Interactions between the Kynurenine and the Endocannabinoid System with Special Emphasis on Migraine

Gábor Nagy-Grócz, Ferenc Zádor, Szabolcs Dvorácskó, Zsuzsanna Bohár, Sándor Benyhe, Csaba Tömböly, Árpád Párdutz, László Vécsei, Gábor Nagy-Grócz, Ferenc Zádor, Szabolcs Dvorácskó, Zsuzsanna Bohár, Sándor Benyhe, Csaba Tömböly, Árpád Párdutz, László Vécsei

Abstract

Both the kynurenine and the endocannabinoid systems are involved in several neurological disorders, such as migraine and there are increasing number of reports demonstrating that there are interactions of two systems. Although their cooperation has not yet been implicated in migraine, there are reports suggesting this possibility. Additionally, the individual role of the endocannabinoid and kynurenine system in migraine is reviewed here first, focusing on endocannabinoids, kynurenine metabolites, in particular kynurenic acid. Finally, the function of NMDA and cannabinoid receptors in the trigeminal system-which has a crucial role in the pathomechanisms of migraine-will also be discussed. The interaction of the endocannabinoid and kynurenine system has been demonstrated to be therapeutically relevant in a number of pathological conditions, such as cannabis addiction, psychosis, schizophrenia and epilepsy. Accordingly, the cross-talk of these two systems may imply potential mechanisms related to migraine, and may offer new approaches to manage the treatment of this neurological disorder.

Keywords: cannabinoid receptors; cannabinoids; endocannabinoids; kynurenines; migraine; opioids.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The kynurenine pathway. The most relevant metabolites of the pathway are highlighted in different colors, and the key enzymes are also represented on the arrows. Dashed arrows indicate the indirect linkage between the kynurenine and serotonin pathway. The two sequentially arrows symbolizes the multiple (not indicated) steps in quinolinic acid metabolization to nicotinamide adenine dinucleotide (NAD+). Abbreviations: IDO (indoleamine 2,3-dioxygenase); KATs (kynurenine aminotransferases); KMO (l-kynurenine 3-monooxygenase); KYNU (l-kynurenine hydrolase); NAD+ (nicotinamide adenine dinucleotid), TDO (tryptophan 2,3-dioxygenase).
Figure 2
Figure 2
The type 1 cannabinoid receptor-N-methyl-d-aspartate (CB1-NMDA) receptor complex and potential pharmacological targets to reduce N-methyl-d-aspartate (NMDA) receptor hyperactivity, which is one of the main pathomechanism of migraine. The pharmacological inhibition (red arrow) of endocannabinoid metabolizing enzymes, monoacylglycerol lipase (MAGL) or fatty acid amide hydrolase (FAAH) (1) increases (upward green arrow) endocannabinoid levels (e.g., 2-arachidonoylglycerol (2-AG), anandamide (AEA)) (2) [113], thus enhancing the agonist-mediated type 1 cannabinoid receptor (CB1) receptor activity (3) (in this step the black arrows indicate ligand binding). This mechanism will overall reduce (red arrow) the activity of the NMDA receptor, hence the risk of excitotoxicity via CB1 receptor and the σ1R-HINT1 protein tandem (4) [124,153,154]. Exogenous ligands can also induce CB1-receptor mediated NMDA receptor inhibition more effectively (3,4) [124]. Additionally, exogenous cannabinoids such as cannabidiol or Δ9-tetrahydrocannabinol are known to stimulate (blue arrow) the indoleamine 2,3-dioxygenase (IDO) enzyme activity in dependence of cannabinoid receptor activation (5) [120]. This stimulation, together with the pharmacological inhibition (red arrow) of the kynurenine 3-monooxygenase (KMO) enzyme (6) [123] may enhance (yellow upward arrow) endogenous KYNA levels indirectly (indicated by dashed lines), through the kynurenine pathway (7) (Figure 1), which will result an enhanced reduction in NMDA receptor activity via the antagonizing effect (black arrow) of kynurenic acid (KYNA) (8).The figure shows a simplified, hypothetical scenario of the indicate elements and mechanisms of the endocannabinoid and kynurenine system within the CB1-NMDA receptor complex, which has been individually reported previously in other circumstances (cited accordingly). The figure also indicates the sigma 1 receptors- histidine triad nucleotide-binding protein 1 (σ1R-HINT1) protein tandem, which associates the two receptors and it is based on Rodriguez-Munoz and co-worker’s review [124]. NR1 and NR2 indicate the two types of subunit of the NMDA receptor and the C terminus of the CB1 receptor is also highlighted. The green color indicates endocannabinoid, while the yellow color indicates kynurenine system related ligands, receptors, enzymes or mechanisms. The shapes of the indicated ligands, receptors or enzymes are schematic or overly simplified representations of their structures.

References

    1. Rodríguez de Fonseca F., Del Arco I., Bermudez-Silva F.J., Bilbao A., Cippitelli A., Navarro M. The endocannabinoid system: Physiology and pharmacology. Alcohol Alcohol. 2005;40:2–14. doi: 10.1093/alcalc/agh110.
    1. Pacher P., Bátkai S., Kunos G. The endocannabinoid system as an emerging target of pharmacotherapy. Pharmacol. Rev. 2006;58:389–462. doi: 10.1124/pr.58.3.2.
    1. Di Marzo V., Bifulco M., De Petrocellis L. The endocannabinoid system and its therapeutic exploitation. Nat. Rev. Drug Discov. 2004;3:771–784. doi: 10.1038/nrd1495.
    1. Russo E.B. Clinical endocannabinoid deficiency (CECD): Can this concept explain therapeutic benefits of cannabis in migraine, fibromyalgia, irritable bowel syndrome and other treatment-resistant conditions? Neuro Endocrinol. Lett. 2004;25:31–39.
    1. Smitherman T.A., Burch R., Sheikh H., Loder E. The prevalence, impact, and treatment of migraine and severe headaches in the United States: A review of statistics from national surveillance studies. Headache. 2013;53:427–436. doi: 10.1111/head.12074.
    1. Olesen J., Gustavsson A., Svensson M., Wittchen H.U., Jonsson B. The economic cost of brain disorders in Europe. Eur. J. Neurol. 2012;19:155–162. doi: 10.1111/j.1468-1331.2011.03590.x.
    1. Vikelis M., Mitsikostas D.D. The role of glutamate and its receptors in migraine. CNS Neurol. Disord. Drug Targets. 2007;6:251–257. doi: 10.2174/187152707781387279.
    1. Vecsei L., Majlath Z., Balog A., Tajti J. Drug targets of migraine and neuropathy: Treatment of hyperexcitability. CNS Neurol. Disord. Drug Targets. 2015;14:664–676. doi: 10.2174/1871527314666150429114040.
    1. Grotenhermen F., Muller-Vahl K. The therapeutic potential of cannabis and cannabinoids. Dtsch. Arztebl. Int. 2012;109:495–501.
    1. Greenamyre J.T., Porter R.H. Anatomy and physiology of glutamate in the CNS. Neurology. 1994;44:S7–S13.
    1. Meldrum B.S. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J. Nutr. 2000;130:1007S–1015S.
    1. Ziff E.B. Recent excitement in the ionotropic glutamate receptor field. Ann. N. Y. Acad. Sci. 1999;868:465–473. doi: 10.1111/j.1749-6632.1999.tb11315.x.
    1. Brauner-Osborne H., Egebjerg J., Nielsen E.O., Madsen U., Krogsgaard-Larsen P. Ligands for glutamate receptors: Design and therapeutic prospects. J. Med. Chem. 2000;43:2609–2645. doi: 10.1021/jm000007r.
    1. Olney J.W., Sharpe L.G. Brain lesions in an infant rhesus monkey treated with monsodium glutamate. Science. 1969;166:386–388. doi: 10.1126/science.166.3903.386.
    1. Choi D.W. Glutamate neurotoxicity in cortical cell culture is calcium dependent. Neurosci. Lett. 1985;58:293–297. doi: 10.1016/0304-3940(85)90069-2.
    1. Farooqui A.A., Ong W.Y., Horrocks L.A. Biochemical aspects of neurodegeneration in human brain: Involvement of neural membrane phospholipids and phospholipases A2. Neurochem. Res. 2004;29:1961–1977. doi: 10.1007/s11064-004-6871-3.
