollkopf C, Kjeldsen L, Bjerrum OW, Mourits-Andersen HT, Nielsen JL, Christensen BE, Jensen BA, Pedersen BB, Taaning EB, Klausen TW, Birgens H. Rituximab in chronic cold agglutinin disease: A prospective study of 20 patients. Leuk Lymphoma. 2006;47(2):253–260.
    1. Lee EJ, Kueck B. Rituxan in the treatment of cold agglutinin disease. Blood. 1998;92(9):3490–3491.
    1. Finazzi G. Rituximab in autoimmune cytopenias: For which patients? Haematologica. 2002;87(2):113–114.
    1. Camou F, Viallard JF, Pellegrin JL. Rituximab in cold agglutinin disease. Rev Med Interne. 2003;24(8):501–504.
    1. Cesana C, Barbarano L, Miqueleiz S, Lucchesini C, Ricci F, Varettoni M, Filippini D, Lazzarino M, Morra E. Clinical characteristics and outcome of immunoglobulin M related disorders. Clin Lymphoma. 2005;5(4):261–264.
    1. Merlini G, Stone MJ. Dangerous small B-cell clones. Blood. 2006;108(8):2520–2530.
    1. Kriangkum J, Taylor BJ, Treon SP, Mant MJ, Belch AR, Pilarski LM. Clonotypic IgM V/D/J sequence analysis in Waldenstrom macroglobulinemia suggests an unusual B-cell origin and an expansion of polyclonal B cells in peripheral blood. Blood. 2004;104(7):2134–2142.
    1. Ulvestad E, Aarseth JH, Vedeler C, Nyland H, Myhr KM. The effects of interferon-alpha2a on concentrations of immunoglobulins, complement and lymphocytes in patients with multiple sclerosis. Scand J Immunol. 2004;59(1):103–108.
    1. Sivaraman S, Venugopal P, Ranganathan R, Deshpande CG, Huang X, Jajeh A, Gregory SA, O'Brien T, Preisler HD. Effect of interferon-alpha on CD20 antigen expression of B-cell chronic lymphocytic leukemia. Cytokines Cell Mol Ther. 2000;6(2):81–87.
    1. Golay J, Lazzari M, Facchinetti V, Bernasconi S, Borleri G, Barbui T, Rambaldi A, Introna M. CD20 levels determine the in vitro susceptibility to rituximab and complement of B-cell chronic lymphocytic leukemia: Further regulation by CD55 and CD59. Blood. 2001;98(12):3383–3389.
    1. Binstadt BA, Geha RS, Bonilla FA. IgG Fc receptor polymorphisms in human disease: Implications for intravenous immunoglobulin therapy. J Allergy Clin Immunol. 2003;111(4):697–703.
    1. Cartron G, Dacheux L, Salles G, Solal-Celigny P, Bardos P, Colombat P, Watier H. Therapeutic activity of humanized anti-CD20 monoclonal antibody and polymorphism in IgG Fc receptor FcgammaRIIIa gene. Blood. 2002;99(3):754–758.
    1. Treon SP, Hansen M, Branagan AR, Verselis S, Emmanouilides C, Kimby E, Frankel SR, Touroutoglou N, Turnbull B, Anderson KC, Maloney DG, Fox EA. Polymorphisms in FcgammaRIIIA (CD16) receptor expression are associated with clinical response to rituximab in Waldenstrom's macro-globulinemia. J Clin Oncol. 2005;23(3):474–481.
    1. O'Brien S, Kantarjian H, Keating MJ. Purine analogs in chronic lymphocytic leukemia and Waldenstrom's macroglobulinemia. Ann Oncol. 1996;7(Suppl. 6):S27–S33.
    1. Leblond V, Choquet S. Fludarabine in Waldenstrom's macroglobulinemia. Semin Oncol. 2003;30(2):239–242.
    1. Jacobs A. Cold agglutinin hemolysis responding to fludarabine therapy. Am J Hematol. 1996;53(4):279–280.
    1. Di Gaetano N, Xiao Y, Erba E, Bassan R, Rambaldi A, Golay J, Introna M. Synergism between fludarabine and rituximab revealed in a follicular lymphoma cell line resistant to the cytotoxic activity of either drug alone. Br J Haematol. 2001;114(4):800–809.
    1. Weber DM, Dimopoulos MA, Delasalle K, Rankin K, Gavino M, Alexanian R. 2-Chlorodeoxyadenosine alone and in combination for previously untreated Waldenstrom's macroglobulinemia. Semin Oncol. 2003;30(2):243–247.
    1. Swords R, Nolan A, Fay M, Quinn J, O'Donnell R, Murphy PT. Treatment of refractory fludarabine induced autoimmune haemolytic anaemia with the anti-CD20 monoclonal antibody rituximab. Clin Lab Haematol. 2006;28(1):57–59.
    1. Berentsen S, Tjonnfjord GE. Rituximab and fludarabine combination therapy for chronic cold agglutinin disease. [11th congress of the European Hematology Association, Amsterdam, Abstract 0027] Haematologica. 2006;91(Suppl. 1):11.
    1. Hillmen P, Young NS, Schubert J, Brodsky RA, Socie G, Muus P, Roth A, Szer J, Elebute MO, Nakamura R, Browne P, Risitano AM, Hill A, Schrezenmeier H, Fu CL, Maciejewski J, Rollins SA, Mojcik CF, Rother RP, Luzzatto L. The complement inhibitor eculizumab in paroxysmal nocturnal hemoglobinuria. N Engl J Med. 2006;355(12):1233–1243.

Source: PubMed

3
Se inscrever