Neurobiological Processes Induced by Aerobic Exercise through the Endocannabinoidome

Fabiola Forteza, Giada Giorgini, Frédéric Raymond, Fabiola Forteza, Giada Giorgini, Frédéric Raymond

Abstract

Evidence suggesting the triangulation of the endocannabinoid system, exercise, and neurological health is emerging. In addition to the endocannabinoids N-arachidonoylethanolamine (anandamide; AEA) and 2-arachidonoylglycerol (2-AG), the expanded endocannabinoid system, known as the endocannabinoidome (eCBome), appears to be an important player in this relationship. The eCBome includes several endocannabinoid-like mediators such as N-acylethanolamines and 2-monoacylglycerols, the enzymes involved in their biosynthesis and degradation, and the receptors they affect. This review aims to relate the functional interactions between aerobic exercise, and the molecular and cellular pathways related to endocannabinoids, in the hypothalamus, hippocampus, and the periphery, with special attention given to associations with emotional state, cognition, and mental health. Given the well-documented roles of many eCBome members in regulating stress and neurological processes, we posit that the eCBome is an important effector of exercise-induced central and peripheral adaptive mechanisms that benefit mental health. Gut microbiota imbalance, affecting the gut-brain axis and metabolism, also influences certain eCBome-modulated inflammation pathways. The integrity of the gut microbiota could thus be crucial in the onset of neuroinflammation and mental conditions. Further studies on how the modulation by exercise of the peripheral eCBome affects brain functions could reveal to be key elements in the prevention and treatment of neuropsychological disorders.

Keywords: brain; central nervous system; depression; endocannabinoids; mental health; microbiome; peripheral nervous system; physical activity; stress.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Interaction between endocannabinoids, glutamate, and the HPA axis under stressful conditions. This figure summarizes the theory presented by Hill et al. (2010) about the intervention of eCBs, the glutamatergic (Glu) system, glucocorticoids (GC) and the corticotropin-releasing hormone (CRH) in response to different stressful stimuli, the stress response being dependent on glutamatergic neurons and CB1 signaling in murine models. The synapses illustrated occur in the amygdala, hypothalamus (HYP), hippocampus or prefrontal cortex (PC). Symbols show the nature of the effect on the HPA axis, either neutral (−), excitatory (+) or inhibitory (x). (A) The non-stressed condition enables to maintain normal levels of AEA and to stabilize Glu activity onto the basolateral amygdala (BLA) neurons, which does not affect the HPA axis. Under acute stressful situations (B), the HPA is activated to ensure the survival of the organism. In response to stress, fatty acid amide hydrolase (FAAH) activation promotes the hydrolysis of AEA in all brain regions considered, whereas there are unchanged or lower 2-AG levels in the amygdala and in the HYP, respectively. The impaired AEA/CB1 signaling onto Glu synapses in turn induces a higher Glu input onto BLA neurons. A negative fast feedback occurs when there is a hypersecretion of cortisol (C). Biosynthesis of eCBs is then engaged to activate CB1 receptors in Glu terminals, thus diminishing or even suppressing Glu release and further CRH production in a retrograde manner. BLA-GABAergic outflow through eCB signaling can also generate a negative fast feedback in the amygdala. During chronic stress (D), the insufficient increases of 2-AG/CB1 signaling induced by many stressful circumstances downregulates CB1 signaling in the medial PC and the HYP that results in a “hypocannabinoid state”.
Figure 2
Figure 2
The possible ECS-related neurological outcomes of aerobic exercise and metabolic processes in hippocampal, hypothalamic, and peripheral tissues. The eCBs are involved in brain and exercise interactions. (A) Cross-sectional and prospective studies have been selected and used to summarize the implication of eCBs in mood, temper, cognition, and motor skills in relation to acute and chronic aerobic exercise. Looking at the hippocampus, aerobic exercise was associated with the increase of CB1 signaling and hippocampal BDNF expression (Ferreira-Vieira et al., 2014), exerting a neutral to positive impact into neuroplasticity and mental factors in animals. In the hypothalamus, the HPA axis and CB1 signaling reduce stress and fear. In the periphery, aerobic exercise seems to have positive impacts on the phenotype of human brain factors through the rise of OEA, AEA and a cortisol-AEA-GABA cascade. (B) The eCBs also impact on metabolism, thus playing a secondary neurological role. In the hippocampus, some animal studies suggested that CB1 overactivity would lead to inflammation and obesity-related consequences such as hyperphagia and glucose intolerance. The hypothalamic AMPK, eCBs, dopaminergic and ghrelin systems might interact to activate feeding, as well as CRH release. In the skeletal muscle, liver and adipose tissues of humans and animals, eCB/CB1 signaling would play the same role with possible inhibitory effects by OEA. CB1 signaling would also increase lipopolysaccharide (LPS) levels, low-grade inflammation, and insulin resistance. Physical activity and diet could be putative triggers of energy seeking molecular mechanisms and be implicated in inflammatory processes.
