Fluorescence-Guided Surgery for Hepatoblastoma with Indocyanine Green

Yohei Yamada, Michinobu Ohno, Akihiro Fujino, Yutaka Kanamori, Rie Irie, Takako Yoshioka, Osamu Miyazaki, Hajime Uchida, Akinari Fukuda, Seisuke Sakamoto, Mureo Kasahara, Kimikazu Matsumoto, Yasushi Fuchimoto, Ken Hoshino, Tatsuo Kuroda, Tomoro Hishiki, Yohei Yamada, Michinobu Ohno, Akihiro Fujino, Yutaka Kanamori, Rie Irie, Takako Yoshioka, Osamu Miyazaki, Hajime Uchida, Akinari Fukuda, Seisuke Sakamoto, Mureo Kasahara, Kimikazu Matsumoto, Yasushi Fuchimoto, Ken Hoshino, Tatsuo Kuroda, Tomoro Hishiki

Abstract

Fluorescence-guided surgery with indocyanine green (ICG) for malignant hepatic tumors has been gaining more attention with technical advancements. Since hepatoblastomas (HBs) possess similar features to hepatocellular carcinoma, fluorescence-guided surgery can be used for HBs, as aggressive surgical resection, even for distant metastases of HBs, often contributes positively to R0 (complete) resection and subsequent patient survival. Despite a few caveats, fluorescence-guided surgery allows for the more sensitive identification of lesions that may go undetected by conventional imaging or be invisible macroscopically. This leads to precise resection of distant metastatic tumors as well as primary liver tumors.

Keywords: hepatoblastoma; indocyanine green; navigation; near infrared.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
a,b: Multiple fluorescent spots are observed under near-infrared (NIR) in the liver. Of note, some nodules show a rim-type fluorescence pattern, indicated by an arrowhead (combined fetal and embryonal subtype, post-chemotherapy).
Figure 2
Figure 2
a,b: The hilum of the liver in Patient 12. A giant tumor with uneven fluorescence in the left lobe along with intrahepatic metastasis (diffuse pattern) is indicated by an arrowhead. Of note, the common bile duct is also visualized, presumably due to residual fluorescence, indicated by an arrow (mixed epithelial and mesenchymal, post-chemotherapy).
Figure 3
Figure 3
ag: Mixed epithelial and mesenchymal type with teratoid features, post-chemotherapy. The formalin-fixed cross section of the liver is shown (a), and the tumor is encircled with a yellow-dotted line. The tumor is heterogeneous macroscopically, and fluorescence can be observed only in the small area marked with a white-dotted line (b: white-light mode, c: NIR mode, d: mapping mode). A histological analysis showed that while the fluorescent area corresponded to well-differentiated HB (e), the non-fluorescent area consisted of poorly differentiated HB (f) and an osteoid lesion (g). Scale bar: 100 µm.
Figure 3
Figure 3
ag: Mixed epithelial and mesenchymal type with teratoid features, post-chemotherapy. The formalin-fixed cross section of the liver is shown (a), and the tumor is encircled with a yellow-dotted line. The tumor is heterogeneous macroscopically, and fluorescence can be observed only in the small area marked with a white-dotted line (b: white-light mode, c: NIR mode, d: mapping mode). A histological analysis showed that while the fluorescent area corresponded to well-differentiated HB (e), the non-fluorescent area consisted of poorly differentiated HB (f) and an osteoid lesion (g). Scale bar: 100 µm.
Figure 4
Figure 4
ad: Multiple metastatic HBs in the transplanted liver in vivo (a,b) and ex vivo (c,d). This patient underwent the second living donor liver transplantation [44].
Figure 5
Figure 5
a,b: Several pulmonary metastases are visualized in NIR mode (patient 19; transitional liver cell tumor).
Figure 6
Figure 6
Peritoneal metastases in the patient 8, which were successfully removed with the help of NIR mode. Normal white light mode viewing the abdominal cavity (a,c) and NIR mode (b,d).
Figure 7
Figure 7
Pleural metastasis visualized with the Pinpoint system. Normal white-light mode (a), NIR mode (b), and overlay mode (c) are shown. The tumor is visualized as a green color overlaid on the white-light mode view.
