Gut Biofactory-Neurocompetent Metabolites within the Gastrointestinal Tract. A Scoping Review

Karolina Skonieczna-Żydecka, Karolina Jakubczyk, Dominika Maciejewska-Markiewicz, Katarzyna Janda, Karolina Kaźmierczak-Siedlecka, Mariusz Kaczmarczyk, Igor Łoniewski, Wojciech Marlicz, Karolina Skonieczna-Żydecka, Karolina Jakubczyk, Dominika Maciejewska-Markiewicz, Katarzyna Janda, Karolina Kaźmierczak-Siedlecka, Mariusz Kaczmarczyk, Igor Łoniewski, Wojciech Marlicz

Abstract

The gut microbiota have gained much scientific attention recently. Apart from unravelling the taxonomic data, we should understand how the altered microbiota structure corresponds to functions of this complex ecosystem. The metabolites of intestinal microorganisms, especially bacteria, exert pleiotropic effects on the human organism and contribute to the host systemic balance. These molecules play key roles in regulating immune and metabolic processes. A subset of them affect the gut brain axis signaling and balance the mental wellbeing. Neurotransmitters, short chain fatty acids, tryptophan catabolites, bile acids and phosphatidylcholine, choline, serotonin, and L-carnitine metabolites possess high neuroactive potential. A scoping literature search in PubMed/Embase was conducted up until 20 June 2020, using three major search terms "microbiota metabolites" AND "gut brain axis" AND "mental health". This review aimed to enhance our knowledge regarding the gut microbiota functional capacity, and support current and future attempts to create new compounds for future clinical interventions.

Keywords: brain; microbiome; neurotransmitters; short chain fatty acids; tryptophan.

Conflict of interest statement

Igor Łoniewski and Wojciech Marlicz are probiotic company (Sanprobi) co-founders and shareholders. Karolina Skonieczna-Żydecka and Mariusz Kaczmarczyk receive remuneration from Sanprobi probiotic company for laboratory and bioinformatic analyses, respectively.

Figures

Figure 1
Figure 1
Gut microbiota metabolites and their neuroactive potential. SCFA—short chain fatty acid; TRYCAT—tryptophan catabolites; TRP— tryptophan; CNS—central nervous system; BBB—blood brain barrier. Created with Biorender.com.
Figure 2
Figure 2
The role of the gut microbiota and the gut–brain axis in the development of mental disorders. BAs, bile acids; TMA, trimethylamine; KP, kynurenine pathway; GABA, gamma–amino butyric acid; SCFAs, short-chain fatty acids. Created with Biorender.com.

References

    1. Manor O., Dai C.L., Kornilov S.A., Smith B., Price N.D., Lovejoy J.C., Gibbons S.M., Magis A.T. Health and disease markers correlate with gut microbiome composition across thousands of people. Nat. Commun. 2020;11:5206. doi: 10.1038/s41467-020-18871-1.
    1. Rackaityte E., Lynch S.V. The human microbiome in the 21st century. Nat. Commun. 2020;11:5256. doi: 10.1038/s41467-020-18983-8.
    1. Hill C., Guarner F., Reid G., Gibson G.R., Merenstein D.J., Pot B., Morelli L., Canani R.B., Flint H.J., Salminen S., et al. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic: Expert consensus document. Nat. Rev. Gastroenterol. Hepatol. 2014;11:506–514. doi: 10.1038/nrgastro.2014.66.
    1. Kim Y.-K., Shin C. The Microbiota-Gut-Brain Axis in Neuropsychiatric Disorders: Patho-physiological Mechanisms and Novel Treatments. Curr. Neuropharmacol. 2018;16:559–573. doi: 10.2174/1570159X15666170915141036.
    1. Gutiérrez-Vázquez C., Quintana F.J. Regulation of the Immune Response by the Aryl Hydrocarbon Receptor. Immunity. 2018;48:19–33. doi: 10.1016/j.immuni.2017.12.012.
    1. Lee H.U., McPherson Z.E., Tan B., Korecka A., Pettersson S. Host-microbiome interactions: The aryl hydrocarbon receptor and the central nervous system. J. Mol. Med. Berl. Ger. 2017;95:29–39. doi: 10.1007/s00109-016-1486-0.
    1. Generoso J.S., Giridharan V.V., Lee J., Macedo D., Barichello T., Generoso J.S., Giridharan V.V., Lee J., Macedo D., Barichello T. The role of the microbiota-gut-brain axis in neuropsychiatric disorders. Braz. J. Psychiatry. 2020 doi: 10.1590/1516-4446-2020-0987.
