Deep Brain Stimulation for Obesity

Allen L Ho, Eric S Sussman, Michael Zhang, Arjun V Pendharkar, Dan E Azagury, Cara Bohon, Casey H Halpern, Allen L Ho, Eric S Sussman, Michael Zhang, Arjun V Pendharkar, Dan E Azagury, Cara Bohon, Casey H Halpern

Abstract

Obesity is now the third leading cause of preventable death in the US, accounting for 216,000 deaths annually and nearly 100 billion dollars in health care costs. Despite advancements in bariatric surgery, substantial weight regain and recurrence of the associated metabolic syndrome still occurs in almost 20-35% of patients over the long-term, necessitating the development of novel therapies. Our continually expanding knowledge of the neuroanatomic and neuropsychiatric underpinnings of obesity has led to increased interest in neuromodulation as a new treatment for obesity refractory to current medical, behavioral, and surgical therapies. Recent clinical trials of deep brain stimulation (DBS) in chronic cluster headache, Alzheimer's disease, and depression and obsessive-compulsive disorder have demonstrated the safety and efficacy of targeting the hypothalamus and reward circuitry of the brain with electrical stimulation, and thus provide the basis for a neuromodulatory approach to treatment-refractory obesity. In this study, we review the literature implicating these targets for DBS in the neural circuitry of obesity. We will also briefly review ethical considerations for such an intervention, and discuss genetic secondary-obesity syndromes that may also benefit from DBS. In short, we hope to provide the scientific foundation to justify trials of DBS for the treatment of obesity targeting these specific regions of the brain.

Keywords: behavior; deep brain stimulation; food; hypothalamus; lateral hypothalamus; metabolism; neuromodulation; nucleus accumbens; obesity; reward pathway.

Conflict of interest statement

The authors have declared that no competing interests exist.

Figures

Figure 1. Schematic diagram depicting the deep…
Figure 1. Schematic diagram depicting the deep brain stimulation (DBS) targets for obesity and their role in homeostatic pathway of energy balance
The LH is responsible for providing anabolic feedback onto the autonomic nervous system effectors. The nucleus accumbens (NAc) is the center of the reward pathway in the brain integrating inputs from various high cortical brain areas and the limbic system to reinforce certain beneficial behaviors, such as feeding. Integration of the reward pathways with feeding behavior begins with dopamine release from the ventral tegmental area (VTA) neurons that project onto the nucleus accumbens (NAc). Within the NAc, there are neurons that projection onto the lateral hypothalamus (LH) which contain neurons that stimulate food intake. These nuclei also respond to various hormonal peptides, such as leptin, that are released by the the metabolic systems of the body that link food intake and energy metabolism to the reward pathways within the brain.

References

    1. Impact of overweight on the risk of developing common chronic diseases during a 10-year period. Field AE, Coakley EH, Must A, Spadano JL, Laird N, Dietz WH, Rimm E, Colditz GA. Arch Intern Med. 2001;161:1581–1586.
    1. Years of life lost due to obesity. Fontaine KR, Redden DT, Wang C, Westfall AO, Allison DB. JAMA. 2003;289:187–193.
    1. The disease burden associated with overweight and obesity. Must A, Spadano J, Coakley EH, Field AE, Colditz G, Dietz WH. JAMA. 1999;282:1523–1529.
    1. Relationships between obesity and associated health factors with unemployment among low income women. Roe DA, Eickwort KR. J Am Med Womens Assoc. 1976;31:193-4, 198-9, 203-4.
    1. Prevalence of childhood and adult obesity in the United States, 2011-2012. Ogden CL, Carroll MD, Kit BK, Flegal KM. JAMA. 2014;311:806–814.
    1. Prevalence of obesity and trends in the distribution of body mass index among US adults, 1999-2010. Flegal KM, Carroll MD, Kit BK, Ogden CL. JAMA. 2012;307:491–497.
    1. The preventable causes of death in the United States: comparative risk assessment of dietary, lifestyle, and metabolic risk factors. Danaei G, Ding EL, Mozaffarian D, Taylor B, Rehm J, Murray CJ, Ezzati M. PLoS Med. 2009;6:0.
    1. The direct health care costs of obesity in the United States. Allison DB, Zannolli R, Narayan KM. Am J Public Health. 1999;89:1194–1199.