    1. Gasparini C.F., Griffiths L.R. The biology of the glutamatergic system and potential role in migraine. Int. J. Biomed. Sci. 2013;9:1–8.
    1. Cananzi A.R., D’Andrea G., Perini F., Zamberlan F., Welch K.M. Platelet and plasma levels of glutamate and glutamine in migraine with and without aura. Cephalalgia. 1995;15:132–135. doi: 10.1046/j.1468-2982.1995.015002132.x.
    1. D’Eufemia P., Finocchiaro R., Lendvai D., Celli M., Viozzi L., Troiani P., Turri E., Giardini O. Erythrocyte and plasma levels of glutamate and aspartate in children affected by migraine. Cephalalgia. 1997;17:652–657. doi: 10.1046/j.1468-2982.1997.1706652.x.
    1. Martinez F., Castillo J., Rodriguez J.R., Leira R., Noya M. Neuroexcitatory amino acid levels in plasma and cerebrospinal fluid during migraine attacks. Cephalalgia. 1993;13:89–93. doi: 10.1046/j.1468-2982.1993.1302089.x.
    1. Edvinsson L., Villalon C.M., MaassenVanDenBrink A. Basic mechanisms of migraine and its acute treatment. Pharmacol. Ther. 2012;136:319–333. doi: 10.1016/j.pharmthera.2012.08.011.
    1. Latremoliere A., Woolf C.J. Central sensitization: A generator of pain hypersensitivity by central neural plasticity. J. Pain. 2009;10:895–926. doi: 10.1016/j.jpain.2009.06.012.
    1. Ma Q.P., Woolf C.J. Noxious stimuli induce an N-methyl-d-aspartate receptor-dependent hypersensitivity of the flexion withdrawal reflex to touch: Implications for the treatment of mechanical allodynia. Pain. 1995;61:383–390. doi: 10.1016/0304-3959(94)00195-K.
    1. Hughes D.I., Scott D.T., Todd A.J., Riddell J.S. Lack of evidence for sprouting of abeta afferents into the superficial laminas of the spinal cord dorsal horn after nerve section. J. Neurosci. 2003;23:9491–9499.
    1. Soliman A.C., Yu J.S., Coderre T.J. Mglu and NMDA receptor contributions to capsaicin-induced thermal and mechanical hypersensitivity. Neuropharmacology. 2005;48:325–332. doi: 10.1016/j.neuropharm.2004.10.014.
    1. D’Andrea G., Cananzi A.R., Joseph R., Morra M., Zamberlan F., Ferro Milone F., Grunfeld S., Welch K.M. Platelet glycine, glutamate and aspartate in primary headache. Cephalalgia. 1991;11:197–200. doi: 10.1046/j.1468-2982.1991.1104197.x.
    1. Rothrock J.F., Mar K.R., Yaksh T.L., Golbeck A., Moore A.C. Cerebrospinal fluid analyses in migraine patients and controls. Cephalalgia. 1995;15:489–493. doi: 10.1046/j.1468-2982.1995.1506489.x.
    1. Dykens J.A., Sullivan S.G., Stern A. Oxidative reactivity of the tryptophan metabolites 3-hydroxyanthranilate, cinnabarinate, quinolinate and picolinate. Biochem. Pharmacol. 1987;36:211–217. doi: 10.1016/0006-2952(87)90691-5.
    1. Birch P.J., Grossman C.J., Hayes A.G. Kynurenate and FG9041 have both competitive and non-competitive antagonist actions at excitatory amino acid receptors. Eur. J. Pharmacol. 1988;151:313–315. doi: 10.1016/0014-2999(88)90814-X.
    1. Perkins M.N., Stone T.W. Actions of kynurenic acid and quinolinic acid in the rat hippocampus in vivo. Exp. Neurol. 1985;88:570–579. doi: 10.1016/0014-4886(85)90072-X.
    1. Wang J., Simonavicius N., Wu X., Swaminath G., Reagan J., Tian H., Ling L. Kynurenic acid as a ligand for orphan G protein-coupled receptor GPR35. J. Biol. Chem. 2006;281:22021–22028. doi: 10.1074/jbc.M603503200.
    1. O’Dowd B.F., Nguyen T., Marchese A., Cheng R., Lynch K.R., Heng H.H., Kolakowski L.F., George S.R. Discovery of three novel G-protein-coupled receptor genes. Genomics. 1998;47:310–313. doi: 10.1006/geno.1998.5095.
    1. Guo J., Williams D.J., Puhl H.L., Ikeda S.R. Inhibition of n-type calcium channels by activation of GPR35, an orphan receptor, heterologously expressed in rat sympathetic neurons. J. Pharmacol. Exp. Ther. 2008;324:342–351. doi: 10.1124/jpet.107.127266.
    1. Mackenzie A.E., Milligan G. The emerging pharmacology and function of GPR35 in the nervous system. Neuropharmacology. 2017;113:661–671. doi: 10.1016/j.neuropharm.2015.07.035.
    1. Guidetti P., Schwarcz R. 3-hydroxykynurenine potentiates quinolinate but not NMDA toxicity in the rat striatum. Eur. J. Neurosci. 1999;11:3857–3863. doi: 10.1046/j.1460-9568.1999.00806.x.
    1. Behan W.M., McDonald M., Darlington L.G., Stone T.W. Oxidative stress as a mechanism for quinolinic acid-induced hippocampal damage: Protection by melatonin and deprenyl. Br. J. Pharmacol. 1999;128:1754–1760. doi: 10.1038/sj.bjp.0702940.
    1. Tavares R.G., Tasca C.I., Santos C.E., Wajner M., Souza D.O., Dutra-Filho C.S. Quinolinic acid inhibits glutamate uptake into synaptic vesicles from rat brain. NeuroReport. 2000;11:249–253. doi: 10.1097/00001756-200002070-00005.
    1. Kemp J.A., Foster A.C., Leeson P.D., Priestley T., Tridgett R., Iversen L.L., Woodruff G.N. 7-chlorokynurenic acid is a selective antagonist at the glycine modulatory site of the N-methyl-d-aspartate receptor complex. Proc. Natl. Acad. Sci. USA. 1988;85:6547–6550. doi: 10.1073/pnas.85.17.6547.
    1. Sas K., Robotka H., Rozsa E., Agoston M., Szenasi G., Gigler G., Marosi M., Kis Z., Farkas T., Vecsei L., et al. Kynurenine diminishes the ischemia-induced histological and electrophysiological deficits in the rat hippocampus. Neurobiol. Dis. 2008;32:302–308. doi: 10.1016/j.nbd.2008.07.013.
    1. Di Clemente L., Coppola G., Magis D., Gerardy P.Y., Fumal A., De Pasqua V., Di Piero V., Schoenen J. Nitroglycerin sensitises in healthy subjects CNS structures involved in migraine pathophysiology: Evidence from a study of nociceptive blink reflexes and visual evoked potentials. Pain. 2009;144:156–161. doi: 10.1016/j.pain.2009.04.018.
    1. Tassorelli C., Joseph S.A. Systemic nitroglycerin induces Fos immunoreactivity in brainstem and forebrain structures of the rat. Brain Res. 1995;682:167–181. doi: 10.1016/0006-8993(95)00348-T.
    1. Fejes-Szabo A., Bohar Z., Vamos E., Nagy-Grocz G., Tar L., Veres G., Zadori D., Szentirmai M., Tajti J., Szatmari I., et al. Pre-treatment with new kynurenic acid amide dose-dependently prevents the nitroglycerine-induced neuronal activation and sensitization in cervical part of trigemino-cervical complex. J. Neural Transm. (Vienna) 2014;121:725–738. doi: 10.1007/s00702-013-1146-2.
    1. Vamos E., Pardutz A., Fejes A., Tajti J., Toldi J., Vecsei L. Modulatory effects of probenecid on the nitroglycerin-induced changes in the rat caudal trigeminal nucleus. Eur. J. Pharmacol. 2009;621:33–37. doi: 10.1016/j.ejphar.2009.08.034.