Figure 3
Figure 3
Gut-brain axis routes in mental health. The gut microbiota and the CNS are connected through immune, vagus nerve, metabolic and neuroendocrine-mediated pathways. These processes can all contribute to mental health or illness where eCBs and other molecules interfere depending on the cell or tissue. SCFAs are primary products of the fermentation of complex fibers by gut microbes in an intestinal balanced environment i.e., eubiosis. SCFAs induce GABA and serotonin (5-HT) production, attenuating depressive-like behavior. These neurotransmitters can also exert their roles in the brain where, with BDNF and CB1, they can bring positive mood changes. On the other hand, LPS-mediated low-grade inflammation in the gut caused by disruption of microbiota composition (dysbiosis) and intestinal barrier perturbation, would induce tryptophan degradation, raising kynurenine (KYN) levels and reducing 5-HT release, two events associated with depressive mood. The action of pro-inflammatory interleukins (pro-IL) and LPS would evolve in an inflammatory state in the brain. Inflammatory stimuli and stressor exposure would engage HPA overstimulation. HPA function through GC and ACTH circuitry release in gut microbiota-mediated anxiety-like behaviors is notable (Kang et al., 2014). Strong bidirectional correlations are found between major depressive disorder (MDD), psychosis, Alzheimer’s disease, autism spectrum disorder and intestinal dysbiosis, which correlates with the dietary and exercise patterns.

References

    1. Hill M.N., McEwen B.S. Involvement of the endocannabinoid system in the neurobehavioural effects of stress and glucocorticoids. Prog. Neuro-Psychopharmacol. Biol. Psychiatry. 2010;34:791–797. doi: 10.1016/j.pnpbp.2009.11.001.
    1. Hill M.N., Patel S., Campolongo P., Tasker J.G., Wotjak C.T., Bains J.S. Functional Interactions between Stress and the Endocannabinoid System: From Synaptic Signaling Behavioral Output. J. Neurosci. 2010;30:14980–14986. doi: 10.1523/JNEUROSCI.4283-10.2010.
    1. Steiner M., Wotjak C. Role of the endocannabinoid system in regulation of the hypothalamic-pituitary-adrenocortical axis. Prog. Brain Res. 2008;170:397–432.
    1. Feuerecker M., Hauer D., Toth R., Demetz F., Hölzl J., Thiel M., Kaufmann I., Schelling G., Choukèr A. Effects of exercise stress on the endocannabinoid system in humans under field conditions. Eur. J. Appl. Physiol. 2012;112:2777–2781. doi: 10.1007/s00421-011-2237-0.
    1. Clark A., Mach N. Exercise-induced stress behavior, gut-microbiota-brain axis and diet: A systematic review for athletes. J. Int. Soc. Sports Nutr. 2016;13:43. doi: 10.1186/s12970-016-0155-6.
    1. Hill M.N. Impairments in Endocannabinoid Signaling and Depressive Illness. JAMA. 2009;301:1165–1166. doi: 10.1001/jama.2009.369.
    1. Hill M.N., Miller G.E., Carrier E.J., Gorzalka B.B., Hillard C.J. Circulating endocannabinoids and N-acyl ethanolamines are differentially regulated in major depression and following exposure to social stress. Psychoneuroendocrinology. 2009;34:1257–1262. doi: 10.1016/j.psyneuen.2009.03.013.
    1. Hill M.N., Titterness A.K., Morrish A.C., Carrier E.J., Lee T.T.-Y., Gil-Mohapel J., Gorzalka B.B., Hillard C.J., Christie B.R. Endogenous cannabinoid signaling is required for voluntary exercise-induced enhancement of progenitor cell proliferation in the hippocampus. Hippocampus. 2010;20:513–523. doi: 10.1002/hipo.20647.
    1. Alkadhi K.A. Exercise as a Positive Modulator of Brain Function. Mol. Neurobiol. 2018;55:3112–3130. doi: 10.1007/s12035-017-0516-4.
    1. Maurus I., Hasan A., Röh A., Takahashi S., Rauchmann B., Keeser D., Malchow B., Schmitt A., Falkai P. Neurobiological effects of aerobic exercise, with a focus on patients with schizophrenia. Eur. Arch. Psychiatry Clin. Neurosci. 2019;269:499–515. doi: 10.1007/s00406-019-01025-w.
    1. Dietrich A. Endocannabinoids and exercise. Br. J. Sports Med. 2004;38:536–541. doi: 10.1136/bjsm.2004.011718.
    1. Raichlen D.A., Foster A.D., Gerdeman G.L., Seillier A., Giuffrida A. Wired to run: Exercise-induced endocannabinoid signaling in humans and cursorial mammals with implications for the “runner’s high”. J. Exp. Biol. 2012;215:1331–1336. doi: 10.1242/jeb.063677.