    1. The weight loss experience: a descriptive analysis. Jeffery RW, Kelly KM, Rothman AJ, Sherwood NE, Boutelle KN. Ann Behav Med. 2004;27:100–106.
    1. Meta-analysis: pharmacologic treatment of obesity. Li Z, Maglione M, Tu W, Mojica W, Arterburn D, Shugarman LR, Hilton L, Suttorp M, Solomon V, Shekelle PG, Morton SC. Ann Intern Med. 2005;142:532–546.
    1. Increases in morbid obesity in the USA: 2000-2005. Sturm R. Public Health. 2007;121:492–496.
    1. Long-term weight regain after gastric bypass: a 5-year prospective study. Magro DO, Geloneze B, Delfini R, Pareja BC, Callejas F, Pareja JC. Obes Surg. 2008;18:648–651.
    1. Neurohormonal pathways regulating food intake and changes after Roux-en-Y gastric bypass. Orlando FA, Goncalves CG, George ZM, Halverson JD, Cunningham PR, Meguid MM. Surg Obes Relat Dis. 2005;1:486–495.
    1. Weight gain after short- and long-limb gastric bypass in patients followed for longer than 10 years. Christou NV, Look D, Maclean LD. Ann Surg. 2006;244:734–740.
    1. Metabolic syndrome after bariatric surgery. Results depending on the technique performed. Gracia-Solanas JA, Elia M, Aguilella V, Ramirez JM, Martinez J, Bielsa MA, Martinez M. Obes Surg. 2011;21:179–185.
    1. Deep brain stimulation in neurologic disorders. Halpern C, Hurtig H, Jaggi J, Grossman M, Won M, Baltuch G. Parkinsonism Relat Disord. 2007;13:1–16.
    1. Long-term management of DBS in dystonia: response to stimulation, adverse events, battery changes, and special considerations. Tagliati M, Krack P, Volkmann J, Aziz T, Krauss JK, Kupsch A, Vidailhet AM. Mov Disord. 2011;26:54–62.
    1. Long-term efficacy and mortality in Parkinson's disease patients treated with subthalamic stimulation. Toft M, Lilleeng B, Ramm-Pettersen J, Skogseid IM, Gundersen V, Gerdts R, Pedersen L, Skjelland M, Roste GK, Dietrichs E. Mov Disord. 2011;26:1931–1934.
    1. Optical deconstruction of parkinsonian neural circuitry. Gradinaru V, Mogri M, Thompson KR, Henderson JM, Deisseroth K. Science. 2009;324:354–359.
    1. High-frequency stimulation of the subthalamic nucleus increases glutamate in the subthalamic nucleus of rats as demonstrated by in vivo enzyme-linked glutamate sensor. Lee KH, Kristic K, van Hoff R, Hitti FL, Blaha C, Harris B, Roberts DW, Leiter JC. Brain Res. 2007;1162:121–129.
    1. Subthalamotomy in Treatment of Parkinsonian Tremor. Andy OJ, Jurko MF, Sias FR, Jr Jr. J Neurosurg. 1963;20:860–870.
    1. EEG studies on patients with chronic obsessive-compulsive neurosis before and after psychosurgery (stereotaxic bilateral anterior capsulotomy) Bingley T, Persson A. Electroencephalogr Clin Neurophysiol. 1978;44:691–696.
    1. Long-term follow-up of patients with obsessive-compulsive disorder treated by anterior capsulotomy: a neuropsychological study. Csigo K, Harsanyi A, Demeter G, Rajkai C, Nemeth A, Racsmany M. J Affect Disord. 2010;126:198–205.
    1. Bilateral thalamotomy and pallidotomy as treatment for bilateral Parkinsonism. Krayenbuhl H, Wyss OA, Yasargil MG. J Neurosurg. 1961;18:429–444.
    1. Deep brain stimulation for treatment-resistant depression. Mayberg HS, Lozano AM, Voon V, McNeely HE, Seminowicz D, Hamani C, Schwalb JM, Kennedy SH. Neuron. 2005;45:651–660.
    1. Hypothalamic stimulation in chronic cluster headache: a pilot study of efficacy and mode of action. Schoenen J, Di Clemente L, Vandenheede M, Fumal A, De Pasqua V, Mouchamps M, Remacle JM, de Noordhout AM. Brain. 2005;128:940–947.
