The Optimal Speed for Cortical Activation of Passive Wrist Movements Performed by a Rehabilitation Robot: A Functional NIRS Study

Sung Jin Bae, Sung Ho Jang, Jeong Pyo Seo, Pyung Hun Chang, Sung Jin Bae, Sung Ho Jang, Jeong Pyo Seo, Pyung Hun Chang

Abstract

Objectives: To advance development of rehabilitation robots, the conditions to induce appropriate brain activation during rehabilitation performed by robots should be optimized, based on the concept of brain plasticity. In this study, we examined differences in cortical activation according to the speed of passive wrist movements performed by a rehabilitation robot. Methods: Twenty three normal subjects participated in this study. Passive movements of the right wrist were performed by the wrist rehabilitation robot at three different speeds: 0.25 Hz; slow, 0.5 Hz; moderate and 0.75 Hz; fast. We used functional near-infrared spectroscopy to measure the brain activity accompanying the passive movements performed by a robot. The relative changes in oxy-hemoglobin (HbO) were measured in two regions of interest (ROI): the primary sensory-motor cortex (SM1) and premotor area (PMA). Results: In the left SM1 the HbO value was significantly higher at 0.5 Hz, compared with movements performed at 0.25 Hz and 0.75 Hz (p < 0.05), while no significant differences were observed in the left PMA (p > 0.05). In the group analysis, the left SM1 was activated during passive movements at three speeds (uncorrected p < 0.05) and the greatest activation in the SM1 was observed at 0.5 Hz. Conclusions: In conclusion, the contralateral SM1 showed the greatest activation by a moderate speed (0.5 Hz) rather than slow (0.25 Hz) and fast (0.75 Hz) speed. Our results suggest an ideal speed for execution of the wrist rehabilitation robot. Therefore, our results might provide useful data for more effective and empirically-based robot rehabilitation therapy.

Keywords: brain plasticity; cortical activation; functional NIRS; rehabilitation robot; wrist rehabilitation.

Figures

Figure 1
Figure 1
(A) The wrist rehabilitation robot. Lateral view of the wrist rehabilitation robot, the hand part (dotted line), wrist part (solid line) and forearm part (dashed line). (B) A front view of robot and subjects with the trunk strap and near infrared spectroscopy (NIRS) optodes. (C) Wrist flexion of the robot. (D) Wrist extension of the robot.
Figure 2
Figure 2
(A) The arrangement of NIRS optodes and channels. Twenty NIRS optodes (10 light sources and 10 detectors) are arranged in a four by five rectangular arrangement for employment of a 30 channel system. (B) Two regions of interest (ROI) based on Brodmann’s area (BA) and anatomical location of areas of the brain. The primary sensorimotor cortex (SM1): BA 1, 2, 3 and 4; The premotor area (PMA): BA 6. (C) Group-average activation map of oxy-hemoglobin (HbO) during performance of passive wrist movements by the wrist rehabilitation robot at three different speeds using NIRS-SPM (uncorrected, p < 0.05).
Figure 3
Figure 3
Comparisons of HbO values in each ROI by three different speeds of passive wrist movements with standard error bar. HbO, oxy-hemoglobin; SM1, the primary sensory-motor cortex. *p < 0.05.