    1. Koay Y.C., Stanton K., Kienzle V., Li M., Yang J., Celermajer D.S., O’Sullivan J.F. Effect of chronic exercise in healthy young male adults: A metabolomic analysis. Cardiovasc. Res. 2021;117:613–622. doi: 10.1093/cvr/cvaa051.
    1. Liu S., Guo R., Liu F., Yuan Q., Yu Y., Ren F. Gut Microbiota Regulates Depression-Like Behavior in Rats Through the Neuroendocrine-Immune-Mitochondrial Pathway. Neuropsychiatr. Dis. Treat. 2020;16:859–869. doi: 10.2147/NDT.S243551.
    1. Madison A., Kiecolt-Glaser J.K. Stress, depression, diet, and the gut microbiota: Human–bacteria interactions at the core of psychoneuroimmunology and nutrition. Curr. Opin. Behav. Sci. 2019;28:105–110. doi: 10.1016/j.cobeha.2019.01.011.
    1. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–133. doi: 10.1016/j.brainres.2018.03.015.
    1. Tantimonaco M., Ceci R., Sabatini S., Catani M.V., Rossi A., Gasperi V., Maccarrone M. Physical activity and the endocannabinoid system: An overview. Cell. Mol. Life Sci. 2014;71:2681–2698. doi: 10.1007/s00018-014-1575-6.
    1. Turcotte C., Chouinard F., Lefebvre J.S., Flamand N. Regulation of inflammation by cannabinoids, the endocannabinoids 2-arachidonoyl-glycerol and arachidonoyl-ethanolamide, and their metabolites. J. Leukoc. Biol. 2015;97:1049–1070. doi: 10.1189/jlb.3RU0115-021R.
    1. Turcotte C., Blanchet M.-R., Laviolette M., Flamand N. The CB2 receptor and its role as a regulator of inflammation. Cell. Mol. Life Sci. 2016;73:4449–4470. doi: 10.1007/s00018-016-2300-4.
    1. Crombie K.M., Brellenthin A.G., Hillard C.J., Koltyn K.F. Psychobiological Responses to Aerobic Exercise in Individuals With Posttraumatic Stress Disorder: Psychobiological Responses to Exercise in PTSD. J. Trauma. Stress. 2018;31:134–145. doi: 10.1002/jts.22253.
    1. Watkins B.A. Diet, endocannabinoids, and health. Nutr. Res. 2019;70:32–39. doi: 10.1016/j.nutres.2019.06.003.
    1. Di Marzo V. New approaches and challenges to targeting the endocannabinoid system. Nat. Rev. Drug Discov. 2018;17:623–639. doi: 10.1038/nrd.2018.115.
    1. Ruiz de Azua I., Lutz B. Multiple endocannabinoid-mediated mechanisms in the regulation of energy homeostasis in brain and peripheral tissues. Cell. Mol. Life Sci. 2019;76:1341–1363. doi: 10.1007/s00018-018-2994-6.
    1. Lutz B., Marsicano G., Maldonado R., Hillard C.J. The endocannabinoid system in guarding against fear, anxiety and stress. Nat. Rev. Neurosci. 2015;16:705–718. doi: 10.1038/nrn4036.
    1. Di Marzo V., Stella N., Zimmer A. Endocannabinoid signalling and the deteriorating brain. Nat. Rev. Neurosci. 2015;16:30–42. doi: 10.1038/nrn3876.
    1. Cristino L., Bisogno T., Di Marzo V. Cannabinoids and the expanded endocannabinoid system in neurological disorders. Nat. Rev. Neurol. 2020;16:9–29. doi: 10.1038/s41582-019-0284-z.
    1. Di Marzo V. Endocannabinoid signaling in the brain: Biosynthetic mechanisms in the limelight. Nat. Neurosci. 2011;14:9–15. doi: 10.1038/nn.2720.
    1. Hillard C.J. Circulating Endocannabinoids: From Whence Do They Come and Where are They Going? Neuropsychopharmacology. 2018;43:155–172. doi: 10.1038/npp.2017.130.
    1. Di Marzo V., Silvestri C. Lifestyle and Metabolic Syndrome: Contribution of the Endocannabinoidome. Nutrients. 2019;11:1956. doi: 10.3390/nu11081956.
    1. Di Marzo V., Wang J., editors. The Endocannabinoidome. 1st ed. Academic Press; Cambridge, MA, USA: 2014.
    1. Cani P.D., Plovier H., Van Hul M., Geurts L., Delzenne N.M., Druart C., Everard A. Endocannabinoids—at the crossroads between the gut microbiota and host metabolism. Nat. Rev. Endocrinol. 2016;12:133–143. doi: 10.1038/nrendo.2015.211.
    1. Fezza F., Bari M., Florio R., Talamonti E., Feole M., Maccarrone M. Endocannabinoids, Related Compounds and Their Metabolic Routes. Molecules. 2014;19:17078–17106. doi: 10.3390/molecules191117078.