    1. Deep brain stimulation for obsessive-compulsive disorder: subthalamic nucleus target. Chabardès S, Polosan M, Krack P, Bastin J, Krainik A, David O, Bougerol T, Benabid AL. World Neurosurg. 2013;80:0.
    1. Partial reversibility of hypothalamic dysfunction and changes in brain activity after body mass reduction in obese subjects. van de Sande-Lee S, Pereira FR, Cintra DE, Fernandes PT, Cardoso AR, Garlipp CR, Chaim EA, Pareja JC, Geloneze B, Li LM, Cendes F, Velloso LA. Diabetes. 2011;60:1699–1704.
    1. Relationship between feeding and satiation centers of the hypothalamus. Wyrwicka W, Dobrzecka C. Science. 1960;132:805–806.
    1. Neural correlates of food addiction. Gearhardt AN, Yokum S, Orr PT, Stice E, Corbin WR, Brownell KD. Arch Gen Psychiatry. 2011;68:808–816.
    1. Dopamine D2 receptors in addiction-like reward dysfunction and compulsive eating in obese rats. Johnson PM, Kenny PJ. Nat Neurosci. 2010;13:635–641.
    1. Deep brain stimulation of the nucleus accumbens reduces ethanol consumption in rats. Knapp CM, Tozier L, Pak A, Ciraulo DA, Kornetsky C. Pharmacol Biochem Behav. 2009;92:474–479.
    1. MCH and feeding behavior-interaction with peptidic network. Griffond B, Risold PY. Peptides. 2009;30:2045–2051.
    1. Melanin-concentrating hormone overexpression in transgenic mice leads to obesity and insulin resistance. Ludwig DS, Tritos NA, Mastaitis JW, Kulkarni R, Kokkotou E, Elmquist J, Lowell B, Flier JS, Maratos-Flier E. J Clin Invest. 2001;107:379–386.
    1. The hypocretins: hypothalamus-specific peptides with neuroexcitatory activity. de Lecea L, Kilduff TS, Peyron C, Gao X, Foye PE, Danielson PE, Fukuhara C, Battenberg EL, Gautvik VT, Bartlett FS, 2nd 2nd, Frankel WN, van den Pol AN, Bloom FE, Gautvik KM, Sutcliffe JG. Proc Natl Acad Sci U S A. 1998;95:322–327.
    1. Neurons containing hypocretin (orexin) project to multiple neuronal systems. Peyron C, Tighe DK, van den Pol AN, de Lecea L, Heller HC, Sutcliffe JG, Kilduff TS. J Neurosci. 1998;18:9996–10015.
    1. Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior. Sakurai T, Amemiya A, Ishii M, Matsuzaki I, Chemelli RM, Tanaka H, Williams SC, Richarson JA, Kozlowski GP, Wilson S, Arch JR, Buckingham RE, Haynes AC, Carr SA, Annan RS, McNulty DE, Liu WS, Terrett JA, Elshourbagy NA, Bergsma DJ, Yanagisawa M. Cell. 1998;92:1.
    1. Post-embryonic ablation of AgRP neurons in mice leads to a lean, hypophagic phenotype. Bewick GA, Gardiner JV, Dhillo WS, Kent AS, White NE, Webster Z, Ghatei MA, Bloom SR. FASEB J. 2005;19:1680–1682.
    1. From lesions to leptin: hypothalamic control of food intake and body weight. Elmquist JK, Elias CF, Saper CB. Neuron. 1999;22:221–232.
    1. Leptin regulates energy balance and motivation through action at distinct neural circuits. Davis JF, Choi DL, Schurdak JD, Fitzgerald MF, Clegg DJ, Lipton JW, Figlewicz DP, Benoit SC. Biol Psychiatry. 2011;69:668–674.
    1. Leptin receptor action and mechanisms of leptin resistance. Munzberg H, Bjornholm M, Bates SH, Myers MG, Jr Jr. Cell Mol Life Sci. 2005;62:642–652.
    1. Positional cloning of the mouse obese gene and its human homologue. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Nature. 1994;372:425–432.
    1. Biologically inactive leptin and early-onset extreme obesity. Wabitsch M, Funcke JB, Lennerz B, Kuhnle-Krahl U, Lahr G, Debatin KM, Vatter P, Gierschik P, Moepps B, Fischer-Posovszky P. NEJM. 2015;372:48–54.