    1. Obata Y., Castaño Á., Boeing S., Bon-Frauches A.C., Fung C., Fallesen T., de Agüero M.G., Yilmaz B., Lopes R., Huseynova A., et al. Neuronal programming by microbiota regulates intestinal physiology. Nature. 2020;578:284–289. doi: 10.1038/s41586-020-1975-8.
    1. Sheydina A., Eberhardt R.Y., Rigden D.J., Chang Y., Li Z., Zmasek C.C., Axelrod H.L., Godzik A. Structural genomics analysis of uncharacterized protein families overrepresented in human gut bacteria identifies a novel glycoside hydrolase. BMC Bioinform. 2014;15:112. doi: 10.1186/1471-2105-15-112.
    1. Duranti S., Milani C., Lugli G.A., Turroni F., Mancabelli L., Sanchez B., Ferrario C., Viappiani A., Mangifesta M., Mancino W., et al. Insights from genomes of representatives of the human gut commensal Bifidobacterium bifidum. Environ. Microbiol. 2015;17:2515–2531. doi: 10.1111/1462-2920.12743.
    1. Liu S., Ren F., Zhao L., Jiang L., Hao Y., Jin J., Zhang M., Guo H., Lei X., Sun E., et al. Starch and starch hydrolysates are favorable carbon sources for bifidobacteria in the human gut. BMC Microbiol. 2015;15:54. doi: 10.1186/s12866-015-0362-3.
    1. Khoroshkin M.S., Leyn S.A., Van Sinderen D., Rodionov D.A. Transcriptional Regulation of Carbohydrate Utilization Pathways in the Bifidobacterium Genus. Front. Microbiol. 2016;7 doi: 10.3389/fmicb.2016.00120.
    1. Sanctuary M.R., Kain J.N., Angkustsiri K., German J.B. Dietary Considerations in Autism Spectrum Disorders: The Potential Role of Protein Digestion and Microbial Putrefaction in the Gut-Brain Axis. Front. Nutr. 2018;5:40. doi: 10.3389/fnut.2018.00040.
    1. Knight R., Vrbanac A., Taylor B.C., Aksenov A., Callewaert C., Debelius J., Gonzalez A., Kosciolek T., McCall L.-I., McDonald D., et al. Best practices for analysing microbiomes. Nat. Rev. Microbiol. 2018;16:410–422. doi: 10.1038/s41579-018-0029-9.
    1. Gilbert J.A., Blaser M.J., Caporaso J.G., Jansson J.K., Lynch S.V., Knight R. Current understanding of the human microbiome. Nat. Med. 2018;24:392–400. doi: 10.1038/nm.4517.
    1. Arksey H., O’Malley L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005;8:19–32. doi: 10.1080/1364557032000119616.
    1. Pham M.T., Rajić A., Greig J.D., Sargeant J.M., Papadopoulos A., McEwen S.A. A scoping review of scoping reviews: Advancing the approach and enhancing the consistency. Res. Synth. Methods. 2014;5:371–385. doi: 10.1002/jrsm.1123.
    1. Skonieczna-Żydecka K., Marlicz W., Misera A., Koulaouzidis A., Łoniewski I. Microbiome-The Missing Link in the Gut-Brain Axis: Focus on Its Role in Gastrointestinal and Mental Health. J. Clin. Med. 2018;7:521. doi: 10.3390/jcm7120521.
    1. Barker N., van Es J.H., Kuipers J., Kujala P., van den Born M., Cozijnsen M., Haegebarth A., Korving J., Begthel H., Peters P.J., et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature. 2007;449:1003–1007. doi: 10.1038/nature06196.
    1. Andersson-Rolf A., Zilbauer M., Koo B.-K., Clevers H. Stem Cells in Repair of Gastrointestinal Epithelia. Physiol. Bethesda Md. 2017;32:278–289. doi: 10.1152/physiol.00005.2017.
    1. Marlicz W., Łoniewski I., Skonieczna-Żydecka K. Stem and Progenitor Cells in the Pathogenesis and Treatment of Digestive Diseases. In: Ratajczak M.Z., editor. Stem Cells: Therapeutic Applications. Springer International Publishing; Cham, Switzerland: 2019. pp. 125–157. Advances in Experimental Medicine and Biology.