References

    1. Arenth P. M., Ricker J. H., Schultheis M. T. (2007). Applications of functional near-infrared spectroscopy (fNIRS) to Neurorehabilitation of cognitive disabilities. Clin. Neuropsychol. 21, 38–57. 10.1080/13854040600878785
    1. Bütefisch C., Hummelsheim H., Denzler P., Mauritz K.-H. (1995). Repetitive training of isolated movements improves the outcome of motor rehabilitation of the centrally paretic hand. J. Neurol. Sci. 130, 59–68. 10.1016/0022-510x(95)00003-k
    1. Chang P. H., Lee S. H., Gu G. M., Lee S. H., Jin S. H., Yeo S. S., et al. . (2014). The cortical activation pattern by a rehabilitation robotic hand: a functional NIRS study. Front. Hum. Neurosci. 8:49. 10.3389/fnhum.2014.00049
    1. Coote S., Murphy B., Harwin W., Stokes E. (2008). The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke. Clin. Rehabil. 22, 395–405. 10.1177/0269215507085060
    1. Cope M., Delpy D. T. (1988). System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near infra-red transillumination. Med. Biol. Eng. Comput. 26, 289–294. 10.1007/bf02447083
    1. Dassonville P., Lewis S. M., Zhu X. H., Uğurbil K., Kim S. G., Ashe J. (1998). Effects of movement predictability on cortical motor activation. Neurosci. Res. 32, 65–74. 10.1016/s0168-0102(98)00064-9
    1. Frahm J., Merboldt K. D., Hanicke W. (1993). Functional mri of human brain activation at high spatial-resolution. Magn. Reson. Med. 29, 139–144. 10.1002/mrm.1910290126
    1. Francis S., Lin X., Aboushoushah S., White T. P., Phillips M., Bowtell R., et al. . (2009). fMRI analysis of active, passive and electrically stimulated ankle dorsiflexion. Neuroimage 44, 469–479. 10.1016/j.neuroimage.2008.09.017
    1. Fujii Y., Nakada T. (2003). Cortical reorganization in patients with subcortical hemiparesis: neural mechanisms of functional recovery and prognostic implication. J. Neurosurg. 98, 64–73. 10.3171/jns.2003.98.1.0064
    1. Gagnon L., Yücel M. A., Dehaes M., Cooper R. J., Perdue K. L., Selb J., et al. . (2012). Quantification of the cortical contribution to the NIRS signal over the motor cortex using concurrent NIRS-fMRI measurements. Neuroimage 59, 3933–3940. 10.1016/j.neuroimage.2011.10.054
    1. Hesse S., Werner C., Pohl M., Rueckriem S., Mehrholz J., Lingnau M. L. (2005). Computerized arm training improves the motor control of the severely affected arm after stroke: a single-blinded randomized trial in two centers. Stroke 36, 1960–1966. 10.1161/01.str.0000177865.37334.ce
    1. Hoshi Y., Kobayashi N., Tamura M. (2001). Interpretation of near-infrared spectroscopy signals: a study with a newly developed perfused rat brain model. J. Appl. Physiol. 90, 1657–1662.
    1. Housman S. J., Scott K. M., Reinkensmeyer D. J. (2009). A randomized controlled trial of gravity-supported, computer-enhanced arm exercise for individuals with severe hemiparesis. Neurorehabil. Neural Repair 23, 505–514. 10.1177/1545968308331148
    1. Irani F., Platek S. M., Bunce S., Ruocco A. C., Chute D. (2007). Functional near infrared spectroscopy (fNIRS): an emerging neuroimaging technology with important applications for the study of brain disorders. Clin. Neuropsychol. 21, 9–37. 10.1080/13854040600910018
    1. Jang S. H., Chang P. H., Lee S. H., Park J. H., Lee S. H., Jin S. H., et al. (2015). Difference in cortical activation according to the speed of passive movements by a rehabilitation robotic hand. J. Near Infrared Spectrosc. 23, 67–73. 10.1255/jnirs.1148
    1. Jang K. E., Tak S., Jung J., Jang J., Jeong Y., Ye J. C. (2009). Wavelet minimum description length detrending for near-infrared spectroscopy. J. Biomed. Opt. 14:034004. 10.1117/1.3127204
    1. Kahn L. E., Zygman M. L., Rymer W. Z., Reinkensmeyer D. J. (2006). Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: a randomized controlled pilot study. J. Neuroeng. Rehabil. 3:12. 10.1186/1743-0003-3-12