    1. Luo Z., Ma L., Zhao Z., He H., Yang D., Feng X., Ma S., Chen X., Zhu T., Cao T., et al. TRPV1 Activation Improves Exercise Endurance and Energy Metabolism through PGC-1α Upregulation in Mice. Cell Res. 2012;22:551–564. doi: 10.1038/cr.2011.205.
    1. Gorzalka B.B., Hill M.N., Hillard C.J. Regulation of endocannabinoid signaling by stress: Implications for stress-related affective disorders. Neurosci. Biobehav. Rev. 2008;32:1152–1160. doi: 10.1016/j.neubiorev.2008.03.004.
    1. Carabotti M., Scirocco A., Maselli M.A., Severi C. The gut-brain axis: Interactions between enteric microbiota, central and enteric nervous systems. Ann. Gastroenterol. Q. Publ. Hell. Soc. Gastroenterol. 2015;28:203.
    1. Hohmann A.G., Suplita R.L., Bolton N.M., Neely M.H., Fegley D., Mangieri R., Krey J.F., Michael Walker J., Holmes P.V., Crystal J.D., et al. An endocannabinoid mechanism for stress-induced analgesia. Nature. 2005;435:1108–1112. doi: 10.1038/nature03658.
    1. Schoenfeld T.J., Rada P., Pieruzzini P.R., Hsueh B., Gould E. Physical Exercise Prevents Stress-Induced Activation of Granule Neurons and Enhances Local Inhibitory Mechanisms in the Dentate Gyrus. J. Neurosci. 2013;33:7770–7777. doi: 10.1523/JNEUROSCI.5352-12.2013.
    1. Gunduz-Cinar O., Hill M.N., McEwen B.S., Holmes A. Amygdala FAAH and anandamide: Mediating protection and recovery from stress. Trends Pharmacol. Sci. 2013;34:637–644. doi: 10.1016/j.tips.2013.08.008.
    1. Hill M.N., Patel S., Carrier E.J., Rademacher D.J., Ormerod B.K., Hillard C.J., Gorzalka B.B. Downregulation of Endocannabinoid Signaling in the Hippocampus Following Chronic Unpredictable Stress. Neuropsychopharmacology. 2005;30:508–515. doi: 10.1038/sj.npp.1300601.
    1. Patel S., Roelke C.T., Rademacher D.J., Cullinan W.E., Hillard C.J. Endocannabinoid Signaling Negatively Modulates Stress-Induced Activation of the Hypothalamic-Pituitary-Adrenal Axis. Endocrinology. 2004;145:5431–5438. doi: 10.1210/en.2004-0638.
    1. Hill M.N., McLaughlin R.J., Pan B., Fitzgerald M.L., Roberts C.J., Lee T.T.-Y., Karatsoreos I.N., Mackie K., Viau V., Pickel V.M., et al. Recruitment of Prefrontal Cortical Endocannabinoid Signaling by Glucocorticoids Contributes to Termination of the Stress Response. J. Neurosci. 2011;31:10506–10515. doi: 10.1523/JNEUROSCI.0496-11.2011.
    1. Hill M.N., Carrier E.J., McLaughlin R.J., Morrish A.C., Meier S.E., Hillard C.J., Gorzalka B.B. Regional alterations in the endocannabinoid system in an animal model of depression: Effects of concurrent antidepressant treatment. J. Neurochem. 2008;106:2322–2336. doi: 10.1111/j.1471-4159.2008.05567.x.
    1. McPartland J.M., Guy G.W., Di Marzo V. Care and Feeding of the Endocannabinoid System: A Systematic Review of Potential Clinical Interventions that Upregulate the Endocannabinoid System. PLoS ONE. 2014;9:e89566. doi: 10.1371/journal.pone.0089566.
    1. Thompson Z., Argueta D., Garland T., DiPatrizio N. Circulating levels of endocannabinoids respond acutely to voluntary exercise, are altered in mice selectively bred for high voluntary wheel running, and differ between the sexes. Physiol. Behav. 2017;170:141–150. doi: 10.1016/j.physbeh.2016.11.041.
    1. Sparling P.B., Giuffrida A., Piomelli D., Rosskopf L., Dietrich A. Exercise activates the endocannabinoid system. Neuroreport. 2003;14:2209–2211. doi: 10.1097/00001756-200312020-00015.
    1. Zouhal H., Jacob C., Delamarche P., Gratas-Delamarche A. Catecholamines and the Effects of Exercise, Training and Gender. Sports Med. 2008;38:401–423. doi: 10.2165/00007256-200838050-00004.
    1. Sleiman S.F., Henry J., Al-Haddad R., El Hayek L., Abou Haidar E., Stringer T., Ulja D., Karuppagounder S.S., Holson E.B., Ratan R.R., et al. Exercise promotes the expression of brain derived neurotrophic factor (BDNF) through the action of the ketone body β-hydroxybutyrate. Elife. 2016;5:e15092. doi: 10.7554/eLife.15092.