    1. Triglycerides induce leptin resistance at the blood-brain barrier. Banks WA, Coon AB, Robinson SM, Moinuddin A, Shultz JM, Nakaoke R, Morley JE. Diabetes. 2004;53:1253–1260.
    1. Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Mori H, Hanada R, Hanada T, Aki D, Mashima R, Nishinakamura H, Torisu T, Chien KR, Yasukawa H, Yoshimura A. Nature Med. 2004;10:739–743.
    1. Peptide hormones regulating appetite--focus on neuroimaging studies in humans. Schloegl H, Percik R, Horstmann A, Villringer A, Stumvoll M. Diabetes Metab Res Rev. 2011;27:104–112.
    1. A possible role of leptin-associated increase in soluble interleukin-2 receptor diminishing a clinical response to infliximab in rheumatoid arthritis: Comment on the article by Klaasen et al. Shin JI, Park SJ, Kim JH. Arthritis Rheum. 2011;63:2833–2834.
    1. Ghrelin directly targets the ventral tegmental area to increase food motivation. Skibicka KP, Hansson C, Alvarez-Crespo M, Friberg PA, Dickson SL. Neuroscience. 2011;180:129–137.
    1. A critical evaluation of body weight loss following lateral hypothalamic lesions. Harrell LE, Decastro JM, Balagura S. Physiol Behav. 1975;15:133–136.
    1. Self-stimulation and body weight in rats with lateral hypothalamic lesions. Keesey RE, Powley TL. Am J Physiol. 1973;224:970–978.
    1. Five-year follow-up of bilateral stimulation of the subthalamic nucleus in advanced Parkinson's disease. Krack P, Batir A, Van Blercom N, Chabardes S, Fraix V, Ardouin C, Koudsie A, Limousin PD, Benazzouz A, LeBas JF, Benabid AL, Pollak P. NEJM. 2003;349:1925–1934.
    1. Deep brain stimulation for treatment of obesity in rats. Sani S, Jobe K, Smith A, Kordower JH, Bakay RA. J Neurosurg. 2007;107:809–813.
    1. Lateral hypothalamic area deep brain stimulation for refractory obesity: a pilot study with preliminary data on safety, body weight, and energy metabolism. Whiting DM, Tomycz ND, Bailes J, de Jonge L, Lecoultre V, Wilent B, Alcindor D, Prostko ER, Cheng BC, Angle C, Cantella D, Whiting BB, Mizes JS, Finnis KW, Ravussin E, Oh MY. J Neurosurg. 2013;119:56–63.
    1. Schaltenbrand GW, Wahren W. Stuttgart: Georg Thieme Publishers; 1977. Atlas for Stereotaxy of the Human Brain.
    1. Reward mechanisms in obesity: new insights and future directions. Kenny PJ. Neuron. 2011;69:664–679.
    1. Cocaine cues and dopamine in dorsal striatum: mechanism of craving in cocaine addiction. Volkow ND, Wang GJ, Telang F, Fowler JS, Logan J, Childress AR, Jayne M, Ma Y, Wong C. J Neurosci. 2006;26:6583–6588.
    1. The suppressive effect of an intra-prefrontal cortical infusion of BDNF on cocaine-seeking is Trk receptor and extracellular signal-regulated protein kinase mitogen-activated protein kinase dependent. Whitfield TW Jr, Shi X, Sun WL, McGinty JF. J Neurosci. 2011;31:834–842.
    1. Nucleus accumbens shell and core dopamine: differential role in behavior and addiction. Di Chiara G. Behav Brain Res. 2002;137:75–114.
    1. The addicted brain. Nestler EJ, Malenka RC. Sci Am. 2004;290:78–85.
    1. Drug addiction: the neurobiology of behaviour gone awry. Volkow ND, Li TK. Nat Rev Neurosci. 2004;5:963–970.
    1. Genetic analysis of drug addiction: the role of cAMP response element binding protein. Blendy JA, Maldonado R. J Mol Med (Berl) 1998;76:104–110.
    1. Decreases in dietary preference produce increased emotionality and risk for dietary relapse. Teegarden SL, Bale TL. Biol Psychiatry. 2007;61:1021–1029.
