Effect of tomato industrial processing on phenolic profile and antiplatelet activity

Eduardo Fuentes, Oscar Forero-Doria, Gilda Carrasco, Adolfo Maricán, Leonardo S Santos, Marcelo Alarcón, Iván Palomo, Eduardo Fuentes, Oscar Forero-Doria, Gilda Carrasco, Adolfo Maricán, Leonardo S Santos, Marcelo Alarcón, Iván Palomo

Abstract

Background: Regular consumption of fruits and vegetables (e.g., tomatoes) has been shown to be beneficial in terms of reducing the incidence of cardiovascular diseases. The industrial processing of tomatoes into tomato-based products includes several thermal treatments. Very little is known on the effect of tomato industrial processing on antiaggregatory activity and phenolic profile.

Methods: It was assessed the effect of tomato and by-products extracts on platelet aggregation induced by ADP, collagen, TRAP-6 and arachidonic acid. These in vitro antithrombotic properties were further supported in an in vivo model of thrombosis. A set of antiplatelet compounds has been selected for HPLC analysis in the different extracts.

Results: Some natural compounds such as chlorogenic, caffeic, ferulic and p-coumaric acids were identified by HPLC in tomatoes and its products may inhibit platelet activation. Red tomatoes, tomato products (sauce, ketchup and juice) and by-products extracts inhibited platelet aggregation induced adenosine 5'-diphosphate, collagen, thrombin receptor activator peptide-6 and arachidonic acid, but to a different extent. Also, pomace extract presents antithrombotic activity.

Conclusions: Processed tomatoes may have a higher content of health-benefiting compounds than fresh ones. Pomace even presents the best antiplatelet activity. Finally, tomato products may be used as a functional ingredient adding antiplatelet activities to processed foods.

Figures

Figure 1
Figure 1
Quantitation of the inhibitory effect of tomato and its products on platelet aggregation induced by ADP (8 µmol/L), collagen (1.5 μg/mL), TRAP-6 (30 µmol/L) or AA (1 mmol/L). Results were expressed as % inhibition (mean ± SEM, n = 3). *p<0.05 vs. negative control (saline 0.9%).
Figure 2
Figure 2
Pomace extract inhibits laser-induced thrombus formation in mesenteric artery of C57BL/6 mice. (A) Representative images of thrombus formation at baseline, 20, 40 and 60 min after laser-injured vascular injury in mouse mesenteric artery. (B) Representative time course changes of thrombus growth rate among the control (saline), pomace extract and ASA at 60 min after laser irradiation.

