How to Diagnose and Manage Angina Without Obstructive Coronary Artery Disease: Lessons from the British Heart Foundation CorMicA Trial

Thomas J Ford, Colin Berry, Thomas J Ford, Colin Berry

Abstract

Patients with symptoms and/or signs of ischaemia but no obstructive coronary artery disease (INOCA) present a diagnostic and therapeutic challenge. Microvascular and/or vasospastic angina are the two most common causes of INOCA; however, invasive coronary angiography lacks the sensitivity to diagnose these functional coronary disorders. In this article, the authors summarise the rationale for invasive testing in the absence of obstructive coronary disease, namely that correct treatment for angina patients starts with the correct diagnosis. They provide insights from the CORonary MICrovascular Angina (CorMicA) study, where an interventional diagnostic procedure was performed with linked medical therapy to improve patient health. Identification of these distinct disorders (microvascular angina, vasospastic angina or non-cardiac chest pain) is key for stratifying INOCA patients, allowing prognostic insights and better patient care with linked therapy based on contemporary guidelines. Finally, they propose a framework to diagnose and manage patients in this common clinical scenario.

Keywords: Stable angina pectoris; coronary physiology; coronary vasoreactivity testing; elective coronary angiography; ischaemia; microvascular angina; vasospastic angina.

Conflict of interest statement

Disclosure: TJF has no conflicts of interest. CB is employed by the University of Glasgow, which holds consultancy and research agreements with companies that have commercial interests in the diagnosis and treatment of angina. These companies include Abbott Vascular, AstraZeneca, Boehringer Ingelheim, GSK, Menarini Pharmaceuticals, Opsens, Philips and Siemens Healthcare. CorMicA study is an investigator-initiated clinical trial that was funded by the British Heart Foundation (PG/17/2532884; RE/13/5/30177; RE/18/634217). Clinicaltrials.gov: NCT03193294.

Figures

Figure 1:. Ischaemia with No Obstructive Coronary…
Figure 1:. Ischaemia with No Obstructive Coronary Artery Disease: A Coronary Syndrome
Figure 2:. Interventional Diagnostic Procedure in Ischaemia…
Figure 2:. Interventional Diagnostic Procedure in Ischaemia with No Obstructive Coronary Artery Disease for Diagnosis and Stratified Management
Figure 3:. Prevalence and Treatment of Ischaemia…
Figure 3:. Prevalence and Treatment of Ischaemia with No Obstructive Coronary Artery Disease