    1. Lai N.Y., Musser M.A., Pinho-Ribeiro F.A., Baral P., Jacobson A., Ma P., Potts D.E., Chen Z., Paik D., Soualhi S., et al. Gut-Innervating Nociceptor Neurons Regulate Peyer’s Patch Microfold Cells and SFB Levels to Mediate Salmonella Host Defense. Cell. 2020;180:33–49.e22. doi: 10.1016/j.cell.2019.11.014.
    1. Roy P., Chetty R. Goblet cell carcinoid tumors of the appendix: An overview. World J. Gastrointest. Oncol. 2010;2:251–258. doi: 10.4251/wjgo.v2.i6.251.
    1. Ma J., Rubin B.K., Voynow J.A. Mucins, Mucus, and Goblet Cells. Chest. 2018;154:169–176. doi: 10.1016/j.chest.2017.11.008.
    1. Alipour M., Zaidi D., Valcheva R., Jovel J., Martínez I., Sergi C., Walter J., Mason A.L., Wong G.K.-S., Dieleman L.A., et al. Mucosal Barrier Depletion and Loss of Bacterial Diversity are Primary Abnormalities in Paediatric Ulcerative Colitis. J. Crohns Colitis. 2016;10:462–471. doi: 10.1093/ecco-jcc/jjv223.
    1. Parikh K., Antanaviciute A., Fawkner-Corbett D., Jagielowicz M., Aulicino A., Lagerholm C., Davis S., Kinchen J., Chen H.H., Alham N.K., et al. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature. 2019;567:49–55. doi: 10.1038/s41586-019-0992-y.
    1. Kaelberer M.M., Buchanan K.L., Klein M.E., Barth B.B., Montoya M.M., Shen X., Bohórquez D.V. A gut-brain neural circuit for nutrient sensory transduction. Science. 2018;361 doi: 10.1126/science.aat5236.
    1. Bellono N.W., Bayrer J.R., Leitch D.B., Castro J., Zhang C., O’Donnell T.A., Brierley S.M., Ingraham H.A., Julius D. Enterochromaffin Cells Are Gut Chemosensors that Couple to Sensory Neural Pathways. Cell. 2017;170:185–198.e6. doi: 10.1016/j.cell.2017.05.034.
    1. Moore L.L., Zhou Z., Li M., Houchen C.W. Tuft Cells Play Critical Roles in the Heterogeneity and Epithelial Plasticity in Pancreatic Cancer Initiation and Progression. Gastroenterology. 2020 doi: 10.1053/j.gastro.2020.09.004.
    1. Sampson T.R., Mazmanian S.K. Control of Brain Development, Function, and Behavior by the Microbiome. Cell Host Microbe. 2015;17:565–576. doi: 10.1016/j.chom.2015.04.011.
    1. Yarlagadda A., Alfson E., Clayton A.H. The Blood Brain Barrier and the Role of Cytokines in Neuropsychiatry. Psychiatry Edgmont. 2009;6:18–22.
    1. Walsh K.T., Zemper A.E. The Enteric Nervous System for Epithelial Researchers: Basic Anatomy, Techniques, and Interactions With the Epithelium. Cell. Mol. Gastroenterol. Hepatol. 2019;8:369–378. doi: 10.1016/j.jcmgh.2019.05.003.
    1. Ye L., Liddle R.A. Gastrointestinal Hormones and the Gut Connectome. Curr. Opin. Endocrinol. Diabetes Obes. 2017;24:9–14. doi: 10.1097/MED.0000000000000299.
    1. Arneth B.M. Gut–brain axis biochemical signalling from the gastrointestinal tract to the central nervous system: Gut dysbiosis and altered brain function. Postgrad. Med. J. 2018;94:446–452. doi: 10.1136/postgradmedj-2017-135424.
    1. Rea K., Dinan T.G., Cryan J.F. Gut Microbiota: A Perspective for Psychiatrists. Neuropsychobiology. 2020;79:50–62. doi: 10.1159/000504495.
    1. Sevelsted A., Stokholm J., Bønnelykke K., Bisgaard H. Cesarean Section and Chronic Immune Disorders. Pediatrics. 2015;135:e92–e98. doi: 10.1542/peds.2014-0596.
    1. Kaplan J.L., Shi H.N., Walker W.A. The Role of Microbes in Developmental Immunologic Programming. Pediatr. Res. 2011;69:465–472. doi: 10.1203/PDR.0b013e318217638a.
    1. Wong J.M.W., de Souza R., Kendall C.W.C., Emam A., Jenkins D.J.A. Colonic health: Fermentation and short chain fatty acids. J. Clin. Gastroenterol. 2006;40:235–243. doi: 10.1097/00004836-200603000-00015.