    1. Vamos E., Pardutz A., Varga H., Bohar Z., Tajti J., Fulop F., Toldi J., Vecsei L. l-kynurenine combined with probenecid and the novel synthetic kynurenic acid derivative attenuate nitroglycerin-induced nNOS in the rat caudal trigeminal nucleus. Neuropharmacology. 2009;57:425–429. doi: 10.1016/j.neuropharm.2009.06.033.
    1. Nagy-Grocz G., Tar L., Bohar Z., Fejes-Szabo A., Laborc K.F., Spekker E., Vecsei L., Pardutz A. The modulatory effect of anandamide on nitroglycerin-induced sensitization in the trigeminal system of the rat. Cephalalgia. 2016;36:849–861. doi: 10.1177/0333102415613766.
    1. Nagy-Grócz G., Laborc K.F., Veres G., Bajtai A., Bohar Z., Zádori D., Fejes-Szabó A., Spekker E., Vécsei L., Párdutz Á. The effect of systemic nitroglycerin administration on the kynurenine pathway in the rat. Front. Neurol. 2017;8:278. doi: 10.3389/fneur.2017.00278.
    1. Lukacs M., Warfvinge K., Kruse L.S., Tajti J., Fulop F., Toldi J., Vecsei L., Edvinsson L. KYNA analogue SZR72 modifies CFA-induced dural inflammation- regarding expression of pERK1/2 and IL-1beta in the rat trigeminal ganglion. J. Headache Pain. 2016;17:64. doi: 10.1186/s10194-016-0654-5.
    1. Clavelou P., Pajot J., Dallel R., Raboisson P. Application of the formalin test to the study of orofacial pain in the rat. Neurosci. Lett. 1989;103:349–353. doi: 10.1016/0304-3940(89)90125-0.
    1. Veres G., Fejes-Szabo A., Zadori D., Nagy-Grocz G., Laszlo A.M., Bajtai A., Mandity I., Szentirmai M., Bohar Z., Laborc K., et al. A comparative assessment of two kynurenic acid analogs in the formalin model of trigeminal activation: A behavioral, immunohistochemical and pharmacokinetic study. J. Neural Transm. (Vienna) 2017;124:99–112. doi: 10.1007/s00702-016-1615-5.
    1. Greco R., Demartini C., Zanaboni A.M., Redavide E., Pampalone S., Toldi J., Fulop F., Blandini F., Nappi G., Sandrini G., et al. Effects of kynurenic acid analogue 1 (KYNA-A1) in nitroglycerin-induced hyperalgesia: Targets and anti-migraine mechanisms. Cephalalgia. 2016 doi: 10.1177/0333102416678000. in press.
    1. Knyihar-Csillik E., Chadaide Z., Okuno E., Krisztin-Peva B., Toldi J., Varga C., Molnar A., Csillik B., Vecsei L. Kynurenine aminotransferase in the supratentorial dura mater of the rat: Effect of stimulation of the trigeminal ganglion. Exp. Neurol. 2004;186:242–247. doi: 10.1016/j.expneurol.2003.12.001.
    1. Ayata C. Cortical spreading depression triggers migraine attack: Pro. Headache. 2010;50:725–730. doi: 10.1111/j.1526-4610.2010.01647.x.
    1. Lauritzen M. Pathophysiology of the migraine aura. The spreading depression theory. Brain. 1994;117(Pt 1):199–210. doi: 10.1093/brain/117.1.199.
    1. Knapp L., Szita B., Kocsis K., Vecsei L., Toldi J. Nitroglycerin enhances the propagation of cortical spreading depression: Comparative studies with sumatriptan and novel kynurenic acid analogues. Drug Des. Dev. Ther. 2017;11:27–34. doi: 10.2147/DDDT.S117166.
    1. Lauritzen M., Rice M.E., Okada Y., Nicholson C. Quisqualate, kainate and NMDA can initiate spreading depression in the turtle cerebellum. Brain Res. 1988;475:317–327. doi: 10.1016/0006-8993(88)90620-8.
    1. Curto M., Lionetto L., Negro A., Capi M., Fazio F., Giamberardino M.A., Simmaco M., Nicoletti F., Martelletti P. Altered kynurenine pathway metabolites in serum of chronic migraine patients. J. Headache Pain. 2015;17:47. doi: 10.1186/s10194-016-0638-5.
    1. Curto M., Lionetto L., Negro A., Capi M., Perugino F., Fazio F., Giamberardino M.A., Simmaco M., Nicoletti F., Martelletti P. Altered serum levels of kynurenine metabolites in patients affected by cluster headache. J. Headache Pain. 2015;17:27. doi: 10.1186/s10194-016-0620-2.
    1. Sato K., Kiyama H., Park H.T., Tohyama M. AMPA, KA and NMDA receptors are expressed in the rat DRG neurones. Neuroreport. 1993;4:1263–1265. doi: 10.1097/00001756-199309000-00013.
    1. Ohshiro H., Tonai-Kachi H., Ichikawa K. GPR35 is a functional receptor in rat dorsal root ganglion neurons. Biochem. Biophys. Res. Commun. 2008;365:344–348. doi: 10.1016/j.bbrc.2007.10.197.
    1. Mecs L., Tuboly G., Nagy E., Benedek G., Horvath G. The peripheral antinociceptive effects of endomorphin-1 and kynurenic acid in the rat inflamed joint model. Anesth. Analg. 2009;109:1297–1304. doi: 10.1213/ane.0b013e3181b21c5e.
    1. Zhang Y.Q., Ji G.C., Wu G.C., Zhao Z.Q. Kynurenic acid enhances electroacupuncture analgesia in normal and carrageenan-injected rats. Brain Res. 2003;966:300–307. doi: 10.1016/S0006-8993(02)04228-2.
    1. Matsuda L.A., Lolait S.J., Brownstein M.J., Young A.C., Bonner T.I. Structure of a cannabinoid receptor and functional expression of the cloned cdna. Nature. 1990;346:561–564. doi: 10.1038/346561a0.
    1. Munro S., Thomas K.L., Abu-Shaar M. Molecular characterization of a peripheral receptor for cannabinoids. Nature. 1993;365:61–65. doi: 10.1038/365061a0.
    1. Herkenham M., Lynn A.B., Little M.D., Johnson M.R., Melvin L.S., de Costa B.R., Rice K.C. Cannabinoid receptor localization in brain. Proc. Natl. Acad. Sci. USA. 1990;87:1932–1936. doi: 10.1073/pnas.87.5.1932.
    1. Piomelli D. The molecular logic of endocannabinoid signalling. Nat. Rev. Neurosci. 2003;4:873–884. doi: 10.1038/nrn1247.
    1. Maccarrone M., Bab I., Bíró T., Cabral G.A., Dey S.K., Di Marzo V., Konje J.C., Kunos G., Mechoulam R., Pacher P., et al. Endocannabinoid signaling at the periphery: 50 years after THC. Trends Pharmacol. Sci. 2015;36:277–296. doi: 10.1016/j.tips.2015.02.008.
    1. Pagotto U., Marsicano G., Cota D., Lutz B., Pasquali R. The emerging role of the endocannabinoid system in endocrine regulation and energy balance. Endocr. Rev. 2006;27:73–100. doi: 10.1210/er.2005-0009.
    1. Klein T.W. Cannabinoid-based drugs as anti-inflammatory therapeutics. Nat. Rev. Immunol. 2005;5:400–411. doi: 10.1038/nri1602.
    1. Van Sickle M.D., Duncan M., Kingsley P.J., Mouihate A., Urbani P., Mackie K., Stella N., Makriyannis A., Piomelli D., Davison J.S., et al. Identification and functional characterization of brainstem cannabinoid CB2 receptors. Science. 2005;310:329–332. doi: 10.1126/science.1115740.
    1. Pacher P., Haskó G. Endocannabinoids and cannabinoid receptors in ischaemia-reperfusion injury and preconditioning. Br. J. Pharmacol. 2008;153:252–262. doi: 10.1038/sj.bjp.0707582.
    1. Pertwee R.G. Cannabinoid pharmacology: The first 66 years. Br. J. Pharmacol. 2006;147(Suppl. 1):S163–S171. doi: 10.1038/sj.bjp.0706406.