    1. Thoenen H. Neurotrophins and Neuronal Plasticity. Science. 1995;270:593–598. doi: 10.1126/science.270.5236.593.
    1. Heyman E., Gamelin F.-X., Goekint M., Piscitelli F., Roelands B., Leclair E., Di Marzo V., Meeusen R. Intense exercise increases circulating endocannabinoid and BDNF levels in humans—Possible implications for reward and depression. Psychoneuroendocrinology. 2012;37:844–851. doi: 10.1016/j.psyneuen.2011.09.017.
    1. Pittenger C., Duman R.S. Stress, Depression, and Neuroplasticity: A Convergence of Mechanisms. Neuropsychopharmacology. 2008;33:88–109. doi: 10.1038/sj.npp.1301574.
    1. Ferreira F.F., Ribeiro F.F., Rodrigues R.S., Sebastião A.M., Xapelli S. Brain-Derived Neurotrophic Factor (BDNF) Role in Cannabinoid-Mediated Neurogenesis. Front. Cell. Neurosci. 2018;12:441. doi: 10.3389/fncel.2018.00441.
    1. Maison P., Walker D.J., Walsh F.S., Williams G., Doherty P. BDNF regulates neuronal sensitivity to endocannabinoids. Neurosci. Lett. 2009;467:90–94. doi: 10.1016/j.neulet.2009.10.011.
    1. Huang T., Larsen K.T., Ried-Larsen M., Møller N.C., Andersen L.B. The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review: Physical activity and BDNF. Scand. J. Med. Sci. Sports. 2014;24:1–10. doi: 10.1111/sms.12069.
    1. Rossi S., De Chiara V., Musella A., Kusayanagi H., Mataluni G., Bernardi G., Usiello A., Centonze D. Chronic Psychoemotional Stress Impairs Cannabinoid-Receptor-Mediated Control of GABA Transmission in the Striatum. J. Neurosci. 2008;28:7284–7292. doi: 10.1523/JNEUROSCI.5346-07.2008.
    1. Balleine B.W., Delgado M.R., Hikosaka O. The Role of the Dorsal Striatum in Reward and Decision-Making. J. Neurosci. 2007;27:8161–8165. doi: 10.1523/JNEUROSCI.1554-07.2007.
    1. Meadows A., Lee J.H., Wu C.-S., Wei Q., Pradhan G., Yafi M., Lu H.-C., Sun Y. Deletion of G-protein-coupled receptor 55 promotes obesity by reducing physical activity. Int. J. Obes. 2016;40:417–424. doi: 10.1038/ijo.2015.209.
    1. Shi Q., Yang L., Shi W., Wang L., Zhou S., Guan S., Zhao M., Yang Q. The novel cannabinoid receptor GPR55 mediates anxiolytic-like effects in the medial orbital cortex of mice with acute stress. Mol. Brain. 2017;10:38. doi: 10.1186/s13041-017-0318-7.
    1. Ghafouri N., Ghafouri B., Fowler C.J., Larsson B., Turkina M.V., Karlsson L., Gerdle B. Effects of two different specific neck exercise interventions on palmitoylethanolamide and stearoylethanolamide concentrations in the interstitium of the trapezius muscle in women with chronic neck shoulder pain. Pain Med. 2014;15:1379–1389. doi: 10.1111/pme.12486.
    1. Mallard A., Briskey D., Richards A., Mills D., Rao A. The Effect of Orally Dosed Levagen+TM (palmitoylethanolamide) on Exercise Recovery in Healthy Males-A Double-Blind, Randomized, Placebo-Controlled Study. Nutrients. 2020;12:596. doi: 10.3390/nu12030596.
    1. Heyman E., Gamelin F.-X., Aucouturier J., Di Marzo V. The role of the endocannabinoid system in skeletal muscle and metabolic adaptations to exercise: Potential implications for the treatment of obesity: Exercise and the endocannabinoid system. Obes. Rev. 2012;13:1110–1124. doi: 10.1111/j.1467-789X.2012.01026.x.
    1. Zhang S., Liu Y., Li Q., Dong X., Hu H., Hu R., Ye H., Wu Y., Hu R., Li Y. Exercise improved rat metabolism by raising PPAR-α. Int. J. Sports Med. 2011;32:568–573. doi: 10.1055/s-0031-1271755.
    1. GTEx Consortium The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science. 2020;369:1318–1330. doi: 10.1126/science.aaz1776.
    1. GTEx Consortium Human genomics The Genotype-Tissue Expression (GTEx) pilot analysis: Multitissue gene regulation in humans. Science. 2015;348:648–660. doi: 10.1126/science.1262110.
    1. Dubreucq S., Koehl M., Abrous D.N., Marsicano G., Chaouloff F. CB1 receptor deficiency decreases wheel-running activity: Consequences on emotional behaviours and hippocampal neurogenesis. Exp. Neurol. 2010;224:106–113. doi: 10.1016/j.expneurol.2010.01.017.