References

    1. Wang H, Naghavi M, Allen C et al. Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980 2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet. 2016;388:1459–544. doi: 10.1016/s0140-6736(14)61682-2.
    1. Cook S, Walker A, Hugli O et al. Percutaneous coronary interventions in Europe: prevalence, numerical estimates, and projections based on data up to 2004. Clin Res Cardiol. 2007;96:375–82. doi: 10.1007/s00392-007-0513-0.
    1. Patel MR, Peterson ED, Dai D et al. Low diagnostic yield of elective coronary angiography. N Engl J Med. 2010;362:886–95. .
    1. Jespersen L, Hvelplund A, Abildstrom SZ et al. Stable angina pectoris with no obstructive coronary artery disease is associated with increased risks of major adverse cardiovascular events. Eur Heart J. 2012;33:734–44. doi: 10.1093/eurheartj/ehr331.
    1. Maddox TM, Stanislawski MA, Grunwald GK et al. Nonobstructive coronary artery disease and risk of myocardial infarction. JAMA. 2014;312:1754–63. doi: 10.1001/jama.2014.14681.
    1. Tavella R, Cutri N, Tucker G et al. Natural history of patients with insignificant coronary artery disease. Eur Heart J Qual Care Clin Outcomes. 2016;2:117–24. doi: 10.1093/ehjqcco/qcv034.
    1. Ford TJ, Corcoran D, Sidik N et al. MINOCA: requirement for definitive diagnostic work-up. Heart Lung Circ. 2019;28:e4–e6. doi: 10.1016/j.hlc.2018.04.001.
    1. Sara JD, Widmer RJ, Matsuzawa Y et al. Prevalence of coronary microvascular dysfunction among patients with chest pain and nonobstructive coronary artery disease. JACC Cardiovasc Interv. 2015;8:1445–53. doi: 10.1016/j.jcin.2015.06.017.
    1. Mygind ND, Michelsen MM, Pena A et al. Coronary microvascular function and cardiovascular risk factors in women with angina pectoris and no obstructive coronary artery disease: the iPOWER study. J Am Heart Assoc. 2016;5:e003064. doi: 10.1161/jaha.115.003064.
    1. Summers MR, Lerman A, Lennon RJ et al. Myocardial ischaemia in patients with coronary endothelial dysfunction: insights from body surface ECG mapping and implications for invasive evaluation of chronic chest pain. Eur Heart J. 2011;32:2758–65. doi: 10.1093/eurheartj/ehr221.
    1. Taqueti VR, Shaw LJ, Cook NR et al. Excess cardiovascular risk in women relative to men referred for coronary angiography is associated with severely impaired coronary flow reserve, not obstructive disease. Circulation. 2017;135:566–77. doi: 10.1161/circulationaha.116.023266.
    1. Gould KL, Johnson NP et al. Nitroglycerine and angina: evolving clinical coronary physiology beyond fractional flow reserve and coronary flow reserve. Circulation. 2017;136:35–8. doi: 10.1161/circulationaha.117.028791.
    1. Hoffman JI, Buckberg GD. The myocardial oxygen supply:demand index revisited. J Am Heart Assoc. 2014;3:e000285. doi: 10.1161/JAHA.113.000285.
    1. Gould KL, Johnson NP et al. Coronary physiology beyond coronary flow reserve in microvascular angina: JACC state-of-the-art review. J Am Coll Cardiol. 2018;72:2642–62. doi: 10.1016/j.jacc.2018.07.106.
    1. Ford TJ, Corcoran D, Berry C et al. Coronary artery disease: physiology and prognosis. Eur Heart J. 2017;38:1990–2. doi: 10.1093/eurheartj/ehx226.
    1. Ford TJ, Berry C, De Bruyne B et al. Physiological predictors of acute coronary syndromes: emerging insights from the plaque to the vulnerable patient. JACC Cardiovasc Interv. 2017;10:2539–47. doi: 10.1016/j.jcin.2017.08.059.
    1. Raphael CE, Cooper R, Parker KH et al. Mechanisms of myocardial ischemia in hypertrophic cardiomyopathy: insights from wave intensity analysis and magnetic resonance. J Am Coll Cardiol. 2016;68:1651–60. doi: 10.1016/j.jacc.2016.07.751.
    1. Ahn JH, Kim SM, Park SJ et al. Coronary microvascular dysfunction as a mechanism of angina in severe as: prospective adenosine-stress CMR study. J Am Coll Cardiol. 2016;67:1412–22. doi: 10.1016/j.jacc.2016.01.013.
    1. Gould KL, Johnson NP et al. Imaging coronary blood flow in AS: let the data talk, again. J Am Coll Cardiol. 2016;67:1423–6. doi: 10.1016/j.jacc.2016.01.053.
    1. Ford TJ, Corcoran D, Berry C et al. Stable coronary syndromes: pathophysiology, diagnostic advances and therapeutic need. Heart. 2018;104:284–92. doi: 10.1136/heartjnl-2017-311446.