    1. Malan T.P., Ibrahim M.M., Deng H., Liu Q., Mata H.P., Vanderah T., Porreca F., Makriyannis A. CB2 cannabinoid receptor-mediated peripheral antinociception. Pain. 2001;93:239–245. doi: 10.1016/S0304-3959(01)00321-9.
    1. Romero T.R., Resende L.C., Guzzo L.S., Duarte I.D. CB1 and CB2 cannabinoid receptor agonists induce peripheral antinociception by activation of the endogenous noradrenergic system. Anesth. Analg. 2013;116:463–472. doi: 10.1213/ANE.0b013e3182707859.
    1. Vincenzi F., Targa M., Corciulo C., Tabrizi M.A., Merighi S., Gessi S., Saponaro G., Baraldi P.G., Borea P.A., Varani K. Antinociceptive effects of the selective CB2 agonist MT178 in inflammatory and chronic rodent pain models. Pain. 2013;154:864–873. doi: 10.1016/j.pain.2013.02.007.
    1. Greco R., Mangione A.S., Sandrini G., Nappi G., Tassorelli C. Activation of CB2 receptors as a potential therapeutic target for migraine: Evaluation in an animal model. J. Headache Pain. 2014;15:14. doi: 10.1186/1129-2377-15-14.
    1. Devane W.A., Hanus L., Breuer A., Pertwee R.G., Stevenson L.A., Griffin G., Gibson D., Mandelbaum A., Etinger A., Mechoulam R. Isolation and structure of a brain constituent that binds to the cannabinoid receptor. Science. 1992;258:1946–1949. doi: 10.1126/science.1470919.
    1. Mechoulam R., Ben-Shabat S., Hanus L., Ligumsky M., Kaminski N.E., Schatz A.R., Gopher A., Almog S., Martin B.R., Compton D.R. Identification of an endogenous 2-monoglyceride, present in canine gut, that binds to cannabinoid receptors. Biochem. Pharmacol. 1995;50:83–90. doi: 10.1016/0006-2952(95)00109-D.
    1. Sugiura T., Kondo S., Sukagawa A., Nakane S., Shinoda A., Itoh K., Yamashita A., Waku K. 2-arachidonoylglycerol: A possible endogenous cannabinoid receptor ligand in brain. Biochem. Biophys. Res. Commun. 1995;215:89–97. doi: 10.1006/bbrc.1995.2437.
    1. Lu H.C., Mackie K. An introduction to the endogenous cannabinoid system. Biol. Psychiatry. 2016;79:516–525. doi: 10.1016/j.biopsych.2015.07.028.
    1. Cravatt B.F., Giang D.K., Mayfield S.P., Boger D.L., Lerner R.A., Gilula N.B. Molecular characterization of an enzyme that degrades neuromodulatory fatty-acid amides. Nature. 1996;384:83–87. doi: 10.1038/384083a0.
    1. Mechoulam R., Fride E., Di Marzo V. Endocannabinoids. Eur. J. Pharmacol. 1998;359:1–18. doi: 10.1016/S0014-2999(98)00649-9.
    1. Justinova Z., Panlilio L.V., Moreno-Sanz G., Redhi G.H., Auber A., Secci M.E., Mascia P., Bandiera T., Armirotti A., Bertorelli R., et al. Effects of fatty acid amide hydrolase (FAAH) inhibitors in non-human primate models of nicotine reward and relapse. Neuropsychopharmacology. 2015;40:2185–2197. doi: 10.1038/npp.2015.62.
    1. Haller V.L., Stevens D.L., Welch S.P. Modulation of opioids via protection of anandamide degradation by fatty acid amide hydrolase. Eur. J. Pharmacol. 2008;600:50–58. doi: 10.1016/j.ejphar.2008.08.005.
    1. Bushlin I., Rozenfeld R., Devi L.A. Cannabinoid-opioid interactions during neuropathic pain and analgesia. Curr. Opin. Pharmacol. 2010;10:80–86. doi: 10.1016/j.coph.2009.09.009.
    1. Kondo S., Kondo H., Nakane S., Kodaka T., Tokumura A., Waku K., Sugiura T. 2-arachidonoylglycerol, an endogenous cannabinoid receptor agonist: Identification as one of the major species of monoacylglycerols in various rat tissues, and evidence for its generation through Ca2+-dependent and -independent mechanisms. FEBS Lett. 1998;429:152–156. doi: 10.1016/S0014-5793(98)00581-X.
    1. Karlsson M., Contreras J.A., Hellman U., Tornqvist H., Holm C. cDNA cloning, tissue distribution, and identification of the catalytic triad of monoglyceride lipase. Evolutionary relationship to esterases, lysophospholipases, and haloperoxidases. J. Biol. Chem. 1997;272:27218–27223. doi: 10.1074/jbc.272.43.27218.
    1. Dinh T.P., Carpenter D., Leslie F.M., Freund T.F., Katona I., Sensi S.L., Kathuria S., Piomelli D. Brain monoglyceride lipase participating in endocannabinoid inactivation. Proc. Natl. Acad. Sci. USA. 2002;99:10819–10824. doi: 10.1073/pnas.152334899.
    1. Pertwee R.G. Cannabinoid receptors and pain. Prog. Neurobiol. 2001;63:569–611. doi: 10.1016/S0301-0082(00)00031-9.
    1. Akerman S., Holland P.R., Goadsby P.J. Cannabinoid (CB1) receptor activation inhibits trigeminovascular neurons. J. Pharmacol. Exp. Ther. 2007;320:64–71. doi: 10.1124/jpet.106.106971.
    1. Cupini L.M., Costa C., Sarchielli P., Bari M., Battista N., Eusebi P., Calabresi P., Maccarrone M. Degradation of endocannabinoids in chronic migraine and medication overuse headache. Neurobiol. Dis. 2008;30:186–189. doi: 10.1016/j.nbd.2008.01.003.
    1. Rossi C., Pini L.A., Cupini M.L., Calabresi P., Sarchielli P. Endocannabinoids in platelets of chronic migraine patients and medication-overuse headache patients: Relation with serotonin levels. Eur. J. Clin. Pharmacol. 2008;64:1–8. doi: 10.1007/s00228-007-0391-4.
    1. Sarchielli P., Pini L.A., Coppola F., Rossi C., Baldi A., Mancini M.L., Calabresi P. Endocannabinoids in chronic migraine: CSF findings suggest a system failure. Neuropsychopharmacology. 2007;32:1384–1390. doi: 10.1038/sj.npp.1301246.
    1. Cupini L.M., Bari M., Battista N., Argiro G., Finazzi-Agro A., Calabresi P., Maccarrone M. Biochemical changes in endocannabinoid system are expressed in platelets of female but not male migraineurs. Cephalalgia. 2006;26:277–281. doi: 10.1111/j.1468-2982.2005.01031.x.
    1. Greco R., Gasperi V., Maccarrone M., Tassorelli C. The endocannabinoid system and migraine. Exp. Neurol. 2010;224:85–91. doi: 10.1016/j.expneurol.2010.03.029.
    1. Greco R., Gasperi V., Sandrini G., Bagetta G., Nappi G., Maccarrone M., Tassorelli C. Alterations of the endocannabinoid system in an animal model of migraine: Evaluation in cerebral areas of rat. Cephalalgia. 2010;30:296–302. doi: 10.1111/j.1468-2982.2009.01924.x.
    1. Akerman S., Kaube H., Goadsby P.J. Anandamide is able to inhibit trigeminal neurons using an in vivo model of trigeminovascular-mediated nociception. J. Pharmacol. Exp. Ther. 2004;309:56–63. doi: 10.1124/jpet.103.059808.
    1. Nozaki S., Endo Y., Nakahara H., Yoshizawa K., Hashiba Y., Kawashiri S., Tanaka A., Nakagawa K., Matsuoka Y., Kogo M., et al. Inhibition of invasion and metastasis in oral cancer by targeting urokinase-type plasminogen activator receptor. Oral Oncol. 2005;41:971–977. doi: 10.1016/j.oraloncology.2005.05.013.
    1. Kazemi H., Rahgozar M., Speckmann E.J., Gorji A. Effect of cannabinoid receptor activation on spreading depression. Iran. J. Basic Med. Sci. 2012;15:926–936.