    1. Gamelin F.-X., Aucouturier J., Iannotti F.A., Piscitelli F., Mazzarella E., Aveta T., Leriche M., Dupont E., Cieniewski-Bernard C., Leclair E., et al. Exercise training and high-fat diet elicit endocannabinoid system modifications in the rat hypothalamus and hippocampus. J. Physiol. Biochem. 2016;73:335–347. doi: 10.1007/s13105-017-0557-1.
    1. Fuss J., Steinle J., Bindila L., Auer M.K., Kirchherr H., Lutz B., Gass P. A runner’s high depends on cannabinoid receptors in mice. Proc. Natl. Acad. Sci. USA. 2015;112:13105–13108. doi: 10.1073/pnas.1514996112.
    1. Ferreira-Vieira T.H., Bastos C.P., Pereira G.S., Moreira F.A., Massensini A.R. A role for the endocannabinoid system in exercise-induced spatial memory enhancement in mice: Endocannabinoid System Mediates Promnesic Effect of Exercise. Hippocampus. 2014;24:79–88. doi: 10.1002/hipo.22206.
    1. Chevalier G., Siopi E., Guenin-Macé L., Pascal M., Laval T., Rifflet A., Boneca I.G., Demangel C., Colsch B., Pruvost A., et al. Effect of gut microbiota on depressive-like behaviors in mice is mediated by the endocannabinoid system. Nat. Commun. 2020;11:6363. doi: 10.1038/s41467-020-19931-2.
    1. Cota D. CB1 receptors: Emerging evidence for central and peripheral mechanisms that regulate energy balance, metabolism, and cardiovascular health. Diabetes/Metab. Res. Rev. 2007;23:507–517. doi: 10.1002/dmrr.764.
    1. Mock E.D., Mustafa M., Gunduz-Cinar O., Cinar R., Petrie G.N., Kantae V., Di X., Ogasawara D., Varga Z.V., Paloczi J., et al. Discovery of a NAPE-PLD inhibitor that modulates emotional behavior in mice. Nat. Chem. Biol. 2020;16:667–675. doi: 10.1038/s41589-020-0528-7.
    1. Marsicano G., Bisogno T., Hermann H., Tang J., Hofmann C. The endogenous cannabinoid system controls extinction of aversive memories. Nature. 2002;418:530–534. doi: 10.1038/nature00839.
    1. Edwards A., Abizaid A. Driving the need to feed: Insight into the collaborative interaction between ghrelin and endocannabinoid systems in modulating brain reward systems. Neurosci. Biobehav. Rev. 2016;66:33–53. doi: 10.1016/j.neubiorev.2016.03.032.
    1. King-Himmelreich T.S., Möser C.V., Wolters M.C., Schmetzer J., Schreiber Y., Ferreirós N., Russe O.Q., Geisslinger G., Niederberger E. AMPK contributes to aerobic exercise-induced antinociception downstream of endocannabinoids. Neuropharmacology. 2017;124:134–142. doi: 10.1016/j.neuropharm.2017.05.002.
    1. Naughton S.S., Mathai M.L., Hryciw D.H., McAinch A.J. Fatty Acid Modulation of the Endocannabinoid System and the Effect on Food Intake and Metabolism. Int. J. Endocrinol. 2013;2013:1–11. doi: 10.1155/2013/361895.
    1. Baggelaar M.P., Maccarrone M., van der Stelt M. 2-Arachidonoylglycerol: A signaling lipid with manifold actions in the brain. Prog. Lipid Res. 2018;71:1–17. doi: 10.1016/j.plipres.2018.05.002.
    1. Meyer J.D., Crombie K.M., Cook D.B., Hillard C.J., Koltyn K.F. Serum Endocannabinoid and Mood Changes after Exercise in Major Depressive Disorder. Med. Sci. Sports Exerc. 2019;51:1909–1917. doi: 10.1249/MSS.0000000000002006.
    1. Brellenthin A.G., Crombie K.M., Hillard C.J., Koltyn K.F. Endocannabinoid and Mood Responses to Exercise in Adults with Varying Activity Levels. Med. Sci. Sports Exerc. 2017;49:1688–1696. doi: 10.1249/MSS.0000000000001276.
    1. Stone N.L., Millar S.A., Herrod P.J.J., Barrett D.A., Ortori C.A., Mellon V.A., O’Sullivan S.E. An Analysis of Endocannabinoid Concentrations and Mood Following Singing and Exercise in Healthy Volunteers. Front. Behav. Neurosci. 2018;12:269. doi: 10.3389/fnbeh.2018.00269.
    1. Jaromin E., Sadowska E.T., Koteja P. Is Experimental Evolution of an Increased Aerobic Exercise Performance in Bank Voles Mediated by Endocannabinoid Signaling Pathway? Front. Physiol. 2019;10:640. doi: 10.3389/fphys.2019.00640.