Figure 8
Figure 8
ICG is distributed to the whole body and accumulates in the liver (within a few minutes after the intravenous injection). ICG is then excreted into the biliary system and persists for up to 20–24 h. While liver tumors display non-fluorescent spots in NIR mode at a very early stage after the injection of ICG, such studies have not been performed in lungs with metastatic HBs. The selective retention of ICG can be observed in HBs in both the liver and lungs around 24 h, but excreted fluorescence remains in the bowel loops. By 72–96 h after the injection, bowel-retained ICG is excreted with feces. HB tissues retain ICG for up to two weeks. The pattern of fluorescence may vary depending on the dose of ICG, detecting device, liver function, and pathology.
Figure 9
Figure 9
a,b Non-specific fluorescence in the pancreas and bowel loops. The arrowhead indicates the intense fluorescence in the pancreas, but a thorough inspection denied the presence of metastases. Non-specific fluorescence in the bowl loops was also observed (indicated by an arrow).

References

    1. Landsman M.L., Kwant G., Mook G.A., Zijlstra W.G. Light-absorbing properties, stability, and spectral stabilization of indocyanine green. J. Appl. Physiol. 1976;40:575–583. doi: 10.1152/jappl.1976.40.4.575.
    1. Guyer D.R., Puliafito C.A., Mones J.M., Friedman E., Chang W., Verdooner S.R. Digital indocyanine-green angiography in chorioretinal disorders. Ophthalmology. 1992;99:287–291. doi: 10.1016/S0161-6420(92)31981-5.
    1. Unno N., Inuzuka K., Suzuki M., Yamamoto N., Sagara D., Nishiyama M., Konno H. Preliminary experience with a novel fluorescence lymphography using indocyanine green in patients with secondary lymphedema. J. Vasc. Surg. 2007;45:1016–1021. doi: 10.1016/j.jvs.2007.01.023.
    1. Kitai T., Inomoto T., Miwa M., Shikayama T. Fluorescence navigation with indocyanine green for detecting sentinel lymph nodes in breast cancer. Breast Cancer. 2005;12:211–215. doi: 10.2325/jbcs.12.211.
    1. Rubens F.D., Ruel M., Fremes S.E. A new and simplified method for coronary and graft imaging during CABG. Heart Surg. Forum. 2002;5:141–144.
    1. Raabe A., Beck J., Seifert V. Technique and image quality of intraoperative indocyanine green angiography during aneurysm surgery using surgical microscope integrated near-infrared video technology. Zent. Neurosurg. 2005;66:1–6; discussion 7–8. doi: 10.1055/s-2004-836223.
    1. Fox I.J., Brooker L.G., Heseltine D.W., Essex H.E., Wood E.H. A tricarbocyanine dye for continuous recording of dilution curves in whole blood independent of variations in blood oxygen saturation. Proc. Staff Meet. Mayo Clin. 1957;32:478–484.
    1. Speich R., Saesseli B., Hoffmann U., Neftel K.A., Reichen J. Anaphylactoid reactions after indocyanine-green administration. Ann. Intern. Med. 1988;109:345–346. doi: 10.7326/0003-4819-109-4-345_2.
    1. Ishizawa T., Tamura S., Masuda K., Aoki T., Hasegawa K., Imamura H., Beck Y., Kokudo N. Intraoperative fluorescent cholangiography using indocyanine green: A biliary road map for safe surgery. J. Am. Coll. Surg. 2009;208:e1–e4. doi: 10.1016/j.jamcollsurg.2008.09.024.
    1. Ishizawa T., Fukushima N., Shibahara J., Masuda K., Tamura S., Aoki T., Hasegawa K., Beck Y., Fukayama M., Kokudo N. Real-time identification of liver cancers by using indocyanine green fluorescent imaging. Cancer. 2009;115:2491–2504. doi: 10.1002/cncr.24291.
    1. Nakaseko Y., Ishizawa T., Saiura A. Fluorescence-guided surgery for liver tumors. J. Surg. Oncol. 2018;118:324–331. doi: 10.1002/jso.25128.
    1. Zimmermann A. The emerging family of hepatoblastoma tumours: From ontogenesis to oncogenesis. Eur. J. Cancer. 2005;41:1503–1514. doi: 10.1016/j.ejca.2005.02.035.
    1. Lopez-Terrada D., Zimmermann A. Current issues and controversies in the classification of pediatric hepatocellular tumors. Pediatr. Blood Cancer. 2012;59:780–784. doi: 10.1002/pbc.24214.