    1. Strandwitz P. Neurotransmitter modulation by the gut microbiota. Brain Res. 2018;1693:128–133. doi: 10.1016/j.brainres.2018.03.015.
    1. Łoniewski I., Misera A., Skonieczna-Żydecka K., Kaczmarczyk M., Kaźmierczak-Siedlecka K., Misiak B., Marlicz W., Samochowiec J. Major Depressive Disorder and gut microbiota - Association not causation. A scoping review. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2020:110111. doi: 10.1016/j.pnpbp.2020.110111.
    1. Bastiaanssen T.F.S., Cowan C.S.M., Claesson M.J., Dinan T.G., Cryan J.F. Making Sense of … the Microbiome in Psychiatry. Int. J. Neuropsychopharmacol. 2019;22:37. doi: 10.1093/ijnp/pyy067.
    1. Cryan J.F., O’Riordan K.J., Cowan C.S.M., Sandhu K.V., Bastiaanssen T.F.S., Boehme M., Codagnone M.G., Cussotto S., Fulling C., Golubeva A.V., et al. The Microbiota-Gut-Brain Axis. Physiol. Rev. 2019;99:1877–2013. doi: 10.1152/physrev.00018.2018.
    1. Stasi C., Nisita C., Cortopassi S., Corretti G., Gambaccini D., De Bortoli N., Fani B., Simonetti N., Ricchiuti A., Dell’Osso L., et al. Subthreshold Psychiatric Psychopathology in Functional Gastrointestinal Disorders: Can It Be the Bridge between Gastroenterology and Psychiatry? [(accessed on 19 November 2018)]; Available online:
    1. Stasi C., Bellini M., Costa F., Mumolo M.G., Ricchiuti A., Grosso M., Duranti E., Metelli M.R., Gambaccini D., Bianchi L., et al. Neuroendocrine markers and psychological features in patients with irritable bowel syndrome. Int. J. Colorectal Dis. 2013;28:1203–1208. doi: 10.1007/s00384-013-1646-4.
    1. Huang T.-T., Lai J.-B., Du Y.-L., Xu Y., Ruan L.-M., Hu S.-H. Current Understanding of Gut Microbiota in Mood Disorders: An Update of Human Studies. Front. Genet. 2019;10 doi: 10.3389/fgene.2019.00098.
    1. Dekel R., Drossman D.A., Sperber A.D. The use of psychotropic drugs in irritable bowel syndrome. Expert Opin. Investig. Drugs. 2013;22:329–339. doi: 10.1517/13543784.2013.761205.
    1. Macedo D., Filho A.J.M.C., Soares de Sousa C.N., Quevedo J., Barichello T., Júnior H.V.N., Freitas de Lucena D. Antidepressants, antimicrobials or both? Gut microbiota dysbiosis in depression and possible implications of the antimicrobial effects of antidepressant drugs for antidepressant effectiveness. J. Affect. Disord. 2017;208:22–32. doi: 10.1016/j.jad.2016.09.012.
    1. Kanji S., Fonseka T.M., Marshe V.S., Sriretnakumar V., Hahn M.K., Müller D.J. The microbiome-gut-brain axis: Implications for schizophrenia and antipsychotic induced weight gain. Eur. Arch. Psychiatry Clin. Neurosci. 2018;268:3–15. doi: 10.1007/s00406-017-0820-z.
    1. Skonieczna-Żydecka K., Łoniewski I., Misera A., Stachowska E., Maciejewska D., Marlicz W., Galling B. Second-generation antipsychotics and metabolism alterations: A systematic review of the role of the gut microbiome. Psychopharmacology (Berl.) 2018 doi: 10.1007/s00213-018-5102-6.
    1. Liu R.T., Rowan-Nash A.D., Sheehan A.E., Walsh R.F.L., Sanzari C.M., Korry B.J., Belenky P. Reductions in anti-inflammatory gut bacteria are associated with depression in a sample of young adults. Brain. Behav. Immun. 2020 doi: 10.1016/j.bbi.2020.03.026.
    1. Valles-Colomer M., Falony G., Darzi Y., Tigchelaar E.F., Wang J., Tito R.Y., Schiweck C., Kurilshikov A., Joossens M., Wijmenga C., et al. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 2019;4:623–632. doi: 10.1038/s41564-018-0337-x.