    1. Kaplan M. S. (1988). Plasticity after brain lesions: contemporary concepts. Arch. Phys. Med. Rehabil. 69, 984–991.
    1. Kim M. J., Hong J. H., Jang S. H. (2011). The cortical effect of clapping in the human brain: a functional MRI study. NeuroRehabilitation 28, 75–79. 10.3233/NRE-2011-0634
    1. Kwakkel G., Kollen B., Lindeman E. (2004). Understanding the pattern of functional recovery after stroke: facts and theories. Restor. Neurol. Neurosci. 22, 281–299.
    1. Lee M. Y., Kim S. H., Choi B. Y., Chang C. H., Ahn S. H., Jang S. H. (2012). Functional MRI finding by proprioceptive input in patients with thalamic hemorrhage. NeuroRehabilitation 30, 131–136. 10.3233/NRE-2012-0736
    1. Leff D. R., Orihuela-Espina F., Elwell C. E., Athanasiou T., Delpy D. T., Darzi A. W., et al. . (2011). Assessment of the cerebral cortex during motor task behaviours in adults: a systematic review of functional near infrared spectroscopy (fNIRS) studies. Neuroimage 54, 2922–2936. 10.1016/j.neuroimage.2010.10.058
    1. Levin M. F., Kleim J. A., Wolf S. L. (2008). What do motor “recovery” and “compensation” mean in patients following stroke? Neurorehabil. Neural Repair 23, 313–319. 10.1177/1545968308328727
    1. Li C., Inoue Y., Liu T., Sun L. (2013). Validation of bimanual-coordinated training supported by a new upper-limb rehabilitation robot: a near-infrared spectroscopy study. Disabil. Rehabil. Assist. Technol. 8, 38–48. 10.3109/17483107.2012.671439
    1. Lotze M., Braun C., Birbaumer N., Anders S., Cohen L. G. (2003). Motor learning elicited by voluntary drive. Brain 126, 866–872. 10.1093/brain/awg079
    1. Lum P. S., Burgar C. G., Van der Loos M., Shor P. C., Majmundar M., Yap R. (2006). MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: a follow-up study. J. Rehabil. Res. Dev. 43, 631–642. 10.1682/jrrd.2005.02.0044
    1. Martin J. (2012). Neuroanatomy Text and Atlas. New York, NY: McGraw Hill Professional.
    1. Masiero S., Armani M., Rosati G. (2011). Upper-limb robot-assisted therapy in rehabilitation of acute stroke patients: focused review and results of new randomized controlled trial. J. Rehabil. Res. Dev. 48, 355–366. 10.1682/jrrd.2010.04.0063
    1. Masiero S., Celia A., Rosati G., Armani M. (2007). Robotic-assisted rehabilitation of the upper limb after acute stroke. Arch. Phys. Med. Rehabil. 88, 142–149. 10.1016/j.apmr.2006.10.032
    1. Mayka M. A., Corcos D. M., Leurgans S. E., Vaillancourt D. E. (2006). Three-dimensional locations and boundaries of motor and premotor cortices as defined by functional brain imaging: a meta-analysis. Neuroimage 31, 1453–1474. 10.1016/j.neuroimage.2006.02.004
    1. Mihara M., Yagura H., Hatakenaka M., Hattori N., Miyai I. (2010). Clinical application of functional near-infrared spectroscopy in rehabilitation medicine. Brain Nerve 62, 125–132. 10.11477/mf.1416100628
    1. Miyai I., Tanabe H. C., Sase I., Eda H., Oda I., Konishi I., et al. . (2001). Cortical mapping of gait in humans: a near-infrared spectroscopic topography study. Neuroimage 14, 1186–1192. 10.1006/nimg.2001.0905
    1. Mtui E., Gruener G., FitzGerald M. J. T. (2011). Clinical Neuroanatomy and Neuroscience. Amsterdam: Elsevier Health Sciences.
    1. Murphy T. H., Corbett D. (2009). Plasticity during stroke recovery: from synapse to behaviour. Nat. Rev. Neurosci. 10, 861–872. 10.1038/nrn2735
    1. Nef T., Mihelj M., Riener R. (2007). ARMin: a robot for patient-cooperative arm therapy. Med. Biol. Eng. Comput. 45, 887–900. 10.1007/s11517-007-0226-6
    1. Norouzi-Gheidari N., Archambault P. S., Fung J. (2012). Effects of robot-assisted therapy on stroke rehabilitation in upper limbs: systematic review and meta-analysis of the literature. J. Rehabil. Res. Dev. 49, 479–496. 10.1682/jrrd.2010.10.0210