    1. Akerman S., Holland P.R., Lasalandra M.P., Goadsby P.J. Endocannabinoids in the brainstem modulate dural trigeminovascular nociceptive traffic via CB1 and “triptan” receptors: Implications in migraine. J. Neurosci. 2013;33:14869–14877. doi: 10.1523/JNEUROSCI.0943-13.2013.
    1. Goadsby P.J., Edvinsson L., Ekman R. Release of vasoactive peptides in the extracerebral circulation of humans and the cat during activation of the trigeminovascular system. Ann. Neurol. 1988;23:193–196. doi: 10.1002/ana.410230214.
    1. Guindon J., Desroches J., Beaulieu P. The antinociceptive effects of intraplantar injections of 2-arachidonoyl glycerol are mediated by cannabinoid CB2 receptors. Br. J. Pharmacol. 2007;150:693–701. doi: 10.1038/sj.bjp.0706990.
    1. La Rana G., Russo R., Campolongo P., Bortolato M., Mangieri R.A., Cuomo V., Iacono A., Raso G.M., Meli R., Piomelli D., et al. Modulation of neuropathic and inflammatory pain by the endocannabinoid transport inhibitor am404 [N-(4-hydroxyphenyl)-eicosa-5,8,11,14-tetraenamide] J. Pharmacol. Exp. Ther. 2006;317:1365–1371. doi: 10.1124/jpet.105.100792.
    1. Strangman N.M., Walker J.M. Cannabinoid win 55,212-2 inhibits the activity-dependent facilitation of spinal nociceptive responses. J. Neurophysiol. 1999;82:472–477.
    1. Ahn K., Johnson D.S., Mileni M., Beidler D., Long J.Z., McKinney M.K., Weerapana E., Sadagopan N., Liimatta M., Smith S.E., et al. Discovery and characterization of a highly selective FAAH inhibitor that reduces inflammatory pain. Chem. Biol. 2009;16:411–420. doi: 10.1016/j.chembiol.2009.02.013.
    1. Glass M., Dragunow M., Faull R.L. Cannabinoid receptors in the human brain: A detailed anatomical and quantitative autoradiographic study in the fetal, neonatal and adult human brain. Neuroscience. 1997;77:299–318. doi: 10.1016/S0306-4522(96)00428-9.
    1. Thomas B.F., Wei X., Martin B.R. Characterization and autoradiographic localization of the cannabinoid binding site in rat brain using [3H] 11-OH-delta 9-THC-DMH. J. Pharmacol. Exp. Ther. 1992;263:1383–1390.
    1. Wotherspoon G., Fox A., McIntyre P., Colley S., Bevan S., Winter J. Peripheral nerve injury induces cannabinoid receptor 2 protein expression in rat sensory neurons. Neuroscience. 2005;135:235–245. doi: 10.1016/j.neuroscience.2005.06.009.
    1. Colin-Gonzalez A.L., Aguilera G., Santamaria A. Cannabinoids: Glutamatergic transmission and kynurenines. Adv. Neurobiol. 2016;12:173–198.
    1. Juhasz G., Lazary J., Chase D., Pegg E., Downey D., Toth Z.G., Stones K., Platt H., Mekli K., Payton A., et al. Variations in the cannabinoid receptor 1 gene predispose to migraine. Neurosci. Lett. 2009;461:116–120. doi: 10.1016/j.neulet.2009.06.021.
    1. Tallaksen-Greene S.J., Young A.B., Penney J.B., Beitz A.J. Excitatory amino acid binding sites in the trigeminal principal sensory and spinal trigeminal nuclei of the rat. Neurosci. Lett. 1992;141:79–83. doi: 10.1016/0304-3940(92)90339-9.
    1. Watanabe M., Mishina M., Inoue Y. Distinct gene expression of the N-methyl-d-aspartate receptor channel subunit in peripheral neurons of the mouse sensory ganglia and adrenal gland. Neurosci. Lett. 1994;165:183–186. doi: 10.1016/0304-3940(94)90740-4.
    1. Furuyama T., Kiyama H., Sato K., Park H.T., Maeno H., Takagi H., Tohyama M. Region-specific expression of subunits of ionotropic glutamate receptors (AMPA-type, KA-type and NMDA receptors) in the rat spinal cord with special reference to nociception. Brain Res. Mol. Brain Res. 1993;18:141–151. doi: 10.1016/0169-328X(93)90183-P.
    1. Lomazzo E., Bindila L., Remmers F., Lerner R., Schwitter C., Hoheisel U., Lutz B. Therapeutic potential of inhibitors of endocannabinoid degradation for the treatment of stress-related hyperalgesia in an animal model of chronic pain. Neuropsychopharmacology. 2015;40:488–501. doi: 10.1038/npp.2014.198.
    1. Martin G., Nie Z., Siggins G.R. Mu-opioid receptors modulate NMDA receptor-mediated responses in nucleus accumbens neurons. J. Neurosci. 1997;17:11–22.
    1. Patel S., Hill M.N., Cheer J.F., Wotjak C.T., Holmes A. The endocannabinoid system as a target for novel anxiolytic drugs. Neurosci. Biobehav. Rev. 2017;76:56–66. doi: 10.1016/j.neubiorev.2016.12.033.
    1. Vecsei L., Szalardy L., Fulop F., Toldi J. Kynurenines in the CNS: Recent advances and new questions. Nat. Rev. Drug Discov. 2013;12:64–82. doi: 10.1038/nrd3793.
    1. Goadsby P.J., Holland P.R., Martins-Oliveira M., Hoffmann J., Schankin C., Akerman S. Pathophysiology of migraine: A disorder of sensory processing. Physiol. Rev. 2017;97:553–622. doi: 10.1152/physrev.00034.2015.
    1. Basavarajappa B.S. Critical enzymes involved in endocannabinoid metabolism. Protein Pept. Lett. 2007;14:237–246. doi: 10.2174/092986607780090829.
    1. Guillemin G.J., Cullen K.M., Lim C.K., Smythe G.A., Garner B., Kapoor V., Takikawa O., Brew B.J. Characterization of the kynurenine pathway in human neurons. J. Neurosci. 2007;27:12884–12892. doi: 10.1523/JNEUROSCI.4101-07.2007.
    1. Jenny M., Santer E., Pirich E., Schennach H., Fuchs D. Delta9-tetrahydrocannabinol and cannabidiol modulate mitogen-induced tryptophan degradation and neopterin formation in peripheral blood mononuclear cells in vitro. J. Neuroimmunol. 2009;207:75–82. doi: 10.1016/j.jneuroim.2008.12.004.
    1. Aloyo V.J., Berg K.A., Clarke W.P., Spampinato U., Harvey J.A. Inverse agonism at serotonin and cannabinoid receptors. Prog. Mol. Biol. Transl. Sci. 2010;91:1–40.
    1. Devlin M.G., Christopoulos A. Modulation of cannabinoid agonist binding by 5-HT in the rat cerebellum. J. Neurochem. 2002;80:1095–1102. doi: 10.1046/j.0022-3042.2002.00797.x.
    1. Justinova Z., Mascia P., Wu H.Q., Secci M.E., Redhi G.H., Panlilio L.V., Scherma M., Barnes C., Parashos A., Zara T., et al. Reducing cannabinoid abuse and preventing relapse by enhancing endogenous brain levels of kynurenic acid. Nat. Neurosci. 2013;16:1652–1661. doi: 10.1038/nn.3540.
    1. Rodríguez-Muñoz M., Sánchez-Blázquez P., Merlos M., Garzón-Niño J. Endocannabinoid control of glutamate NMDA receptors: The therapeutic potential and consequences of dysfunction. Oncotarget. 2016;7:55840–55862. doi: 10.18632/oncotarget.10095.
    1. Stone T.W., Darlington L.G. Endogenous kynurenines as targets for drug discovery and development. Nat. Rev. Drug Discov. 2002;1:609–620. doi: 10.1038/nrd870.
    1. Ahluwalia J., Urban L., Capogna M., Bevan S., Nagy I. Cannabinoid 1 receptors are expressed in nociceptive primary sensory neurons. Neuroscience. 2000;100:685–688. doi: 10.1016/S0306-4522(00)00389-4.