    1. Haines K., Sarabia S.F., Alvarez K.R., Tomlinson G., Vasudevan S.A., Heczey A.A., Roy A., Finegold M.J., Parsons D.W., Plon S.E., et al. Characterization of pediatric hepatocellular carcinoma reveals genomic heterogeneity and diverse signaling pathway activation. Pediatr. Blood Cancer. 2019;66:e27745. doi: 10.1002/pbc.27745.
    1. Prokurat A., Kluge P., Kosciesza A., Perek D., Kappeler A., Zimmermann A. Transitional liver cell tumors (TLCT) in older children and adolescents: A novel group of aggressive hepatic tumors expressing beta-catenin. Med. Pediatr. Oncol. 2002;39:510–518. doi: 10.1002/mpo.10177.
    1. Kitagawa N., Shinkai M., Mochizuki K., Usui H., Miyagi H., Nakamura K., Tanaka M., Tanaka Y., Kusano M., Ohtsubo S. Navigation using indocyanine green fluorescence imaging for hepatoblastoma pulmonary metastases surgery. Pediatr. Surg. Int. 2015;31:407–411. doi: 10.1007/s00383-015-3679-y.
    1. Yamamichi T., Oue T., Yonekura T., Owari M., Nakahata K., Umeda S., Nara K., Ueno T., Uehara S., Usui N. Clinical application of indocyanine green (ICG) fluorescent imaging of hepatoblastoma. J. Pediatr. Surg. 2015;50:833–836. doi: 10.1016/j.jpedsurg.2015.01.014.
    1. Hishiki T., Watanabe K., Ida K., Hoshino K., Iehara T., Aoki Y., Kazama T., Kihira K., Takama Y., Taguchi T., et al. The role of pulmonary metastasectomy for hepatoblastoma in children with metastasis at diagnosis: Results from the JPLT-2 study. J. Pediatr. Surg. 2017;52:2051–2055. doi: 10.1016/j.jpedsurg.2017.08.031.
    1. Meyers R.L., Maibach R., Hiyama E., Häberle B., Krailo M., Rangaswami A., Aronson D.C., Malogolowkin M.H., Perilongo G., von Schweinitz D., et al. Risk-stratified staging in paediatric hepatoblastoma: A unified analysis from the Children’s Hepatic tumors International Collaboration. Lancet Oncol. 2017;18:122–131. doi: 10.1016/S1470-2045(16)30598-8.
    1. Zsiros J., Brugieres L., Brock P., Roebuck D., Maibach R., Zimmermann A., Childs M., Pariente D., Laithier V., Otte J.B., et al. Dose-dense cisplatin-based chemotherapy and surgery for children with high-risk hepatoblastoma (SIOPEL-4): A prospective, single-arm, feasibility study. Lancet Oncol. 2013;14:834–842. doi: 10.1016/S1470-2045(13)70272-9.
    1. de Graaf W., Bennink R.J., Vetelainen R., van Gulik T.M. Nuclear imaging techniques for the assessment of hepatic function in liver surgery and transplantation. J. Nucl. Med. 2010;51:742–752. doi: 10.2967/jnumed.109.069435.
    1. Paumgartner G. The handling of indocyanine green by the liver. Schweiz. Med. Wochenschr. 1975;105:1–30.
    1. de Graaf W., Hausler S., Heger M., van Ginhoven T.M., van Cappellen G., Bennink R.J., Kullak-Ublick G.A., Hesselmann R., van Gulik T.M., Stieger B. Transporters involved in the hepatic uptake of (99m)Tc-mebrofenin and indocyanine green. J. Hepatol. 2011;54:738–745. doi: 10.1016/j.jhep.2010.07.047.
    1. Ishizawa T., Masuda K., Urano Y., Kawaguchi Y., Satou S., Kaneko J., Hasegawa K., Shibahara J., Fukayama M., Tsuji S., et al. Mechanistic background and clinical applications of indocyanine green fluorescence imaging of hepatocellular carcinoma. Ann. Surg. Oncol. 2014;21:440–448. doi: 10.1245/s10434-013-3360-4.
    1. Kono Y., Ishizawa T., Tani K., Harada N., Kaneko J., Saiura A., Bandai Y., Kokudo N. Techniques of Fluorescence Cholangiography During Laparoscopic Cholecystectomy for Better Delineation of the Bile Duct Anatomy. Medicine. 2015;94:e1005. doi: 10.1097/MD.0000000000001005.