References

    1. World Health Organization. WHO publishes definitive atlas on global heart disease and stroke epidemic. Indian J. Med. Sci. 2004;58:405–406.
    1. Laslett L., Alagona P., Clark B., Drozda J., Saldivar F., Wilson S., Poe C., Hart M. The worldwide environment of cardiovascular disease: prevalence, diagnosis, therapy, and policy issues: A report from the American College of Cardiology. J. Am. Coll. Cardiol. 2012;60:S1–S49. doi: 10.1016/j.jacc.2012.11.002.
    1. Fuentes E., Fuentes F., Andrés V., Pello O., de Mora J., Palomo I. Role of platelets as mediators that link inflammation and thrombosis in atherosclerosis. Platelets. 2013;24:255–262. doi: 10.3109/09537104.2012.690113.
    1. Willoughby S., Holmes A., Loscalzo J. Platelets and cardiovascular disease. Eur. J. Cardiovasc. Nurs. 2002;1:273–288. doi: 10.1016/S1474-5151(02)00038-5.
    1. Nishijima K., Kiryu J., Tsujikawa A., Miyamoto K., Honjo M., Tanihara H., Nonaka A., Yamashiro K., Katsuta H., Miyahara S., et al. Platelets adhering to the vascular wall mediate postischemic leukocyte-endothelial cell interactions in retinal microcirculation. Investig. Ophthalmol. Vis. Sci. 2004;45:977–984. doi: 10.1167/iovs.03-0526.
    1. Jackson S.P., Nesbitt W.S., Westein E. Dynamics of platelet thrombus formation. J. Thromb. Haemost. 2009;7:17–20. doi: 10.1111/j.1538-7836.2009.03401.x.
    1. Zoungas S., McGrath B.P., Branley P., Kerr P.G., Muske C., Wolfe R., Atkins R.C., Nicholls K., Fraenkel M., Hutchison B.G., et al. Cardiovascular morbidity and mortality in the Atherosclerosis and Folic Acid Supplementation Trial (ASFAST) in chronic renal failure: A multicenter, randomized, controlled trial. J. Am. Coll. Cardiol. 2006;47:1108–1116. doi: 10.1016/j.jacc.2005.10.064.
    1. Hartley L., Igbinedion E., Holmes J., Flowers N., Thorogood M., Clarke A., Stranges S., Hooper L., Rees K. Increased consumption of fruit and vegetables for the primary prevention of cardiovascular diseases. Cochrane Database Syst. Rev. 2013;6:CD009874.
    1. Plaza M., Cifuentes A., Ibáñez E. In the search of new functional food ingredients from algae. Trends Food Sci. Technol. 2008;19:31–39. doi: 10.1016/j.tifs.2007.07.012.
    1. Fuentes E., Astudillo L.A., Gutierrez M.I., Contreras S.O., Bustamante L.O., Rubio P.I., Moore-Carrasco R., Alarcon M.A., Fuentes J.A., Gonzalez D.E., et al. Fractions of aqueous and methanolic extracts from tomato (Solanum lycopersicum L.) present platelet antiaggregant activity. Blood Coagul. Fibrinolysis. 2012;23:109–117. doi: 10.1097/MBC.0b013e32834d78dd.
    1. Fuentes E., Castro R., Astudillo L., Carrasco G., Alarcon M., Gutierrez M., Palomo I. Bioassay-guided isolation and HPLC determination of bioactive compound that relate to the antiplatelet activity (adhesion, secretion, and aggregation) from solanum lycopersicum. Evid.-Based Complement. Altern. Med. 2012;2012:147031.
    1. Fuentes E., Alarcon M., Astudillo L., Valenzuela C., Gutierrez M., Palomo I. Protective mechanisms of guanosine from solanum lycopersicum on agonist-induced platelet activation: Role of sCD40L. Molecules. 2013;18:8120–8135. doi: 10.3390/molecules18078120.
    1. Le Gall G., Colquhoun I.J., Davis A.L., Collins G.J., Verhoeyen M.E. Metabolite profiling of tomato (Lycopersicon esculentum) using 1H NMR spectroscopy as a tool to detect potential unintended effects following a genetic modification. J. Agric. Food Chem. 2003;51:2447–2456. doi: 10.1021/jf0259967.
    1. Fuentes E., Carle R., Astudillo L., Guzmán L., Gutiérrez M., Carrasco G., Palomo I. Antioxidant and antiplatelet activities in extracts from green and fully ripe tomato fruits (solanum lycopersicum) and pomace from industrial tomato processing. Evid.-Based Complement. Altern. Med. 2013;2013:1–9.
    1. Lavelli V., Torresani M.C. Modelling the stability of lycopene-rich by-products of tomato processing. Food Chem. 2011;125:529–535. doi: 10.1016/j.foodchem.2010.09.044.
    1. Takeoka G.R., Dao L., Flessa S., Gillespie D.M., Jewell W.T., Huebner B., Bertow D., Ebeler S.E. Processing effects on lycopene content and antioxidant activity of tomatoes. J. Agric. Food Chem. 2001;49:3713–3717. doi: 10.1021/jf0102721.
    1. Abushita A.A., Daood H.G., Biacs P.A. Change in carotenoids and antioxidant vitamins in tomato as a function of varietal and technological factors. J. Agric. Food Chem. 2000;48:2075–2081. doi: 10.1021/jf990715p.
    1. Collins B., Hollidge C. Antithrombotic drug market. Nat. Rev. Drug Discov. 2003;2:11–12. doi: 10.1038/nrd966.
    1. Palomo I., Toro C., Alarcon M. The role of platelets in the pathophysiology of atherosclerosis (Review) Mol. Med. Rep. 2008;1:179–184.
    1. Hubbard G.P., Wolffram S., Lovegrove J.A., Gibbins J.M. Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J. Thromb. Haemost. 2004;2:2138–2145. doi: 10.1111/j.1538-7836.2004.01067.x.
    1. Hu F.B. Plant-based foods and prevention of cardiovascular disease: An overview. Am. J. Clin. Nutr. 2003;78:544S–551S.
    1. Capanoglu E., Beekwilder J., Boyacioglu D., Hall R., de Vos R. Changes in antioxidant and metabolite profiles during production of tomato paste. J. Agric. Food Chem. 2008;56:964–973. doi: 10.1021/jf072990e.
    1. Schieber A., Stintzing F.C., Carle R. By-products of plant food processing as a source of functional compounds-recent developments. Trends Food Sci. Technol. 2001;12:401–413. doi: 10.1016/S0924-2244(02)00012-2.
    1. Schweiggert R.M., Mezger D., Schimpf F., Steingass C.B., Carle R. Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato. Food Chem. 2012;135:2736–2742. doi: 10.1016/j.foodchem.2012.07.035.
    1. Guyatt G.H., Akl E.A., Crowther M., Gutterman D.D., Schuunemann H.J. Executive summary: Antithrombotic therapy and prevention of thrombosis, 9th ed: American college of chest physicians evidence-based clinical practice guidelines. Chest. 2012;141:7S–47S. doi: 10.1378/chest.1412S3.
    1. Born G.V., Cross M.J. The aggregation of blood platelets. J. Physiol. 1963;168:178–195.
    1. Przyklenk K., Whittaker P. Adaptation of a photochemical method to initiate recurrent platelet-mediated thrombosis in small animals. Lasers Med. Sci. 2007;22:42–45. doi: 10.1007/s10103-006-0410-1.

Source: PubMed

3
Se inscrever