    1. Fernández-Aranda F., Sauchelli S., Pastor A., Gonzalez M.L., de la Torre R., Granero R., Jiménez-Murcia S., Baños R., Botella C., Fernández-Real J.M., et al. Moderate-Vigorous Physical Activity across Body Mass Index in Females: Moderating Effect of Endocannabinoids and Temperament. PLoS ONE. 2014;9:e104534. doi: 10.1371/journal.pone.0104534.
    1. Das U.N. Arachidonic acid in health and disease with focus on hypertension and diabetes mellitus: A review. J. Adv. Res. 2018;11:43–55. doi: 10.1016/j.jare.2018.01.002.
    1. Grunewald Z.I., Lee S., Kirkland R., Ross M., de La Serre C.B. Cannabinoid receptor type-1 partially mediates metabolic endotoxemia-induced inflammation and insulin resistance. Physiol. Behav. 2019;199:282–291. doi: 10.1016/j.physbeh.2018.11.035.
    1. Galdino G., Romero T., da Silva J.F.P., Aguiar D., de Paula A.M., Cruz J., Parrella C., Piscitelli F., Duarte I., Di Marzo V., et al. Acute Resistance Exercise Induces Antinociception by Activation of the Endocannabinoid System in Rats. Anesth. Analg. 2014;119:702–715. doi: 10.1213/ANE.0000000000000340.
    1. Galdino G., Romero T.R.L., Silva J.F.P., Aguiar D.C., de Paula A.M., Cruz J.S., Parrella C., Piscitelli F., Duarte I.D., Di Marzo V., et al. The endocannabinoid system mediates aerobic exercise-induced antinociception in rats. Neuropharmacology. 2014;77:313–324. doi: 10.1016/j.neuropharm.2013.09.022.
    1. Ludtke D.D., Siteneski A., Galassi T.d.O., Buffon A.C., Cidral-Filho F.J., Reed W.R., Salgado A.S.I., Santos A.R.S., Martins D.F. High-intensity swimming exercise reduces inflammatory pain in mice by activation of the endocannabinoid system. Scand. J. Med. Sci. Sports. 2020;30:1369–1378. doi: 10.1111/sms.13705.
    1. Stensson N., Grimby-Ekman A. Altered relationship between anandamide and glutamate in circulation after 30 min of arm cycling: A comparison of chronic pain subject with healthy controls. Mol. Pain. 2019;15:1744806919898360. doi: 10.1177/1744806919898360.
    1. Guida F., Turco F., Iannotta M., De Gregorio D., Palumbo I., Sarnelli G., Furiano A., Napolitano F., Boccella S., Luongo L., et al. Antibiotic-induced microbiota perturbation causes gut endocannabinoidome changes, hippocampal neuroglial reorganization and depression in mice. Brain Behav. Immun. 2018;67:230–245. doi: 10.1016/j.bbi.2017.09.001.
    1. Yang Z., Li J., Gui X., Shi X., Bao Z., Han H., Li M.D. Updated review of research on the gut microbiota and their relation to depression in animals and human beings. Mol. Psychiatry. 2020;25:2759–2772. doi: 10.1038/s41380-020-0729-1.
    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders, 5th Edition: DSM-5. 5th ed. American Psychiatric Publishing; Washington, DC, USA: 2013.
    1. Wilker S., Pfeiffer A., Elbert T., Ovuga E., Karabatsiakis A., Krumbholz A., Thieme D., Schelling G., Kolassa I.-T. Endocannabinoid concentrations in hair are associated with PTSD symptom severity. Psychoneuroendocrinology. 2016;67:198–206. doi: 10.1016/j.psyneuen.2016.02.010.
    1. Walker J.M., Huang S.M. Cannabinoid analgesia. Pharmacol. Ther. 2002;95:127–135. doi: 10.1016/S0163-7258(02)00252-8.
    1. Roman P., Estévez A.F., Miras A., Sánchez-Labraca N., Cañadas F., Vivas A.B., Cardona D. A Pilot Randomized Controlled Trial to Explore Cognitive and Emotional Effects of Probiotics in Fibromyalgia. Sci. Rep. 2018;8:10965. doi: 10.1038/s41598-018-29388-5.
    1. Järbrink-Sehgal E., Andreasson A. The gut microbiota and mental health in adults. Curr. Opin. Neurobiol. 2020;62:102–114. doi: 10.1016/j.conb.2020.01.016.
    1. Rudzki L., Ostrowska L., Pawlak D., Małus A., Pawlak K., Waszkiewicz N., Szulc A. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology. 2019;100:213–222. doi: 10.1016/j.psyneuen.2018.10.010.
    1. Chahwan B., Kwan S., Isik A., van Hemert S., Burke C., Roberts L. Gut feelings: A randomised, triple-blind, placebo-controlled trial of probiotics for depressive symptoms. J. Affect. Disord. 2019;253:317–326. doi: 10.1016/j.jad.2019.04.097.