    1. Yokoyama N., Otani T., Hashidate H., Maeda C., Katada T., Sudo N., Manabe S., Ikeno Y., Toyoda A., Katayanagi N. Real-time detection of hepatic micrometastases from pancreatic cancer by intraoperative fluorescence imaging: Preliminary results of a prospective study. Cancer. 2012;118:2813–2819. doi: 10.1002/cncr.26594.
    1. Shoji Y., Kumagai K., Kamiya S., Ida S., Nunobe S., Ohashi M., Yoshimizu S., Horiuchi Y., Yoshio T., Ishiyama A., et al. Prospective feasibility study for single-tracer sentinel node mapping by ICG (indocyanine green) fluorescence and OSNA (one-step nucleic acid amplification) assay in laparoscopic gastric cancer surgery. Gastric Cancer. 2019;22:873–880. doi: 10.1007/s10120-018-00919-3.
    1. Hsu C.W. Lymph node mapping and anastomosis evaluation by VISERA ELITE II((R)), a novel surgical endoscope system, with infrared fluorescence imaging during laparoscopic rectal cancer surgery—A video vignette. Colorectal Dis. 2019;21:375–376. doi: 10.1111/codi.14555.
    1. Jafari M.D., Wexner S.D., Martz J.E., McLemore E.C., Margolin D.A., Sherwinter D.A., Lee S.W., Senagore A.J., Phelan M.J., Stamos M.J. Perfusion assessment in laparoscopic left-sided/anterior resection (PILLAR II): A multi-institutional study. J. Am. Coll. Surg. 2015;220:82–92.e1. doi: 10.1016/j.jamcollsurg.2014.09.015.
    1. Sherwinter D.A. Identification of anomolous biliary anatomy using near-infrared cholangiography. J. Gastrointest. Surg. 2012;16:1814–1815. doi: 10.1007/s11605-012-1945-z.
    1. Zarrinpar A., Dutson E.P., Mobley C., Busuttil R.W., Lewis C.E., Tillou A., Cheaito A., Hines O.J., Agopian V.G., Hiyama D.T. Intraoperative Laparoscopic Near-Infrared Fluorescence Cholangiography to Facilitate Anatomical Identification: When to Give Indocyanine Green and How Much. Surg. Innov. 2016;23:360–365. doi: 10.1177/1553350616637671.
    1. Aoki T., Murakami M., Koizumi T., Matsuda K., Fujimori A., Kusano T., Enami Y., Goto S., Watanabe M., Otsuka K. Determination of the surgical margin in laparoscopic liver resections using infrared indocyanine green fluorescence. Langenbecks Arch. Surg. 2018;403:671–680. doi: 10.1007/s00423-018-1685-y.
    1. Yamada Y., Hoshino K., Mori T., Kawaida M., Abe K., Takahashi N., Fujimura T., Kameyama K., Kuroda T. Metastasectomy of Hepatoblastoma Utilizing a Novel Overlay Fluorescence Imaging System. J. Laparoendosc. Adv. Surg. Tech. A. 2018;28:1152–1155. doi: 10.1089/lap.2017.0735.
    1. Boogerd L.S., Handgraaf H.J., Lam H.D., Huurman V.A., Farina-Sarasqueta A., Frangioni J.V., van de Velde C.J., Braat A.E., Vahrmeijer A.L. Laparoscopic detection and resection of occult liver tumors of multiple cancer types using real-time near-infrared fluorescence guidance. Surg. Endosc. 2017;31:952–961. doi: 10.1007/s00464-016-5007-6.
    1. Tummers Q.R., Verbeek F.P., Prevoo H.A., Braat A.E., Baeten C.I., Frangioni J.V., van de Velde C.J., Vahrmeijer A.L. First experience on laparoscopic near-infrared fluorescence imaging of hepatic uveal melanoma metastases using indocyanine green. Surg. Innov. 2015;22:20–25. doi: 10.1177/1553350614535857.
    1. Souzaki R., Kawakubo N., Matsuura T., Yoshimaru K., Koga Y., Takemoto J., Shibui Y., Kohashi K., Hayashida M., Oda Y., et al. Navigation surgery using indocyanine green fluorescent imaging for hepatoblastoma patients. Pediatr. Surg. Int. 2019;35:551–557. doi: 10.1007/s00383-019-04458-5.