    1. Lai W.-T., Deng W.-F., Xu S.-X., Zhao J., Xu D., Liu Y.-H., Guo Y.-Y., Wang M.-B., He F.-S., Ye S.-W., et al. Shotgun metagenomics reveals both taxonomic and tryptophan pathway differences of gut microbiota in major depressive disorder patients. Psychol. Med. 2019:1–12. doi: 10.1017/S0033291719003027.
    1. Rudzki L., Ostrowska L., Pawlak D., Małus A., Pawlak K., Waszkiewicz N., Szulc A. Probiotic Lactobacillus Plantarum 299v decreases kynurenine concentration and improves cognitive functions in patients with major depression: A double-blind, randomized, placebo controlled study. Psychoneuroendocrinology. 2019;100:213–222. doi: 10.1016/j.psyneuen.2018.10.010.
    1. Rothhammer V., Mascanfroni I.D., Bunse L., Takenaka M.C., Kenison J.E., Mayo L., Chao C.-C., Patel B., Yan R., Blain M., et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor. Nat. Med. 2016;22:586–597. doi: 10.1038/nm.4106.
    1. Di Giaimo R., Durovic T., Barquin P., Kociaj A., Lepko T., Aschenbroich S., Breunig C.T., Irmler M., Cernilogar F.M., Schotta G., et al. The Aryl Hydrocarbon Receptor Pathway Defines the Time Frame for Restorative Neurogenesis. Cell Rep. 2018;25:3241–3251.e5. doi: 10.1016/j.celrep.2018.11.055.
    1. Aguiniga L.M., Yang W., Yaggie R.E., Schaeffer A.J., Klumpp D.J. MAPP Research Network Study Group Acyloxyacyl hydrolase modulates depressive-like behaviors through aryl hydrocarbon receptor. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2019;317:R289–R300. doi: 10.1152/ajpregu.00029.2019.
    1. Jaglin M., Rhimi M., Philippe C., Pons N., Bruneau A., Goustard B., Daugé V., Maguin E., Naudon L., Rabot S. Indole, a Signaling Molecule Produced by the Gut Microbiota, Negatively Impacts Emotional Behaviors in Rats. Front. Neurosci. 2018;12:216. doi: 10.3389/fnins.2018.00216.
    1. Zhu F., Ju Y., Wang W., Wang Q., Guo R., Ma Q., Sun Q., Fan Y., Xie Y., Yang Z., et al. Metagenome-wide association of gut microbiome features for schizophrenia. Nat. Commun. 2020;11:1–10. doi: 10.1038/s41467-020-15457-9.
    1. Pełka-Wysiecka J., Kaczmarczyk M., Bąba-Kubiś A., Liśkiewicz P., Wroński M., Skonieczna-Żydecka K., Marlicz W., Misiak B., Starzyńska T., Kucharska-Mazur J., et al. Analysis of Gut Microbiota and Their Metabolic Potential in Patients with Schizophrenia Treated with Olanzapine: Results from a Six-Week Observational Prospective Cohort Study. J. Clin. Med. 2019;8 doi: 10.3390/jcm8101605.
    1. Zheng P., Zeng B., Liu M., Chen J., Pan J., Han Y., Liu Y., Cheng K., Zhou C., Wang H., et al. The gut microbiome from patients with schizophrenia modulates the glutamate-glutamine-GABA cycle and schizophrenia-relevant behaviors in mice. Sci. Adv. 2019;5:eaau8317. doi: 10.1126/sciadv.aau8317.
    1. Kałużna-Czaplińska J., Gątarek P., Chirumbolo S., Chartrand M.S., Bjørklund G. How important is tryptophan in human health? Crit. Rev. Food Sci. Nutr. 2019;59:72–88. doi: 10.1080/10408398.2017.1357534.
    1. Muller C.L., Anacker A.M.J., Veenstra-VanderWeele J. The serotonin system in autism spectrum disorder: From biomarker to animal models. Neuroscience. 2016;321:24–41. doi: 10.1016/j.neuroscience.2015.11.010.
    1. Foster J.A., Neufeld K.-A.M. Gut-brain axis: How the microbiome influences anxiety and depression. Trends Neurosci. 2013;36:305–312. doi: 10.1016/j.tins.2013.01.005.
    1. Misra S., Mohanty D. Psychobiotics: A new approach for treating mental illness? Crit. Rev. Food Sci. Nutr. 2017:1–7. doi: 10.1080/10408398.2017.1399860.
    1. Strandwitz P., Kim K.H., Terekhova D., Liu J.K., Sharma A., Levering J., McDonald D., Dietrich D., Ramadhar T.R., Lekbua A., et al. GABA Modulating Bacteria of the Human Gut Microbiota. Nat. Microbiol. 2019;4:396–403. doi: 10.1038/s41564-018-0307-3.