    1. Turski M.P., Turska M., Paluszkiewicz P., Parada-Turska J., Oxenkrug G.F. Kynurenic acid in the digestive system-new facts, new challenges. Int. J. Tryptophan Res. 2013;6:47–55.
    1. Perkins M.N., Stone T.W. An iontophoretic investigation of the actions of convulsant kynurenines and their interaction with the endogenous excitant quinolinic acid. Brain Res. 1982;247:184–187. doi: 10.1016/0006-8993(82)91048-4.
    1. Newcomer J.W., Krystal J.H. NMDA receptor regulation of memory and behavior in humans. Hippocampus. 2001;11:529–542. doi: 10.1002/hipo.1069.
    1. Robinson L., McKillop-Smith S., Ross N.L., Pertwee R.G., Hampson R.E., Platt B., Riedel G. Hippocampal endocannabinoids inhibit spatial learning and limit spatial memory in rats. Psychopharmacology. 2008;198:551–563. doi: 10.1007/s00213-007-1012-8.
    1. Wise L.E., Iredale P.A., Lichtman A.H. The cannabinoid CB (1) receptor antagonist CE prolongs spatial memory duration in a rat delayed radial arm maze memory task. Eur. J. Pharmacol. 2008;590:246–249. doi: 10.1016/j.ejphar.2008.06.049.
    1. Allen R.M., Carelli R.M., Dykstra L.A., Suchey T.L., Everett C.V. Effects of the competitive N-methyl-d-aspartate receptor antagonist, ly235959 [(−)-6-phosphonomethyl-deca-hydroisoquinoline-3-carboxylic acid], on responding for cocaine under both fixed and progressive ratio schedules of reinforcement. J. Pharmacol. Exp. Ther. 2005;315:449–457. doi: 10.1124/jpet.105.086355.
    1. Allen R.M., Uban K.A., Atwood E.M., Albeck D.S., Yamamoto D.J. Continuous intracerebroventricular infusion of the competitive NMDA receptor antagonist, LY235959, facilitates escalation of cocaine self-administration and increases break point for cocaine in sprague-dawley rats. Pharmacol. Biochem. Behav. 2007;88:82–88. doi: 10.1016/j.pbb.2007.07.009.
    1. Soria G., Mendizábal V., Touriño C., Robledo P., Ledent C., Parmentier M., Maldonado R., Valverde O. Lack of CB1 cannabinoid receptor impairs cocaine self-administration. Neuropsychopharmacology. 2005;30:1670–1680. doi: 10.1038/sj.npp.1300707.
    1. De Vry J., Denzer D., Reissmueller E., Eijckenboom M., Heil M., Meier H., Mauler F. 3-[2-cyano-3-(trifluoromethyl)phenoxy]phenyl-4,4,4-trifluoro-1-butanesulfonate (BAY 59-3074): A novel cannabinoid CB1/CB2 receptor partial agonist with antihyperalgesic and antiallodynic effects. J. Pharmacol. Exp. Ther. 2004;310:620–632. doi: 10.1124/jpet.103.062836.
    1. Pelissier T., Infante C., Constandil L., Espinosa J., Lapeyra C.D., Hernández A. Antinociceptive effect and interaction of uncompetitive and competitive NMDA receptor antagonists upon capsaicin and paw pressure testing in normal and monoarthritic rats. Pain. 2008;134:113–127. doi: 10.1016/j.pain.2007.04.011.
    1. Sánchez-Blázquez P., Rodríguez-Muñoz M., Garzón J. The cannabinoid receptor 1 associates with NMDA receptors to produce glutamatergic hypofunction: Implications in psychosis and schizophrenia. Front. Pharmacol. 2014;4:169. doi: 10.3389/fphar.2013.00169.
    1. Corlew R., Brasier D.J., Feldman D.E., Philpot B.D. Presynaptic NMDA receptors: Newly appreciated roles in cortical synaptic function and plasticity. Neuroscientist. 2008;14:609–625. doi: 10.1177/1073858408322675.
    1. Hohmann A.G., Briley E.M., Herkenham M. Pre- and postsynaptic distribution of cannabinoid and mu opioid receptors in rat spinal cord. Brain Res. 1999;822:17–25. doi: 10.1016/S0006-8993(98)01321-3.
    1. Marchalant Y., Cerbai F., Brothers H.M., Wenk G.L. Cannabinoid receptor stimulation is anti-inflammatory and improves memory in old rats. Neurobiol. Aging. 2008;29:1894–1901. doi: 10.1016/j.neurobiolaging.2007.04.028.
    1. Salio C., Fischer J., Franzoni M.F., Conrath M. Pre- and postsynaptic localizations of the CB1 cannabinoid receptor in the dorsal horn of the rat spinal cord. Neuroscience. 2002;110:755–764. doi: 10.1016/S0306-4522(01)00584-X.
    1. Sánchez-Blázquez P., Rodríguez-Muñoz M., Vicente-Sánchez A., Garzón J. Cannabinoid receptors couple to NMDA receptors to reduce the production of no and the mobilization of zinc induced by glutamate. Antioxid. Redox Signal. 2013;19:1766–1782. doi: 10.1089/ars.2012.5100.
    1. Liu X.J., Salter M.W. Glutamate receptor phosphorylation and trafficking in pain plasticity in spinal cord dorsal horn. Eur. J. Neurosci. 2010;32:278–289. doi: 10.1111/j.1460-9568.2010.07351.x.
    1. Shyu Y.J., Suarez C.D., Hu C.D. Visualization of ternary complexes in living cells by using a BiFC-based FRET assay. Nat. Protoc. 2008;3:1693–1702. doi: 10.1038/nprot.2008.157.
    1. Fiorentini C., Gardoni F., Spano P., Di Luca M., Missale C. Regulation of dopamine D1 receptor trafficking and desensitization by oligomerization with glutamate N-methyl-d-aspartate receptors. J. Biol. Chem. 2003;278:20196–20202. doi: 10.1074/jbc.M213140200.
    1. Perroy J., Raynaud F., Homburger V., Rousset M.C., Telley L., Bockaert J., Fagni L. Direct interaction enables cross-talk between ionotropic and group I metabotropic glutamate receptors. J. Biol. Chem. 2008;283:6799–6805. doi: 10.1074/jbc.M705661200.
    1. Rodríguez-Muñoz M., Sánchez-Blázquez P., Vicente-Sánchez A., Berrocoso E., Garzón J. The mu-opioid receptor and the NMDA receptor associate in pag neurons: Implications in pain control. Neuropsychopharmacology. 2012;37:338–349. doi: 10.1038/npp.2011.155.
    1. Sánchez-Blázquez P., Rodríguez-Muñoz M., Herrero-Labrador R., Burgueño J., Zamanillo D., Garzón J. The calcium-sensitive sigma-1 receptor prevents cannabinoids from provoking glutamate NMDA receptor hypofunction: Implications in antinociception and psychotic diseases. Int. J. Neuropsychopharmacol. 2014;17:1943–1955. doi: 10.1017/S1461145714000029.
    1. Rodríguez-Muñoz M., Cortés-Montero E., Pozo-Rodrigálvarez A., Sánchez-Blázquez P., Garzón-Niño J. The ON:Off switch, σ1R-HINT1 protein, controls GPCR-NMDA receptor cross-regulation: Implications in neurological disorders. Oncotarget. 2015;6:35458–35477.
    1. Rodríguez-Muñoz M., Sánchez-Blázquez P., Herrero-Labrador R., Martínez-Murillo R., Merlos M., Vela J.M., Garzón J. The σ1 receptor engages the redox-regulated HINT1 protein to bring opioid analgesia under NMDA receptor negative control. Antioxid. Redox Signal. 2015;22:799–818. doi: 10.1089/ars.2014.5993.
    1. Khaspekov L.G., Brenz Verca M.S., Frumkina L.E., Hermann H., Marsicano G., Lutz B. Involvement of brain-derived neurotrophic factor in cannabinoid receptor-dependent protection against excitotoxicity. Eur. J. Neurosci. 2004;19:1691–1698. doi: 10.1111/j.1460-9568.2004.03285.x.