    1. Taqueti VR, Di Carli MF et al. Coronary microvascular disease pathogenic mechanisms and therapeutic options. J Am Coll Cardiol. 2018;72:2625–41. doi: 10.1016/j.jacc.2018.09.042.
    1. De Bruyne B, Baudhuin T, Melin JA et al. Coronary flow reserve calculated from pressure measurements in humans Validation with positron emission tomography. Circulation. 1994;89:1013–22. doi: 10.1161/01.cir.89.3.1013.
    1. Van’t Veer M, Pijls NHJ, Hennigan B et al. Comparison of different diastolic resting indexes to iFR: are they all equal? J Am Coll Cardiol. 2017;70:3088–96. doi: 10.1016/j.jacc.2017.10.066.
    1. Pijls NHJ et al. Coronary thermodilution to assess flow reserve: validation in humans. Circulation. 2002;105:2482–6.
    1. Murthy VL, Naya M, Taqueti VR et al. Effects of sex on coronary microvascular dysfunction and cardiac outcomes. Circulation. 2014;129:2518–27. doi: 10.1161/CIRCULATIONAHA.113.008507.
    1. Fearon WF, Balsam LB, Farouque HM et al. Novel index for invasively assessing the coronary microcirculation. Circulation. 2003;107:3129–32. doi: 10.1161/01.cir.0000080700.98607.d1.
    1. Lee BK, Lim HS, Fearon WF et al. Invasive evaluation of patients with angina in the absence of obstructive coronary artery disease. Circulation. 2015;131:1054–60. doi: 10.1161/circulationaha.114.012636.
    1. Teunissen PF, de Waard GA, Hollander MR et al. Doppler-derived intracoronary physiology indices predict the occurrence of microvascular injury and microvascular perfusion deficits after angiographically successful primary percutaneous coronary intervention. Circ Cardiovasc Interv. 2015;8:e001786. doi: 10.1161/circinterventions.114.001786.
    1. Sueda S, Kohno H, Ochi T, Uraoka T et al. Overview of the acetylcholine spasm provocation test. Clin Cardiol. 2015;38:430–8. doi: 10.1002/clc.22403.
    1. Suwaidi JA, Hamasaki S, Higano ST et al. Long-term follow-up of patients with mild coronary artery disease and endothelial dysfunction. Circulation. 2000;101:948–54. doi: 10.1161/01.cir.101.9.948.
    1. Ford TJ, Stanley B, Good R et al. Stratified medical therapy using invasive coronary function testing in angina: CorMicA trial. J Am Coll Cardiol. 2018;72:2841–55. doi: 10.1016/j.jacc.2018.09.006.
    1. Ford TJ, Corcoran D, Oldroyd KG et al. Rationale and design of the British Heart Foundation (BHF) Coronary Microvascular Angina (CorMicA) stratified medicine clinical trial. Am Heart J. 2018;201:86–94. doi: 10.1016/j.ahj.2018.03.010.
    1. Rose G, McCartney P, Reid DD et al. Self-administration of a questionnaire on chest pain and intermittent claudication. Br J Prev Soc Med. 1977;31:42–8. doi: 10.1136/jech.31.1.42.
    1. Beltrame JF, Crea F, Kaski JC et al. International standardization of diagnostic criteria for vasospastic angina. Eur Heart J. 2017;38:2565–8. doi: 10.1093/eurheartj/ehv351.
    1. Ong P, Camici PG, Beltrame JF et al. Coronary Vasomotion Disorders International Study Group (COVADIS) International standardization of diagnostic criteria for microvascular angina. Int J Cardiol. 2018;250:16–20. doi: 10.1016/j.ijcard.2017.08.068.
    1. Task Force Members Montalescot G Sechtem U etal 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur Heart J. 2013;34:2949–3003. doi: 10.1093/eurheartj/eht296.
    1. Chan PS, Jones PG, Arnold SA, Spertus JA et al. Development and validation of a short version of the Seattle angina questionnaire. Circ Cardiovasc Qual Outcomes. 2014;7:640–7. doi: 10.1161/circoutcomes.114.000967.
    1. Perk J, De Backer G, Gohlke H et al. European Guidelines on cardiovascular disease prevention in clinical practice (version 2012). The Fifth Joint Task Force of the European Society of Cardiology and Other Societies on Cardiovascular Disease Prevention in Clinical Practice (constituted by representatives of nine societies and by invited experts) Eur Heart J. 2012;33:1635–701. doi: 10.3410/f.718277733.793490996.
    1. Crea F, Bairey Merz CN, Beltrame JF et al. The parallel tales of microvascular angina and heart failure with preserved ejection fraction: a paradigm shift. Eur Heart J. 2017;38:473–7. doi: 10.1093/eurheartj/ehw461.