    1. Prefrontal-striatal pathway underlies cognitive regulation of craving. Kober H, Mende-Siedlecki P, Kross EF, Weber J, Mischel W, Hart CL, Ochsner KN. Proc Natl Acad Sci U S A. 2010;107:14811–14816.
    1. Low dopamine striatal D2 receptors are associated with prefrontal metabolism in obese subjects: possible contributing factors. Volkow ND, Wang GJ, Telang F, Fowler JS, Thanos PK, Logan J, Alexoff D, Ding YS, Wong C, Ma Y, Pradhan K. Neuroimage. 2008;42:1537–1543.
    1. Altered levels of POMC, AgRP and MC4-R mRNA expression in the hypothalamus and other parts of the limbic system of mice prone or resistant to chronic high-energy diet-induced obesity. Huang XF, Han M, South T, Storlien L. Brain Res. 2003;992:9–19.
    1. Glutamate receptors in the nucleus accumbens shell control feeding behavior via the lateral hypothalamus. Maldonado-Irizarry CS, Swanson CJ, Kelley AE. J Neurosci. 1995;15:6779–6788.
    1. Neural projections from nucleus accumbens to globus pallidus, substantia innominata, and lateral preoptic-lateral hypothalamic area: an anatomical and electrophysiological investigation in the rat. Mogenson GJ, Swanson LW, Wu M. J Neurosci. 1983;3:189–202.
    1. Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Hommel JD, Trinko R, Sears RM, Georgescu D, Liu ZW, Gao XB, Thurmon JJ, Marinelli M, DiLeone RJ. Neuron. 2006;51:801–810.
    1. Reward circuitry responsivity to food predicts future increases in body mass: moderating effects of DRD2 and DRD4. Stice E, Yokum S, Bohon C, Marti N, Smolen A. Neuroimage. 2010;50:1618–1625.
    1. Neural responses during anticipation of a primary taste reward. O'Doherty JP, Deichmann R, Critchley HD, Dolan RJ. Neuron. 2002;33:815–826.
    1. Widespread reward-system activation in obese women in response to pictures of high-calorie foods. Stoeckel LE, Weller RE, Cook EW, 3rd 3rd, Twieg DB, Knowlton RC, Cox JE. Neuroimage. 2008;41:636–647.
    1. Selective reduction in neural responses to high calorie foods following gastric bypass surgery. Ochner CN, Kwok Y, Conceicao E, Pantazatos SP, Puma LM, Carnell S, Teixeira J, Hirsch J, Geliebter A. Ann Surg. 2011;253:502–507.
    1. Decreased dopamine type 2 receptor availability after bariatric surgery: preliminary findings. Dunn JP, Cowan RL, Volkow ND, Feurer ID, Li R, Williams DB, Kessler RM, Abumrad NN. Brain Res. 2010;1350:123–130.
    1. Alterations of central dopamine receptors before and after gastric bypass surgery. Steele KE, Prokopowicz GP, Schweitzer MA, Magunsuon TH, Lidor AO, Kuwabawa H, Kumar A, Brasic J, Wong DF. Obes Surg. 2010;20:369–374.
    1. Cue-reactors: individual differences in cue-induced craving after food or smoking abstinence. Mahler SV, de Wit H. PLoS One. 2010;5:0.
    1. The nucleus accumbens: a target for deep brain stimulation in obsessive-compulsive- and anxiety-disorders. Sturm V, Lenartz D, Koulousakis A, Treuer H, Herholz K, Klein JC, Klosterkotter J. J Chem Neuroanat. 2003;26:293–299.
    1. The Nucleus Accumbens beyond the Anterior Commissure: Implications for Psychosurgery. Lucas-Neto L, Mourato B, Neto D, Oliveira E, Martins H, Correia F, Goncalves-Ferreira A. Stereotact Funct Neurosurg. 2014;92:291–299.
    1. Disappearance of hoarding behavior after 6-hydroxydopamine lesions of the mesolimbic dopamine neurons and its reinstatement with L-dopa. Kelley AE, Stinus L. Behav Neurosci. 1985;99:531–545.
    1. Suppression of attack behavior in cats by stimulation of ventral tegmental area and nucleus accumbens. Goldstein JM, Siegel J. Brain Res. 1980;183:181–192.