    1. Liu Q., Bhat M., Bowen W.D., Cheng J. Signaling pathways from cannabinoid receptor-1 activation to inhibition of N-methyl-d-aspartic acid mediated calcium influx and neurotoxicity in dorsal root ganglion neurons. J. Pharmacol. Exp. Ther. 2009;331:1062–1070. doi: 10.1124/jpet.109.156216.
    1. Vicente-Sánchez A., Sánchez-Blázquez P., Rodríguez-Muñoz M., Garzón J. HINT1 protein cooperates with cannabinoid 1 receptor to negatively regulate glutamate NMDA receptor activity. Mol. Brain. 2013;6:42. doi: 10.1186/1756-6606-6-42.
    1. Fan N., Yang H., Zhang J., Chen C. Reduced expression of glutamate receptors and phosphorylation of CREB are responsible for in vivo Delta9-THC exposure-impaired hippocampal synaptic plasticity. J. Neurochem. 2010;112:691–702. doi: 10.1111/j.1471-4159.2009.06489.x.
    1. Ghasemi M., Schachter S.C. The NMDA receptor complex as a therapeutic target in epilepsy: A review. Epilepsy Behav. 2011;22:617–640. doi: 10.1016/j.yebeh.2011.07.024.
    1. Degenhardt L., Hall W., Lynskey M. Testing hypotheses about the relationship between cannabis use and psychosis. Drug Alcohol Depend. 2003;71:37–48. doi: 10.1016/S0376-8716(03)00064-4.
    1. Fernandez-Espejo E., Viveros M.P., Núñez L., Ellenbroek B.A., Rodriguez de Fonseca F. Role of cannabis and endocannabinoids in the genesis of schizophrenia. Psychopharmacology. 2009;206:531–549. doi: 10.1007/s00213-009-1612-6.
    1. Altar C.A., Vawter M.P., Ginsberg S.D. Target identification for CNS diseases by transcriptional profiling. Neuropsychopharmacology. 2009;34:18–54. doi: 10.1038/npp.2008.172.
    1. Chen Q., Wang X., O’Neill F.A., Walsh D., Kendler K.S., Chen X. Is the histidine triad nucleotide-binding protein 1 (HINT1) gene a candidate for schizophrenia? Schizophr. Res. 2008;106:200–207. doi: 10.1016/j.schres.2008.08.006.
    1. Watanabe Y., Nunokawa A., Kaneko N., Shibuya M., Egawa J., Someya T. Supportive evidence for the association between the Gln2Pro polymorphism in the SIGMAR1 gene and schizophrenia in the Japanese population: A case-control study and an updated meta-analysis. Schizophr. Res. 2012;141:279–280. doi: 10.1016/j.schres.2012.06.043.
    1. Abadias M., Escriche M., Vaqué A., Sust M., Encina G. Safety, tolerability and pharmacokinetics of single and multiple doses of a novel sigma-1 receptor antagonist in three randomized phase I studies. Br. J. Clin. Pharmacol. 2013;75:103–117. doi: 10.1111/j.1365-2125.2012.04333.x.
    1. Ritsner M.S., Gibel A., Shleifer T., Boguslavsky I., Zayed A., Maayan R., Weizman A., Lerner V. Pregnenolone and dehydroepiandrosterone as an adjunctive treatment in schizophrenia and schizoaffective disorder: An 8-week, double-blind, randomized, controlled, 2-center, parallel-group trial. J. Clin. Psychiatry. 2010;71:1351–1362. doi: 10.4088/JCP.09m05031yel.
    1. Horvath G., Kekesi G., Tuboly G., Benedek G. Antinociceptive interactions of triple and quadruple combinations of endogenous ligands at the spinal level. Brain Res. 2007;1155:42–48. doi: 10.1016/j.brainres.2007.04.017.
    1. Kekesi G., Joo G., Csullog E., Dobos I., Klimscha W., Toth K., Benedek G., Horvath G. The antinociceptive effect of intrathecal kynurenic acid and its interaction with endomorphin-1 in rats. Eur. J. Pharmacol. 2002;445:93–96. doi: 10.1016/S0014-2999(02)01787-9.
    1. Marek P., Ben-Eliyahu S., Gold M., Liebeskind J.C. Excitatory amino acid antagonists (kynurenic acid and MK-801) attenuate the development of morphine tolerance in the rat. Brain Res. 1991;547:77–81. doi: 10.1016/0006-8993(91)90576-H.
    1. Morgan M.M., Bobeck E.N., Ingram S.L. Glutamate modulation of antinociception, but not tolerance, produced by morphine microinjection into the periaqueductal gray of the rat. Brain Res. 2009;1295:59–66. doi: 10.1016/j.brainres.2009.07.100.
    1. Safrany-Fark A., Petrovszki Z., Kekesi G., Keresztes C., Benedek G., Horvath G. Telemetry monitoring for non-invasive assessment of changes in core temperature after spinal drug administration in freely moving rats. J. Pharmacol. Toxicol. Methods. 2015;72:19–25. doi: 10.1016/j.vascn.2015.01.002.
    1. Zador F., Samavati R., Szlavicz E., Tuka B., Bojnik E., Fulop F., Toldi J., Vecsei L., Borsodi A. Inhibition of opioid receptor mediated g-protein activity after chronic administration of kynurenic acid and its derivative without direct binding to opioid receptors. CNS Neurol. Disord. Drug Targets. 2014;13:1520–1529. doi: 10.2174/1871527314666141205164114.
    1. Samavati R., Zádor F., Szűcs E., Tuka B., Martos D., Veres G., Gáspár R., Mándity I.M., Fülöp F., Vécsei L., et al. Kynurenic acid and its analogue can alter the opioid receptor g-protein signaling after acute treatment via NMDA receptor in rat cortex and striatum. J. Neurol. Sci. 2017;376:63–70. doi: 10.1016/j.jns.2017.02.053.
    1. Cichewicz D.L. Synergistic interactions between cannabinoid and opioid analgesics. Life Sci. 2004;74:1317–1324. doi: 10.1016/j.lfs.2003.09.038.
    1. Desroches J., Beaulieu P. Opioids and cannabinoids interactions: Involvement in pain management. Curr. Drug Targets. 2010;11:462–473. doi: 10.2174/138945010790980303.
    1. Maldonado R., Valverde O. Participation of the opioid system in cannabinoid-induced antinociception and emotional-like responses. Eur. Neuropsychopharmacol. 2003;13:401–410. doi: 10.1016/j.euroneuro.2003.08.001.
    1. Mao J. NMDA and opioid receptors: Their interactions in antinociception, tolerance and neuroplasticity. Brain Res. Brain Res. Rev. 1999;30:289–304. doi: 10.1016/S0165-0173(99)00020-X.
    1. Robledo P., Berrendero F., Ozaita A., Maldonado R. Advances in the field of cannabinoid—Opioid cross-talk. Addict. Biol. 2008;13:213–224. doi: 10.1111/j.1369-1600.2008.00107.x.
    1. Scavone J.L., Sterling R.C., Van Bockstaele E.J. Cannabinoid and opioid interactions: Implications for opiate dependence and withdrawal. Neuroscience. 2013;248:637–654. doi: 10.1016/j.neuroscience.2013.04.034.
    1. Zádor F., Wollemann M. Receptome: Interactions between three pain-related receptors or the “triumvirate” of cannabinoid, opioid and TRPV1 receptors. Pharmacol. Res. 2015;102:254–263. doi: 10.1016/j.phrs.2015.10.015.
    1. Scherma M., Muntoni A.L., Melis M., Fattore L., Fadda P., Fratta W., Pistis M. Interactions between the endocannabinoid and nicotinic cholinergic systems: Preclinical evidence and therapeutic perspectives. Psychopharmacology. 2016;233:1765–1777. doi: 10.1007/s00213-015-4196-3.
    1. Hilmas C., Pereira E.F., Alkondon M., Rassoulpour A., Schwarcz R., Albuquerque E.X. The brain metabolite kynurenic acid inhibits alpha7 nicotinic receptor activity and increases non-alpha7 nicotinic receptor expression: Physiopathological implications. J. Neurosci. 2001;21:7463–7473.
