Long-chain omega-3 polyunsaturated fatty acids may be beneficial for reducing obesity-a review

Jonathan D Buckley, Peter R C Howe, Jonathan D Buckley, Peter R C Howe

Abstract

Current recommendations for counteracting obesity advocate the consumption of a healthy diet and participation in regular physical activity, but many individuals have difficulty complying with these recommendations. Studies in rodents and humans have indicated that long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFA) potentially elicit a number of effects which might be useful for reducing obesity, including suppression of appetite, improvements in circulation which might facilitate nutrient delivery to skeletal muscle and changes in gene expression which shift metabolism toward increased accretion of lean tissue, enhanced fat oxidation and energy expenditure and reduced fat deposition. While LC n-3 PUFA supplementation has been shown to reduce obesity in rodents, evidence in humans is limited. Epidemiological associations between LC n-3 PUFA intakes and obesity are inconclusive but small cross-sectional studies have demonstrated inverse relationships between markers of LC n-3 PUFA status and markers of obesity. Human intervention trials indicate potential benefits of LC n-3 PUFA supplementation, especially when combined with energy-restricted diets or exercise, but more well-controlled and long-term trials are needed to confirm these effects and identify mechanisms of action.

Keywords: weight loss; body fat; gene expression; lean tissue anabolism; satiety.

Figures

Figure 1
Figure 1
Dual-energy X-ray absorptiometry assessed changes in body fat mass after supplementation with 6 g/day of docosahexaenoic acid-rich fish oil, 6 g/day sunflower oil, fish oil and exercise or sunflower oil and exercise for 12 weeks in overweight and obese adults. * Significant oil × time and exercise × time interactions were detected (P < 0.05). Adapted from Hill et al. [33] with permission from the American Society for Nutrition.