    1. Ijaz M.U., Ahmad M.I., Hussain M., Khan I.A., Zhao D., Li C. Meat Protein in High-Fat Diet Induces Adipogensis and Dyslipidemia by Altering Gut Microbiota and Endocannabinoid Dysregulation in the Adipose Tissue of Mice. J. Agric. Food Chem. 2020;68:3933–3946. doi: 10.1021/acs.jafc.0c00017.
    1. Manca C., Shen M., Boubertakh B., Martin C., Flamand N., Silvestri C., Di Marzo V. Alterations of brain endocannabinoidome signaling in germ-free mice. Biochim. Biophys. Acta Mol. Cell Biol. Lipids. 2020;1865:158786. doi: 10.1016/j.bbalip.2020.158786.
    1. Manca C., Boubertakh B., Leblanc N., Deschênes T., Lacroix S., Martin C., Houde A., Veilleux A., Flamand N., Muccioli G.G., et al. Germ-free mice exhibit profound gut microbiota-dependent alterations of intestinal endocannabinoidome signaling. J. Lipid Res. 2020;61:70–85. doi: 10.1194/jlr.RA119000424.
    1. Lacroix S., Pechereau F., Leblanc N., Boubertakh B., Houde A., Martin C., Flamand N., Silvestri C., Raymond F., Di Marzo V., et al. Rapid and Concomitant Gut Microbiota and Endocannabinoidome Response to Diet-Induced Obesity in Mice. mSystems. 2019;4 doi: 10.1128/mSystems.00407-19.
    1. Castonguay-Paradis S., Lacroix S., Rochefort G., Parent L., Perron J., Martin C., Lamarche B., Raymond F., Flamand N., Di Marzo V., et al. Dietary fatty acid intake and gut microbiota determine circulating endocannabinoidome signaling beyond the effect of body fat. Sci. Rep. 2020;10:15975. doi: 10.1038/s41598-020-72861-3.
    1. Ghosh T.S., Rampelli S., Jeffery I.B., Santoro A., Neto M., Capri M., Giampieri E., Jennings A., Candela M., Turroni S., et al. Mediterranean diet intervention alters the gut microbiome in older people reducing frailty and improving health status: The NU-AGE 1-year dietary intervention across five European countries. Gut. 2020;69:1218–1228. doi: 10.1136/gutjnl-2019-319654.
    1. Wegh; Geerlings; Knol; Roeselers; Belzer Postbiotics and Their Potential Applications in Early Life Nutrition and Beyond. Int. J. Mol. Sci. 2019;20:4673. doi: 10.3390/ijms20194673.
    1. Kelly J.R., Minuto C., Cryan J.F., Clarke G., Dinan T.G. The role of the gut microbiome in the development of schizophrenia. Schizophr. Res. 2020 doi: 10.1016/j.schres.2020.02.010. in press.
    1. Mohr A.E., Jäger R., Carpenter K.C., Kerksick C.M., Purpura M., Townsend J.R., West N.P., Black K., Gleeson M., Pyne D.B., et al. The athletic gut microbiota. J. Int. Soc. Sports Nutr. 2020;17:24. doi: 10.1186/s12970-020-00353-w.
    1. Pedersini P., Turroni S., Villafañe J.H. Gut microbiota and physical activity: Is there an evidence-based link? Sci. Total Environ. 2020;727:138648. doi: 10.1016/j.scitotenv.2020.138648.
    1. Caruso A., Nicoletti F., Mango D., Saidi A., Orlando R., Scaccianoce S. Stress as risk factor for Alzheimer’s disease. Pharmacol. Res. 2018;132:130–134. doi: 10.1016/j.phrs.2018.04.017.
    1. Li X., You X., Wang C., Li X., Sheng Y., Zhuang P., Zhang Y. Bidirectional Brain-gut-microbiota Axis in increased intestinal permeability induced by central nervous system injury. CNS Neurosci. Ther. 2020;26:783–790. doi: 10.1111/cns.13401.
    1. Karl J.P., Margolis L.M., Madslien E.H., Murphy N.E., Castellani J.W., Gundersen Y., Hoke A.V., Levangie M.W., Kumar R., Chakraborty N., et al. Changes in intestinal microbiota composition and metabolism coincide with increased intestinal permeability in young adults under prolonged physiological stress. Am. J. Physiol. Gastrointest. Liver Physiol. 2017;312:G559–G571. doi: 10.1152/ajpgi.00066.2017.
    1. Gubert C., Kong G., Renoir T., Hannan A.J. Exercise, Diet and Stress as Modulators of Gut Microbiota: Implications for Neurodegenerative Diseases. Neurobiol. Dis. 2020;134:104621. doi: 10.1016/j.nbd.2019.104621.
    1. Zhang N., Ju Z., Zuo T. Time for food: The impact of diet on gut microbiota and human health. Nutrition. 2018;51–52:80–85. doi: 10.1016/j.nut.2017.12.005.

Source: PubMed

3
Se inscrever