    1. High-frequency deep brain stimulation of the nucleus accumbens region suppresses neuronal activity and selectively modulates afferent drive in rat orbitofrontal cortex in vivo. McCracken CB, Grace AA. J Neurosci. 2007;27:12601–12610.
    1. Behavioral responses induced by electrical stimulation of the caudate nucleus in freely moving cats. Murer MG, Pazo JH. Behav Brain Res. 1993;57:9–19.
    1. Amelioration of binge eating by nucleus accumbens shell deep brain stimulation in mice involves D2 receptor modulation. Halpern CH, Tekriwal A, Santollo J, Keating JG, Wolf JA, Daniels D, Bale TL. J Neurosci. 2013;33:7122–7129.
    1. Deep brain stimulation for intractable obsessive compulsive disorder: pilot study using a blinded, staggered-onset design. Goodman WK, Foote KD, Greenberg BD, Ricciuti N, Bauer R, Ward H, Shapira NA, Wu SS, Hill CL, Rasmussen SA, Okun MS. Biol Psychiatry. 2010;67:535–542.
    1. Successful treatment of chronic resistant alcoholism by deep brain stimulation of nucleus accumbens: first experience with three cases. Muller UJ, Sturm V, Voges J, Heinze HJ, Galazky I, Heldmann M, Scheich H, Bogerts B. Pharmacopsychiatry. 2009;42:288–291.
    1. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Schlaepfer TE, Cohen MX, Frick C, Kosel M, Brodesser D, Axmacher N, Joe AY, Kreft M, Lenartz D, Sturm V. Neuropsychopharmacology. 2008;33:368–377.
    1. Changes in food intake with electrical stimulation of the ventromedial hypothalamus in dogs. Brown FD, Fessler RG, Rachlin JR, Mullan S. J Neurosurg. 1984;60:1253–1257.
    1. Electrical stimulation of the ventromedial hypothalamus enhances both fat utilization and metabolic rate that precede and parallel the inhibition of feeding behavior. Ruffin M, Nicolaidis S. Brain Res. 1999;846:23–29.
    1. Smoking cessation and weight loss after chronic deep brain stimulation of the nucleus accumbens: therapeutic and research implications: case report. Mantione M, van de Brink W, Schuurman PR, Denys D. Neurosurg. 2010;66:218.
    1. Proposals to trial deep brain stimulation to treat addiction are premature. Carter A, Hall W. Addiction. 2011;106:235–237.
    1. Denying autonomy in order to create it: the paradox of forcing treatment upon addicts. Caplan A. Addiction. 2008;103:1919–1921.
    1. The ethics of deep brain stimulation (DBS). Medicine, health care, and philosophy. Unterrainer M, Oduncu FS. 2015 Jan 18;[Epub ahead of print]
    1. A multicentre study on suicide outcomes following subthalamic stimulation for Parkinson's disease. Voon V, Krack P, Lang AE, Lozano AM, Dujardin K, Schupbach M, D'Ambrosia J, Thobois S, Tamma F, Herzog J, Speelman JD, Samanta J, Kubu C, Rossignol H, Poon YY, Saint-Cyr JA, Ardouin C, Moro E. Brain. 2008;131:2720–2728.
    1. Behavioural disorders, Parkinson's disease and subthalamic stimulation. Houeto JL, Mesnage V, Mallet L, Pillon B, Gargiulo M, du Moncel ST, Bonnet AM, Pidoux B, Dormont D, Cornu P, Agid Y. J Neurol Neurosurg Psychiatry. 2002;72:701–707.
    1. What should animal models of depression model? Frazer A, Morilak DA. Neurosci Biobehav Rev. 2005;29:515–523.
    1. Prader-Willi syndrome: clinical genetics, cytogenetics and molecular biology. Bittel DC, Butler MG. Expert Rev Mol Med. 2005;7:1–20.
    1. Prader-Willi syndrome: current understanding of cause and diagnosis. Butler MG. Am J Med Genet. 1990;35:319–332.
    1. Gastric rupture and necrosis in Prader-Willi syndrome. Stevenson DA, Heinemann J, Angulo M, Butler MG, Loker J, Rupe N, Kendell P, Cassidy SB, Scheimann A. J Pediatr Gastroenterol Nutr. 2007;45:272–274.