References

    1. Dunstan D.W., Zimmet P.Z., Welborn T.A., De Courten M.P., Cameron A.J., Sicree R.A., Dwyer T., Colagiuri S., Jolley D., Knuiman M., Atkins R., Shaw J.E. The rising prevalence of diabetes and impaired glucose tolerance: The Australian Diabetes, Obesity and Lifestyle Study. Diabetes Care. 2002;25:829–834.
    1. Flegel K., Carroll M., Kuczmarski R., Johnson C. Overweight and obesity in the United States: Prevalence and trends, 1960–1994. Int. J. Obes. 1998;22:39–47.
    1. Must A., Spadano J., Coakley E.H., Field A.E., Colditz G., Dietz W.H. The disease burden associated with overweight and obesity. JAMA. 1999;282:1523–1529.
    1. Visscher T.L., Seidell J.C. The public health impact of obesity. Annu. Rev. Public Health. 2001;22:355–375.
    1. Department of Health and Ageing, authors. National Physical Activity Guidelines for Adults. Commonwealth of Australia; Canberra, Australia: 2005.
    1. National Health and Medical Research Council, authors. Dietary Guidelines for Australian Adults. Commonwealth of Australia; Canberra, Australia: 2003.
    1. Curioni C.C., Lourenco P.M. Long-term weight loss after diet and exercise: A systematic review. Int. J. Obes. 2005;29:1168–1174.
    1. Buckley J., Howe P. Anti-obesity effects of omega-3 long-chain polyunsaturated fatty acids. Obes. Rev. 2009;10:648–659.
    1. Baillie R., Takada R., Nakamura M., Clarke S. Coordinate induction of peroxisomal acyl-CoA oxidase and UCP-3 by dietary fishoil: A mechanism for decreased body fat deposition. Prostaglandins Leukot. Essent. Fatty Acids. 1999;60:351–356.
    1. Belzung F., Raclot T., Groscolas R. Fish oil n-3 fatty acids selectively limit the hypertrophy of abdominal fat depots in growing rats fed high-fat diets. Am. J. Physiol. 1993;264:R1111–R1118.
    1. Cunnane S., McAdoo K., Horrobin D. n-3 essential fatty acids decrease weight gain in genetically obese mice. Br. J. Nutr. 1986;56:87–95.
    1. Hainault I., Carlotti M., Hajduch E., Guichard C., Lavau M. Fish oil in a high lard diet prevents obesity, hyperlipidemia, and adipocyte insulin resistance in rats. Ann. N. Y. Acad. Sci. 1993;683:98–101.
    1. Ruzickova J., Rossmeisl M., Prazak T., Flachs P., Sponarova J., Veck M., Tvrzicka E., Bryhn M., Kopecky J. Omega-3 PUFA of marine origin limit diet-induced obesity in mice by reducing cellularity of adipose tissue. Lipids. 2004;39:1177–1185.
    1. Todoric J., Löffler M., Huber J., Bilban M., Reimers M., Kadl A., Zeyda M., Waldhäusl W., Stulnig T. Adipose tissue inflammation induced by high-fat diet in obese diabetic mice is prevented by n-3 polyunsaturated fatty acids. Diabetologia. 2006;49:2109–2119.
    1. Clarke S. Polyunsaturated fatty acid regulation of gene transcription: A mechanism to improve energy balance and insulin resistance. Br. J. Nutr. 2000;83:S59–S66.
    1. Parrish C., Pathy D., Parkes J., Angel A. Dietary fish oils limit adipose tissue hypertrophy in rats. Metabolism. 1990;39:217–219.
    1. Huang X.F., Xin X., McLennan P., Storlien L. Role of fat amount and type in ameliorating diet-induced obesity: Insights at the level of hypothalamic arcuate nucleus leptin receptor, neuropeptide Y and pro-opiomelanocortin mRNA expression. Diabetes Obes. Metab. 2004;6:35–44.
    1. He K., Rimm E., Merchant A., Rosner B., Stampfer M., Willett W., Ascherio A. Fish consumption and risk of stroke in men. JAMA. 2002;288:3130–3136.
    1. Iso H., Rexrode K.M., Stampfer M.J., Manson J.E., Colditz G.A., Speizer F.E., Hennekens C.H., Willett W.C. Intake of fish and omega-3 fatty acids and risk of stroke in women. JAMA. 2001;285:304–312.
    1. Garaulet M., Pérez-Llamas F., Pérez-Ayala M., Martínez P., de Medina F., Tebar F., Zamora S. Site-specific differences in the fatty acid composition of abdominal adipose tissue in an obese population from a Mediterranean area: Relation with dietary fatty acids, plasma lipid profile, serum insulin, and central obesity. Am. J. Clin. Nutr. 2001;74:585–591.