    1. Oldfield R. C. (1971). The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia 9, 97–113. 10.1016/0028-3932(71)90067-4
    1. Oujamaa L., Relave I., Froger J., Mottet D., Pelissier J. Y. (2009). Rehabilitation of arm function after stroke. Literature review. Ann. Phys. Rehabil. Med. 52, 269–293. 10.1016/j.rehab.2008.10.003
    1. Perrey S. (2008). Non-invasive NIR spectroscopy of human brain function during exercise. Methods 45, 289–299. 10.1016/j.ymeth.2008.04.005
    1. Plichta M. M., Herrmann M. J., Baehne C. G., Ehlis A. C., Richter M. M., Pauli P., et al. . (2006). Event-related functional near-infrared spectroscopy (fNIRS): are the measurements reliable? Neuroimage 31, 116–124. 10.1016/j.neuroimage.2005.12.008
    1. Radovanovic S., Korotkov A., Ljubisavljevic M., Lyskov E., Thunberg J., Kataeva G., et al. . (2002). Comparison of brain activity during different types of proprioceptive inputs: a positron emission tomography study. Exp. Brain Res. 143, 276–285. 10.1007/s00221-001-0994-4
    1. Reinkensmeyer D. J., Galvez J. A., Marchal L., Wolbrecht E. T., Bobrow J. E. (2007). “Some key problems for robot-assisted movement therapy research: a perspective from the University of California at Irvine,” in Proceedings 10th International Conference on Rehabilitation Robotics, 2007. ICORR 2007 (IEEE) (Noordwijk), 1009–1015.
    1. Schaechter J. D. (2004). Motor rehabilitation and brain plasticity after hemiparetic stroke. Prog. Neurobiol. 73, 61–72. 10.1016/j.pneurobio.2004.04.001
    1. Scholkmann F., Kleiser S., Metz A. J., Zimmermann R., Mata Pavia J., Wolf U., et al. . (2014). A review on continuous wave functional near-infrared spectroscopy and imaging instrumentation and methodology. Neuroimage 85, 6–27. 10.1016/j.neuroimage.2013.05.004
    1. Strangman G., Culver J. P., Thompson J. H., Boas D. A. (2002). A quantitative comparison of simultaneous BOLD fMRI and NIRS recordings during functional brain activation. Neuroimage 17, 719–731. 10.1016/s1053-8119(02)91227-9
    1. Szameitat A. J., Shen S., Conforto A., Sterr A. (2012). Cortical activation during executed, imagined, observed and passive wrist movements in healthy volunteers and stroke patients. Neuroimage 62, 266–280. 10.1016/j.neuroimage.2012.05.009
    1. Tak S., Yoon S. J., Jang J., Yoo K., Jeong Y., Ye J. C. (2011). Quantitative analysis of hemodynamic and metabolic changes in subcortical vascular dementia using simultaneous near-infrared spectroscopy and fMRI measurements. Neuroimage 55, 176–184. 10.1016/j.neuroimage.2010.11.046
    1. van der Lee J. H. (2001). Constraint-induced therapy for stroke: more of the same or something completely different? Curr. Opin. Neurol. 14, 741–744. 10.1097/00019052-200112000-00010
    1. Volpe B. T., Krebs H. I., Hogan N., Edelstein O. L., Diels C., Aisen M. (2000). A novel approach to stroke rehabilitation: robot-aided sensorimotor stimulation. Neurology 54, 1938–1944. 10.1212/WNL.54.10.1938
    1. Willer C., Ramsay S. C., Wise R. J., Friston K. J., Frackwiak R. S. (1993). Individual patterns of functional reorganization in the human cerebral cortex after capsular infraction. Ann. Neurol. 33, 181–189. 10.1002/ana.410330208
    1. Wolf M., Wolf U., Toronov V., Michalos A., Paunescu L. A., Choi J. H., et al. . (2002). Different time evolution of oxyhemoglobin and deoxyhemoglobin concentration changes in the visual and motor cortices during functional stimulation: a near-infrared spectroscopy study. Neuroimage 16, 704–712. 10.1006/nimg.2002.1128
    1. Ye J. C., Tak S., Jang K. E., Jung J., Jang J. (2009). NIRS-SPM: statistical parametric mapping for near-infrared spectroscopy. Neuroimage 44, 428–447. 10.1016/j.neuroimage.2008.08.036
    1. Zatsiorsky V. M. (2002). Kinematics of human motion. Chamaign, IL: Human Kinetics.

Source: PubMed

3
Se inscrever