    1. Wong C.G.T., Bottiglieri T., Snead O.C. GABA, gamma-hydroxybutyric acid, and neurological disease. Ann. Neurol. 2003;54(Suppl. 6):S3–S12. doi: 10.1002/ana.10696.
    1. Hyland N.P., Cryan J.F. A Gut Feeling about GABA: Focus on GABA(B) Receptors. Front. Pharmacol. 2010;1:124. doi: 10.3389/fphar.2010.00124.
    1. Matsumoto M., Ooga T., Kibe R., Aiba Y., Koga Y., Benno Y. Colonic Absorption of Low-Molecular-Weight Metabolites Influenced by the Intestinal Microbiome: A Pilot Study. PLoS ONE. 2017;12:e0169207. doi: 10.1371/journal.pone.0169207.
    1. Takanaga H., Ohtsuki S., Hosoya K.-I., Terasaki T. GAT2/BGT-1 as a system responsible for the transport of gamma-aminobutyric acid at the mouse blood-brain barrier. J. Cereb. Blood Flow Metab. 2001;21:1232–1239. doi: 10.1097/00004647-200110000-00012.
    1. Shyamaladevi N., Jayakumar A.R., Sujatha R., Paul V., Subramanian E.H. Evidence that nitric oxide production increases γ-amino butyric acid permeability of blood-brain barrier. Brain Res. Bull. 2002;57:231–236. doi: 10.1016/S0361-9230(01)00755-9.
    1. Fujisaka S., Avila-Pacheco J., Soto M., Kostic A., Dreyfuss J.M., Pan H., Ussar S., Altindis E., Li N., Bry L., et al. Diet, Genetics, and the Gut Microbiome Drive Dynamic Changes in Plasma Metabolites. Cell Rep. 2018;22:3072–3086. doi: 10.1016/j.celrep.2018.02.060.
    1. Bienenstock J., Forsythe P., Karimi K., Kunze W. Neuroimmune aspects of food intake. Int. Dairy J. 2010;20:253–258. doi: 10.1016/j.idairyj.2009.12.002.
    1. Hassan A.M., Mancano G., Kashofer K., Fröhlich E.E., Matak A., Mayerhofer R., Reichmann F., Olivares M., Neyrinck A.M., Delzenne N.M., et al. High-fat diet induces depression-like behaviour in mice associated with changes in microbiome, neuropeptide Y, and brain metabolome. Nutr. Neurosci. 2019;22:877–893. doi: 10.1080/1028415X.2018.1465713.
    1. Petty F. Plasma concentrations of gamma-aminobutyric acid (GABA) and mood disorders: A blood test for manic depressive disease? Clin. Chem. 1994;40:296–302. doi: 10.1093/clinchem/40.2.296.
    1. Lyte M., Brown D.R. Evidence for PMAT- and OCT-like biogenic amine transporters in a probiotic strain of Lactobacillus: Implications for interkingdom communication within the microbiota-gut-brain axis. PLoS ONE. 2018;13:e0191037. doi: 10.1371/journal.pone.0191037.
    1. Bravo J.A., Forsythe P., Chew M.V., Escaravage E., Savignac H.M., Dinan T.G., Bienenstock J., Cryan J.F. Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc. Natl. Acad. Sci. USA. 2011;108:16050–16055. doi: 10.1073/pnas.1102999108.
    1. Janik R., Thomason L.A.M., Stanisz A.M., Forsythe P., Bienenstock J., Stanisz G.J. Magnetic resonance spectroscopy reveals oral Lactobacillus promotion of increases in brain GABA, N-acetyl aspartate and glutamate. NeuroImage. 2016;125:988–995. doi: 10.1016/j.neuroimage.2015.11.018.
    1. Pokusaeva K., Johnson C., Luk B., Uribe G., Fu Y., Oezguen N., Matsunami R.K., Lugo M., Major A., Mori-Akiyama Y., et al. GABA-producing Bifidobacterium dentium modulates visceral sensitivity in the intestine. Neurogastroenterol. Motil. 2017;29 doi: 10.1111/nmo.12904.
    1. Bercik P., Park A.J., Sinclair D., Khoshdel A., Lu J., Huang X., Deng Y., Blennerhassett P.A., Fahnestock M., Moine D., et al. The anxiolytic effect of Bifidobacterium longum NCC3001 involves vagal pathways for gut-brain communication. Neurogastroenterol. Motil. 2011;23:1132–1139. doi: 10.1111/j.1365-2982.2011.01796.x.