    1. Garaulet M., Hernandez-Morante J., Lujan J., Tebar F., Zamora S. Relationship between fat cell size and number and fatty acid composition in adipose tissue from different fat depots in overweight/obese humans. Int. J. Obes. 2006;30:899–905.
    1. Micaleff M., Munro I., Phang M., Garg M. Plasma n-3 polyunsaturated fatty acids are negatively associated with obesity. Br. J. Nutr. 2009;102:1370–1374.
    1. Couet C., Delarue J., Ritz P., Antoine J.-M., Lamisse F. Effect of dietary fish oil on body fat mass and basal fat oxidation in healthy adults. Int. J. Obes. 1997;21:637–643.
    1. Kabir M., Skurnik G., Naour N., Pechtner V., Meugnier E., Rome S., Quignard-Boulange A., Vidal H., Slama G., Clement K., Guerre-Millo M., Rizkalla S. Treatment for 2 mo with n-3 polyunsaturated fatty acids reduces adiposity and some atherogenic factors but does not improve insulin sensitivity in women with type 2 diabetes: A randomized controlled study. Am. J. Clin. Nutr. 2007;86:1670–1679.
    1. Fontani G., Corradeschi F., Felici A., Alfatti F., Bugarini R., Fiaschi A.I., Cerretani D., Montorfano G., Rizzo A.M., Berra B. Blood profiles, body fat and mood state in healthy subjects on different diets supplemented with Omega-3 polyunsaturated fatty acids. Eur. J. Clin. Invest. 2005;35:499–507.
    1. Buckley J., Burgess S., Murphy K., Howe P. DHA-rich fish oil lowers heart rate during submaximal exercise in elite Australian Rules footballers. J. Sci. Med. Sport. 2009;12:503–507.
    1. Brown A., Pang E., Roberts D. Persistent changes in the fatty acid composition of erythrocyte membranes after moderate intake of n-3 polyunsaturated fatty acids: Study design implications. Am. J. Clin. Nutr. 1991;54:668–673.
    1. Krebs J., Browning L., McLean N., Rothwell J., Mishra G., Moore C., Jebb S. Additive benefits of long-chain n-3 polyunsaturated fatty acids and weight-loss in the management of cardiovascular disease risk in overweight hyperinsulinaemic women. Int. J. Obes. 2006;30:1535–1544.
    1. Thorsdottir I., Tomasson H., Gunnarsdottir I., Gisladottir E., Kiely M., Parra M., Bandarra N., Schaafsma G., Martine J. Randomized trial of weight-loss-diets for young adults varying in fish and fish oil content. Int. J. Obes. 2007;31:1560–1566.
    1. Fujihira E., Takahashi H., Nakazawa M. Effect of long-term feeding of taurine in hereditary hyperglycemic obese mice. Chem. Pharm. Bull. (Tokyo) 1970;18:1636–1642.
    1. Warner J., Ullrich I., Albrink M., Yeater R. Combined effects of aerobic exercise and omega-3 fatty acids in hyperlipidemic persons. Med. Sci. Sports Exerc. 1989;21:498–505.
    1. Brilla L., Landerholm T. Effect of fish oil supplementation and exercise on serum lipids and aerobic fitness. J. Sports Med. Phys. Fitness. 1990;30:173–180.
    1. Hill A., Buckley J., Murphy K., Howe P. Combining fish oil supplementation with regular aerobic exercise improves body composition and cardiovascular risk factors. Am. J. Clin. Nutr. 2007;85:1267–1274.
    1. Kunešová M., Braunerová R., Hlavatý P., Tvrzická E., Staňková B., Škrha J., Hilgertová J., Hill M., Kopecký J., Wagenchnecht M., Hainer V., Matoulek M., Pařízková J., Žák A., Svačina Š. The influence of n-3 polyunsaturated fatty acids and very low calorie diet during a short-term weight reducing regimen on weight loss and serum fatty acid composition in severely obese women. Physiol. Res. 2006;55:63–72.
    1. Parra D., Ramel A., Bandarra N., Kiely M., Martinez J., Thorsdottir I. A diet rich in long chain omega 3 fatty acids modulates satiety in overweight and obese volunteers during weight loss. Appetite. 2008;51:676–680.
    1. Mascaro C., Acosta E., Ortiz J., Marrero P., Hegardt F., Haro D. Control of human muscle–type carnitine palmitoyltransferase I gene transcription by peroxisome proliferator–activated receptor. J. Biol. Chem. 1998;273:8560–8563.