    1. Albuquerque E.X., Schwarcz R. Kynurenic acid as an antagonist of α7 nicotinic acetylcholine receptors in the brain: Facts and challenges. Biochem. Pharmacol. 2013;85:1027–1032. doi: 10.1016/j.bcp.2012.12.014.
    1. Dobelis P., Staley K.J., Cooper D.C. Lack of modulation of nicotinic acetylcholine alpha-7 receptor currents by kynurenic acid in adult hippocampal interneurons. PLoS ONE. 2012;7:e41108. doi: 10.1371/journal.pone.0041108.
    1. Mok M.H., Fricker A.C., Weil A., Kew J.N. Electrophysiological characterisation of the actions of kynurenic acid at ligand-gated ion channels. Neuropharmacology. 2009;57:242–249. doi: 10.1016/j.neuropharm.2009.06.003.
    1. Dani J.A., Bertrand D. Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annu. Rev. Pharmacol. Toxicol. 2007;47:699–729. doi: 10.1146/annurev.pharmtox.47.120505.105214.
    1. Gotti C., Clementi F., Fornari A., Gaimarri A., Guiducci S., Manfredi I., Moretti M., Pedrazzi P., Pucci L., Zoli M. Structural and functional diversity of native brain neuronal nicotinic receptors. Biochem. Pharmacol. 2009;78:703–711. doi: 10.1016/j.bcp.2009.05.024.
    1. Freund T.F., Katona I., Piomelli D. Role of endogenous cannabinoids in synaptic signaling. Physiol. Rev. 2003;83:1017–1066. doi: 10.1152/physrev.00004.2003.
    1. Wonnacott S. Presynaptic nicotinic ACh receptors. Trends Neurosci. 1997;20:92–98. doi: 10.1016/S0166-2236(96)10073-4.
    1. Solinas M., Scherma M., Fattore L., Stroik J., Wertheim C., Tanda G., Fratta W., Goldberg S.R. Nicotinic alpha 7 receptors as a new target for treatment of cannabis abuse. J. Neurosci. 2007;27:5615–5620. doi: 10.1523/JNEUROSCI.0027-07.2007.
    1. Jenkins L., Brea J., Smith N.J., Hudson B.D., Reilly G., Bryant N.J., Castro M., Loza M.I., Milligan G. Identification of novel species-selective agonists of the G-protein-coupled receptor GPR35 that promote recruitment of β-arrestin-2 and activate Gα13. Biochem. J. 2010;432:451–459. doi: 10.1042/BJ20101287.
    1. Jenkins L., Alvarez-Curto E., Campbell K., de Munnik S., Canals M., Schlyer S., Milligan G. Agonist activation of the g protein-coupled receptor GPR35 involves transmembrane domain III and is transduced via Gα₁₃ and β-arrestin-2. Br. J. Pharmacol. 2011;162:733–748. doi: 10.1111/j.1476-5381.2010.01082.x.
    1. Fallarini S., Magliulo L., Paoletti T., de Lalla C., Lombardi G. Expression of functional GPR35 in human iNKT cells. Biochem. Biophys. Res. Commun. 2010;398:420–425. doi: 10.1016/j.bbrc.2010.06.091.
    1. Mackenzie A.E., Lappin J.E., Taylor D.L., Nicklin S.A., Milligan G. GPR35 as a novel therapeutic target. Front. Endocrinol. (Lausanne) 2011;2:68. doi: 10.3389/fendo.2011.00068.
    1. Shore D.M., Reggio P.H. The therapeutic potential of orphan GPCRS, GPR35 and GPR55. Front. Pharmacol. 2015;6:69. doi: 10.3389/fphar.2015.00069.
    1. Oka S., Ota R., Shima M., Yamashita A., Sugiura T. GPR35 is a novel lysophosphatidic acid receptor. Biochem. Biophys. Res. Commun. 2010;395:232–237. doi: 10.1016/j.bbrc.2010.03.169.
    1. Walker J.M., Hohmann A.G., Martin W.J., Strangman N.M., Huang S.M., Tsou K. The neurobiology of cannabinoid analgesia. Life Sci. 1999;65:665–673. doi: 10.1016/S0024-3205(99)00289-1.
    1. Taniguchi Y., Tonai-Kachi H., Shinjo K. Zaprinast, a well-known cyclic guanosine monophosphate-specific phosphodiesterase inhibitor, is an agonist for GPR35. FEBS Lett. 2006;580:5003–5008. doi: 10.1016/j.febslet.2006.08.015.
    1. Naftali T., Bar-Lev Schleider L., Dotan I., Lansky E.P., Sklerovsky Benjaminov F., Konikoff F.M. Cannabis induces a clinical response in patients with Crohn’s disease: A prospective placebo-controlled study. Clin. Gastroenterol. Hepatol. 2013;11:1276–1280.e1. doi: 10.1016/j.cgh.2013.04.034.
    1. Imielinski M., Baldassano R.N., Griffiths A., Russell R.K., Annese V., Dubinsky M., Kugathasan S., Bradfield J.P., Walters T.D., Sleiman P., et al. Common variants at five new loci associated with early-onset inflammatory bowel disease. Nat. Genet. 2009;41:1335–1340. doi: 10.1038/ng.489.
    1. Barth M.C., Ahluwalia N., Anderson T.J., Hardy G.J., Sinha S., Alvarez-Cardona J.A., Pruitt I.E., Rhee E.P., Colvin R.A., Gerszten R.E. Kynurenic acid triggers firm arrest of leukocytes to vascular endothelium under flow conditions. J. Biol. Chem. 2009;284:19189–19195. doi: 10.1074/jbc.M109.024042.
    1. Gasperi V., Evangelista D., Chiurchiù V., Florenzano F., Savini I., Oddi S., Avigliano L., Catani M.V., Maccarrone M. 2-arachidonoylglycerol modulates human endothelial cell/leukocyte interactions by controlling selectin expression through CB1 and CB2 receptors. Int. J. Biochem. Cell Biol. 2014;51:79–88. doi: 10.1016/j.biocel.2014.03.028.
    1. Haustein M., Ramer R., Linnebacher M., Manda K., Hinz B. Cannabinoids increase lung cancer cell lysis by lymphokine-activated killer cells via upregulation of ICAM-1. Biochem. Pharmacol. 2014;92:312–325. doi: 10.1016/j.bcp.2014.07.014.
    1. Kianian M., Al-Banna N.A., Kelly M.E., Lehmann C. Inhibition of endocannabinoid degradation in experimental endotoxemia reduces leukocyte adhesion and improves capillary perfusion in the gut. J. Basic Clin. Physiol. Pharmacol. 2013;24:27–33. doi: 10.1515/jbcpp-2012-0065.
    1. Lehmann C., Kianian M., Zhou J., Küster I., Kuschnereit R., Whynot S., Hung O., Shukla R., Johnston B., Cerny V., et al. Cannabinoid receptor 2 activation reduces intestinal leukocyte recruitment and systemic inflammatory mediator release in acute experimental sepsis. Crit. Care. 2012;16:R47. doi: 10.1186/cc11248.
    1. Lunn C.A., Fine J.S., Rojas-Triana A., Jackson J.V., Fan X., Kung T.T., Gonsiorek W., Schwarz M.A., Lavey B., Kozlowski J.A., et al. A novel cannabinoid peripheral cannabinoid receptor-selective inverse agonist blocks leukocyte recruitment in vivo. J. Pharmacol. Exp. Ther. 2006;316:780–788. doi: 10.1124/jpet.105.093500.
    1. Montecucco F., Burger F., Mach F., Steffens S. CB2 cannabinoid receptor agonist JWH-015 modulates human monocyte migration through defined intracellular signaling pathways. Am. J. Physiol. Heart Circ. Physiol. 2008;294:H1145–H1155. doi: 10.1152/ajpheart.01328.2007.
    1. Murikinati S., Jüttler E., Keinert T., Ridder D.A., Muhammad S., Waibler Z., Ledent C., Zimmer A., Kalinke U., Schwaninger M. Activation of cannabinoid 2 receptors protects against cerebral ischemia by inhibiting neutrophil recruitment. FASEB J. 2010;24:788–798. doi: 10.1096/fj.09-141275.

Source: PubMed

3
Se inscrever