    1. Xu R., Wu B., Liang J., He F., Gu W., Li K., Luo Y., Chen J., Gao Y., Wu Z., et al. Altered gut microbiota and mucosal immunity in patients with schizophrenia. Brain. Behav. Immun. 2020;85:120–127. doi: 10.1016/j.bbi.2019.06.039.
    1. Borodovitsyna O., Flamini M., Chandler D. Noradrenergic Modulation of Cognition in Health and Disease. Neural Plast. 2017;2017:6031478. doi: 10.1155/2017/6031478.
    1. Asano Y., Hiramoto T., Nishino R., Aiba Y., Kimura T., Yoshihara K., Koga Y., Sudo N. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am. J. Physiol. Gastrointest. Liver Physiol. 2012;303:G1288–G1295. doi: 10.1152/ajpgi.00341.2012.
    1. Freestone P.P., Williams P.H., Haigh R.D., Maggs A.F., Neal C.P., Lyte M. Growth stimulation of intestinal commensal Escherichia coli by catecholamines: A possible contributory factor in trauma-induced sepsis. Shock Augusta Ga. 2002;18:465–470. doi: 10.1097/00024382-200211000-00014.
    1. O’Donnell P.M., Aviles H., Lyte M., Sonnenfeld G. Enhancement of in vitro growth of pathogenic bacteria by norepinephrine: Importance of inoculum density and role of transferrin. Appl. Environ. Microbiol. 2006;72:5097–5099. doi: 10.1128/AEM.00075-06.
    1. Bansal T., Englert D., Lee J., Hegde M., Wood T.K., Jayaraman A. Differential effects of epinephrine, norepinephrine, and indole on Escherichia coli O157:H7 chemotaxis, colonization, and gene expression. Infect. Immun. 2007;75:4597–4607. doi: 10.1128/IAI.00630-07.
    1. Nishino R., Mikami K., Takahashi H., Tomonaga S., Furuse M., Hiramoto T., Aiba Y., Koga Y., Sudo N. Commensal microbiota modulate murine behaviors in a strictly contamination-free environment confirmed by culture-based methods. Neurogastroenterol. Motil. 2013;25:521–528. doi: 10.1111/nmo.12110.
    1. Kiraly D.D., Walker D.M., Calipari E.S., Labonte B., Issler O., Pena C.J., Ribeiro E.A., Russo S.J., Nestler E.J. Alterations of the Host Microbiome Affect Behavioral Responses to Cocaine. Sci. Rep. 2016;6:35455. doi: 10.1038/srep35455.
    1. Goldstein D.S., Holmes C., Lopez G.J., Wu T., Sharabi Y. Cerebrospinal fluid biomarkers of central dopamine deficiency predict Parkinson’s disease. Parkinsonism Relat. Disord. 2018;50:108–112. doi: 10.1016/j.parkreldis.2018.02.023.
    1. Passani M.B., Bacciottini L., Mannaioni P.F., Blandina P. Central histaminergic system and cognition. Neurosci. Biobehav. Rev. 2000;24:107–113. doi: 10.1016/S0149-7634(99)00053-6.
    1. Dere E., Zlomuzica A., De Souza Silva M.A., Ruocco L.A., Sadile A.G., Huston J.P. Neuronal histamine and the interplay of memory, reinforcement and emotions. Behav. Brain Res. 2010;215:209–220. doi: 10.1016/j.bbr.2009.12.045.
    1. Diebel L.N., Liberati D.M., Hall-Zimmerman L. H2 blockers decrease gut mucus production and lead to barrier dysfunction in vitro. Surgery. 2011;150:736–743. doi: 10.1016/j.surg.2011.07.067.
    1. Fernández-Novoa L., Cacabelos R. Histamine function in brain disorders. Behav. Brain Res. 2001;124:213–233. doi: 10.1016/S0166-4328(01)00215-7.
    1. Thomas C.M., Hong T., van Pijkeren J.P., Hemarajata P., Trinh D.V., Hu W., Britton R.A., Kalkum M., Versalovic J. Histamine derived from probiotic Lactobacillus reuteri suppresses TNF via modulation of PKA and ERK signaling. PLoS ONE. 2012;7:e31951. doi: 10.1371/journal.pone.0031951.
    1. Handley S.A., Dube P.H., Miller V.L. Histamine signaling through the H(2) receptor in the Peyer’s patch is important for controlling Yersinia enterocolitica infection. Proc. Natl. Acad. Sci. USA. 2006;103:9268–9273. doi: 10.1073/pnas.0510414103.