    1. Pauly DF, Johnson BD, Anderson RD et al. In women with symptoms of cardiac ischemia, nonobstructive coronary arteries, and microvascular dysfunction, angiotensin-converting enzyme inhibition is associated with improved microvascular function: A double-blind randomized study from the National Heart, Lung and Blood Institute Women’s Ischemia Syndrome Evaluation (WISE) Am Heart J. 2011;162:678–84. doi: 10.1016/j.ahj.2011.07.011.
    1. Houghton JL, Pearson TA, Reed RG et al. Cholesterol lowering with pravastatin improves resistance artery endothelial function: report of six subjects with normal coronary arteriograms. Chest. 2000;118:756–60. doi: 10.1378/chest.118.3.756.
    1. Russo G, Di Franco A, Lamendola P et al. Lack of effect of nitrates on exercise stress test results in patients with microvascular angina. Cardiovasc Drugs Ther. 2013;27:229–34. doi: 10.1007/s10557-013-6439-z.
    1. Beltrame JF, Horowitz JD. Why do nitrates have limited efficacy in coronary microvessels? Cardiovasc Drugs Ther. 2013;27:187–8. doi: 10.1007/s10557-013-6454-0.
    1. Taqueti VR, Solomon SD, Shah AM et al. Coronary microvascular dysfunction and future risk of heart failure with preserved ejection fraction. Eur Heart J. 2018;39:840–9. doi: 10.1093/eurheartj/ehx721.
    1. Redfield MM, Anstrom KJ, Levine JA et al. Isosorbide mononitrate in heart failure with preserved ejection fraction. N Engl J Med. 2015;373:2314–24. doi: 10.1056/NEJMoa1510774.
    1. Shah NR, Cheezum MK, Veeranna V et al. Ranolazine in symptomatic diabetic patients without obstructive coronary artery disease: impact on microvascular and diastolic function. J Am Heart Assoc. 2017;6:e005027. doi: 10.1161/jaha.116.005027.
    1. Bairey Merz CN, Handberg EM, Shufelt CL et al. A randomized, placebo-controlled trial of late Na current inhibition (ranolazine) in coronary microvascular dysfunction (CMD): impact on angina and myocardial perfusion reserve. Eur Heart J. 2016;37:1504–13. doi: 10.1093/eurheartj/ehv647.
    1. Corcoran D, Ford TJ, Hsu L-Y et al. Rationale and design of the Coronary Microvascular Angina Cardiac Magnetic Resonance Imaging (CorCMR) diagnostic study: the CorMicA CMR sub-study. Open Heart. 2018;5:e000924. doi: 10.1136/openhrt-2018-000924.
    1. Akasaka T, Yoshida K, Hozumi T et al. Comparison of coronary flow reserve between focal and diffuse vasoconstriction induced by ergonovine in patients with vasospastic angina. Am J Cardiol. 1997;80:705–10. doi: 10.1016/s0002-9149(97)00499-2.
    1. Nishigaki K, Inoue Y, Yamanouchi Y et al. Prognostic effects of calcium channel blockers in patients with vasospastic angina a meta-analysis. Circ J. 2010;74:1943–50. doi: 10.1253/circj.cj-10-0292.
    1. Lombardi M, Morales MA, Michelassi C et al. Efficacy of isosorbide-5-mononitrate versus nifedipine in preventing spontaneous and ergonovine-induced myocardial ischaemia. A double-blind, placebo-controlled study. Eur Heart J. 1993;14:845–51. doi: 10.1093/eurheartj/14.6.845.
    1. Marti V, Ligero C, Garcia J et al. Stent implantation in variant angina refractory to medical treatment. Clin Cardiol. 2006;29:530–3. doi: 10.1002/clc.1.
    1. Kajihara H, Tachiyama Y, Hirose T et al. Eosinophilic coronary periarteritis (vasospastic angina and sudden death), a new type of coronary arteritis: report of seven autopsy cases and a review of the literature. Virchows Arch. 2013;462:239–48. doi: 10.1007/s00428-012-1351-7.
    1. Szot W, Zajac J, Kubinyi A, Kostkiewicz M et al. The effects of cardiac rehabilitation on overall physical capacity and myocardial perfusion in women with microvascular angina. Kardiol Pol. 2016;74:431–8. doi: 10.5603/KP.a2015.0198.
    1. Anderson L, Thompson DR, Oldridge N Exercise-based cardiac rehabilitation for coronary heart disease. Cochrane Database Syst Rev. 2016. CD001800 pp.
    1. Petrie KJ, Weinman J, Sharpe N, Buckley J et al. Role of patients’ view of their illness in predicting return to work and functioning after myocardial infarction: longitudinal study. BMJ. 1996;312:1191–4. doi: 10.1136/bmj.312.7040.1191.
    1. Kirtane AJ. ORBITA2. Circulation. 2018;138:1793–6. doi: 10.1161/CIRCULATIONAHA.118.035331.
    1. Ford TJ, Rocchiccioli P, Good R et al. Systemic microvascular dysfunction in microvascular and vasospastic angina. Eur Heart J. 2018;39:4086–97. doi: 10.1093/eurheartj/ehy529.

Source: PubMed

3
Se inscrever