    1. Circulating adiponectin levels, body composition and obesity-related variables in Prader-Willi syndrome: comparison with obese subjects. Kennedy L, Bittel DC, Kibiryeva N, Kalra SP, Torto R, Butler MG. Int J Obes (Lond) 2006;30:382–387.
    1. Body composition and fatness patterns in Prader-Willi syndrome: comparison with simple obesity. Theodoro MF, Talebizadeh Z, Butler MG. Obesity. 2006;14:1685–1690.
    1. Energy expenditure and physical activity in Prader-Willi syndrome: comparison with obese subjects. American journal of medical genetics Part. Butler MG, Theodoro MF, Bittel DC, Donnelly JE. Am J Med Genet A. 2007;143:449–459.
    1. Serum ghrelin levels are inversely correlated with body mass index, age, and insulin concentrations in normal children and are markedly increased in Prader-Willi syndrome. Haqq AM, Farooqi IS, O'Rahilly S, Stadler DD, Rosenfeld RG, Pratt KL, LaFranchi SH, Purnell JQ. J Clin Endocrinol Metab. 2003;88:174–178.
    1. Critical analysis of bariatric procedures in Prader-Willi syndrome. Scheimann AO, Butler MG, Gourash L, Cuffari C, Klish W. J Pediatr Gastroenterol Nutr. 2008;46:80–83.
    1. Eating behavior in Prader-Willi syndrome, normal weight, and obese control groups. Lindgren AC, Barkeling B, Hagg A, Ritzen EM, Marcus C, Rossner S. J Pediatr. 2000;137:50–55.
    1. Characteristics of abnormal food-intake patterns in children with Prader-Willi syndrome and study of effects of naloxone. Zipf WB, Berntson GG. Am J Clin Nutr. 1987;46:277–281.
    1. Satiety dysfunction in Prader-Willi syndrome demonstrated by fMRI. Shapira NA, Lessig MC, He AG, James GA, Driscoll DJ, Liu Y. J Neurol Neurosurg Psychiatry. 2005;76:260–262.
    1. Neural mechanisms underlying hyperphagia in Prader-Willi syndrome. Holsen LM, Zarcone JR, Brooks WM, Butler MG, Thompson TI, Ahluwalia JS, Nollen NL, Savage CR. Obesity. 2006;14:1028–1037.
    1. Enhanced activation of reward mediating prefrontal regions in response to food stimuli in Prader-Willi syndrome. Miller JL, James GA, Goldstone AP, Couch JA, He G, Driscoll DJ, Liu Y. J Neurol Neurosurg Psychiatry. 2007;78:615–619.
    1. Neural representations of hunger and satiety in Prader-Willi syndrome. Hinton EC, Holland AJ, Gellatly MS, Soni S, Patterson M, Ghatei MA, Owen AM. Int J Obes (Lond) 2006;30:313–321.
    1. Importance of reward and prefrontal circuitry in hunger and satiety: Prader-Willi syndrome vs simple obesity. Holsen LM, Savage CR, Martin LE, Bruce AS, Lepping RJ, Ko E, Brooks WM, Butler MG, Zarcone JR, Goldstein JM. Int J Obes (Lond) 2012;36:638–647.
    1. Neurostimulation for primary headache disorders: Part 2, review of central neurostimulators for primary headache, overall therapeutic efficacy, safety, cost, patient selection, and future research in headache neuromodulation. Jenkins B, Tepper SJ. Headache. 2011;51:1408–1418.
    1. Recurrent hypersomnia: a review of 339 cases. Billiard M, Jaussent I, Dauvilliers Y, Besset A. Sleep Med Rev. 2011;15:247–257.
    1. Update on hypersomnias of central origin. Drakatos P, Leschziner GD. Curr Opin Pulm Med. 2014;20:572–580.
    1. Kleine-Levin syndrome: a review. Miglis MG, Guilleminault C. Nat Sci Sleep. 2014;6:19–26.
    1. Functional magnetic resonance imaging in narcolepsy and the kleine-levin syndrome. Engstrom M, Hallbook T, Szakacs A, Karlsson T, Landtblom AM. Front Neurol. 2014;5:105.
    1. A case of Kleine-Levin syndrome examined with SPECT and neuropsychological testing. Landtblom AM, Dige N, Schwerdt K, Safstrom P, Granerus G. Acta Neurol Scand. 2002;105:318–321.

Source: PubMed

3
Se inscrever