    1. Laurente-Cebrián S., Bustos M., Marti A., Martinez J., Moreno-Aliaga M. Eicosapentaenoic acid stimulates AMP-activated protein kinase and increases visfatin secretion in cultured murine adipocytes. Clin. Sci. 2009;117:243–249.
    1. Motawi T., Hashem R., Rashed L., El-Razek S. Comparative study between the effect of the peroxisome proliferator activated receptor-alpha ligands fenofibrate and n-3 polyunsaturated fatty acids on activation of 5'-AMP-activated protein kinase-alpha1 in high-fat fed rats. J. Pharm. Pharmacol. 2009;61:1339–1346.
    1. Power G., Newsholme E. Dietary fatty acids influence the activity and metabolic control of mitochondrial carnitine palmitoyltransferase I in rat heart and skeletal muscle. J. Nutr. 1997;127:2142–2150.
    1. Elayan I., Winder W. Effect of glucose infusion on muscle malonyl-CoA during exercise. J. Appl. Physiol. 1991;70:1495–1499.
    1. Reddy J., Mannaerts G. Peroxisomal lipid metabolism. Annu. Rev. Nutr. 1994;14:343–370.
    1. Mori T., Kondo H., Hase T., Tokimitsu I., Murase T. Dietary Fish Oil Upregulates Intestinal Lipid Metabolism and Reduces Body Weight Gain in C57BL/6J Mice. J. Nutr. 2007;137:2629–2634.
    1. Dagenais G., Tancredi R., Zierler K. Free fatty acid oxidation by forearm muscle at rest, and evidence for an intramuscular lipid pool in the human forearm. J. Clin. Invest. 1976;58:421–431.
    1. Flachs P., Horakova O., Brauner P., Rossmeisl M., Pecina P., Franssen-van Hal N., Ruzickova J., Sponarova J., Drahota Z., Vlcek C., Keijer J., Houstek J., Kopecky J. Polyunsaturated fatty acids of marine origin upregulate mitochondrial biogenesis and induce β–oxidation in white fat. Diabetologia. 2005;48:2365–2375.
    1. Kelly D.P., Scarpulla R.C. Transcriptional regulatory circuits controlling mitochondrial biogenesis and function. Genes Dev. 2004;18:357–368.
    1. Vanden Heuvel J.P. Fatty Acid Transcriptomics; Proceedings of the 8th Meeting of the International Society for the Study of Fatty Acids and Lipids; Kansas City, MO, USA. 17–22 May 2008; p. 115.
    1. Whitehouse A., Tisdale M. Downregulation of ubiquitin-dependent proteolysis by eicosapentaenoic acid in acute starvation. Biochem. Biophys. Res. Commun. 2001;285:598–602.
    1. Wing S., Goldberg A. Glucocorticoids activate the ATP-ubiquitin-dependent proteolytic system in skeletal muscle during fasting. Am. J. Physiol. 1993;264:E668–E676.
    1. Wyke S., Tisdale M. NF-kB mediates proteolysis-inducing factor induced protein degradation and expression of the ubiquitin-proteasome system in skeletal muscle. Br. J. Cancer. 2005;92:711–721.
    1. Gingras A., White P., Chouinard P., Julien P., Davis T., Dombrowski L., Couture Y., Dubreuil P., Myre A., Bergeron K., Marette A., Thivierge M. Long-chain omega-3 fatty acids regulate bovine whole-body protein metabolism by promoting muscle insulin signalling to the Akt-mTOR-S6K1 pathway and insulin sensitivity. J. Physiol. 2007;579:269–284.
    1. Hamdy O., Ledbury S., Mullooly C., Jarema C., Porter S., Ovalle K., Moussa A., Caselli A., Caballero A.E., Economides P.A., Veves A., Horton E.S. Lifestyle modification improves endothelial function in obese subjects with the insulin resistance syndrome. Diabetes Care. 2003;26:2119–2125.
    1. Parikh N., Keyes M., Larson M., Pou K., Hamburg N., VIta J., O'Donnell C., Vasan R., Mitchell G., Hoffman U., Fox C., Benjamin E. Visceral and subcutaneous adiposity and brachial artery vasodilator function. Obesity. 2009;17:2054–2059.
    1. Hodnett B., Hester R. Regulation of muscle blood flow in obesity. Microcirculation. 2007;14:273–288.
    1. Clerk L., Vincent M., Jahn L., Liu Z., Lindner J., Barrett E. Obesity blunts insulin-mediated microvascular recruitment in human forearm muscle. Diabetes. 2006;55:1436–1442.
    1. Walser B., Giordano R., Stebbins C. Supplementation with omega-3 polyunsaturated fatty acids augments brachial artery dilation and blood flow during forearm contraction. Eur. J. Appl. Physiol. 2006;97:347–354.

Source: PubMed

3
Se inscrever