    1. Verbeek F.P., Schaafsma B.E., Tummers Q.R., van der Vorst J.R., van der Made W.J., Baeten C.I., Bonsing B.A., Frangioni J.V., van de Velde C.J., Vahrmeijer A.L., et al. Optimization of near-infrared fluorescence cholangiography for open and laparoscopic surgery. Surg. Endosc. 2014;28:1076–1082. doi: 10.1007/s00464-013-3305-9.
    1. Tanaka E., Choi H.S., Humblet V., Ohnishi S., Laurence R.G., Frangioni J.V. Real-time intraoperative assessment of the extrahepatic bile ducts in rats and pigs using invisible near-infrared fluorescent light. Surgery. 2008;144:39–48. doi: 10.1016/j.surg.2008.03.017.
    1. Zhang Y.M., Shi R., Hou J.C., Liu Z.R., Cui Z.L., Li Y., Wu D., Shi Y., Shen Z.Y. Liver tumor boundaries identified intraoperatively using real-time indocyanine green fluorescence imaging. J. Cancer Res. Clin. Oncol. 2017;143:51–58. doi: 10.1007/s00432-016-2267-4.
    1. Lieto E., Galizia G., Cardella F., Mabilia A., Basile N., Castellano P., Orditura M., Auricchio A. Indocyanine Green Fluorescence Imaging-Guided Surgery in Primary and Metastatic Liver Tumors. Surg. Innov. 2018;25:62–68. doi: 10.1177/1553350617751451.
    1. 72nd General meeting of the Japanese Society of Gastroenterological Surgery 2017. [(accessed on 10 August 2019)]; Available online: .
    1. Morita Y., Sakaguchi T., Unno N., Shibasaki Y., Suzuki A., Fukumoto K., Inaba K., Baba S., Takehara Y., Suzuki S., et al. Detection of hepatocellular carcinomas with near-infrared fluorescence imaging using indocyanine green: Its usefulness and limitation. Int. J. Clin. Oncol. 2013;18:232–241. doi: 10.1007/s10147-011-0367-3.
    1. Chen-Yoshioka T.F., Hatano E., Toshizawa A., Date H. Clinical application of projection mapping technology for surgical resection of lung metastasis. Interact. Cardiovasc. Thorac. Surg. 2017;25:1010–1011. doi: 10.1093/icvts/ivx247.
    1. Takahashi N., Yamada Y., Hoshino K., Kawaida M., Mori T., Abe K., Fujimura T., Matsubara K., Hibi T., Shinoda M., et al. Living Donor Liver Re-Transplantation for Recurrent Hepatoblastoma in the Liver Graft following Complete Eradication of Peritoneal Metastases under Indocyanine Green Fluorescence Imaging. Cancers. 2019;11:730. doi: 10.3390/cancers11050730.
    1. Ohno M. (National Center for Child Health and Development, Tokyo, Japan). Personal communication. 2019.
    1. Liberale G., Bourgeois P., Larsimont D., Moreau M., Donckier V., Ishizawa T. Indocyanine green fluorescence-guided surgery after IV injection in metastatic colorectal cancer: A systematic review. Eur. J. Surg. Oncol. 2017;43:1656–1667. doi: 10.1016/j.ejso.2017.04.015.
    1. Satou S., Ishizawa T., Masuda K., Kaneko J., Aoki T., Sakamoto Y., Hasegawa K., Sugawara Y., Kokudo N. Indocyanine green fluorescent imaging for detecting extrahepatic metastasis of hepatocellular carcinoma. J. Gastroenterol. 2013;48:1136–1143. doi: 10.1007/s00535-012-0709-6.
    1. Tetron TAPE. [(accessed on 10 August 2019)]; Available online: .
    1. Ishizawa T., Bandai Y., Kokudo N. Fluorescent cholangiography using indocyanine green for laparoscopic cholecystectomy: An initial experience. Arch. Surg. 2009;144:381–382. doi: 10.1001/archsurg.2009.9.
    1. Miyata A., Ishizawa T., Kamiya M., Shimizu A., Kaneko J., Ijichi H., Shibahara J., Fukayama M., Midorikawa Y., Urano Y., et al. Photoacoustic tomography of human hepatic malignancies using intraoperative indocyanine green fluorescence imaging. PLoS ONE. 2014;9:e112667. doi: 10.1371/journal.pone.0112667.

Source: PubMed

3
Se inscrever