    1. Levy M., Thaiss C.A., Zeevi D., Dohnalová L., Zilberman-Schapira G., Mahdi J.A., David E., Savidor A., Korem T., Herzig Y., et al. Microbiota-Modulated Metabolites Shape the Intestinal Microenvironment by Regulating NLRP6 Inflammasome Signaling. Cell. 2015;163:1428–1443. doi: 10.1016/j.cell.2015.10.048.
    1. Banskota S., Ghia J.-E., Khan W.I. Serotonin in the gut: Blessing or a curse. Biochimie. 2019;161:56–64. doi: 10.1016/j.biochi.2018.06.008.
    1. O’Mahony S.M., Clarke G., Borre Y.E., Dinan T.G., Cryan J.F. Serotonin, tryptophan metabolism and the brain-gut-microbiome axis. Behav. Brain Res. 2015;277:32–48. doi: 10.1016/j.bbr.2014.07.027.
    1. Wikoff W.R., Anfora A.T., Liu J., Schultz P.G., Lesley S.A., Peters E.C., Siuzdak G. Metabolomics analysis reveals large effects of gut microflora on mammalian blood metabolites. Proc. Natl. Acad. Sci. USA. 2009;106:3698–3703. doi: 10.1073/pnas.0812874106.
    1. Yabut J.M., Crane J.D., Green A.E., Keating D.J., Khan W.I., Steinberg G.R. Emerging Roles for Serotonin in Regulating Metabolism: New Implications for an Ancient Molecule. Endocr. Rev. 2019;40:1092–1107. doi: 10.1210/er.2018-00283.
    1. Dalile B., Oudenhove L.V., Vervliet B., Verbeke K. The role of short-chain fatty acids in microbiota–gut–brain communication. Nat. Rev. Gastroenterol. Hepatol. 2019;16:461–478. doi: 10.1038/s41575-019-0157-3.
    1. Czajkowska A., Szponar B. Krótkołańcuchowe kwasy tłuszczowe (SCFAs) jako produkty metabolizmu bakterii jelitowych oraz ich znaczenie dla organizmu gospodarza. Postępy Hihieny Med. Dośw. 2018;72:131–142.
    1. Schönfeld P., Wojtczak L. Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J. Lipid Res. 2016;57:943–954. doi: 10.1194/jlr.R067629.
    1. Koh A., De Vadder F., Kovatcheva-Datchary P., Bäckhed F. From Dietary Fiber to Host Physiology: Short-Chain Fatty Acids as Key Bacterial Metabolites. Cell. 2016;165:1332–1345. doi: 10.1016/j.cell.2016.05.041.
    1. Louis P., Hold G.L., Flint H.J. The gut microbiota, bacterial metabolites and colorectal cancer. Nat. Rev. Microbiol. 2014;12:661–672. doi: 10.1038/nrmicro3344.
    1. Ríos-Covián D., Ruas-Madiedo P., Margolles A., Gueimonde M., de los Reyes-Gavilán C.G., Salazar N. Intestinal Short Chain Fatty Acids and their Link with Diet and Human Health. Front. Microbiol. 2016;7 doi: 10.3389/fmicb.2016.00185.
    1. Bourriaud C., Robins R.J., Martin L., Kozlowski F., Tenailleau E., Cherbut C., Michel C. Lactate is mainly fermented to butyrate by human intestinal microfloras but inter-individual variation is evident. J. Appl. Microbiol. 2005;99:201–212. doi: 10.1111/j.1365-2672.2005.02605.x.
    1. Guilloteau P., Martin L., Eeckhaut V., Ducatelle R., Zabielski R., Van Immerseel F. From the gut to the peripheral tissues: The multiple effects of butyrate. Nutr. Res. Rev. 2010;23:366–384. doi: 10.1017/S0954422410000247.
    1. Salonen A., Lahti L., Salojärvi J., Holtrop G., Korpela K., Duncan S.H., Date P., Farquharson F., Johnstone A.M., Lobley G.E., et al. Impact of diet and individual variation on intestinal microbiota composition and fermentation products in obese men. ISME J. 2014;8:2218–2230. doi: 10.1038/ismej.2014.63.
    1. Mahowald M.A., Rey F.E., Seedorf H., Turnbaugh P.J., Fulton R.S., Wollam A., Shah N., Wang C., Magrini V., Wilson R.K., et al. Characterizing a model human gut microbiota composed of members of its two dominant bacterial phyla. Proc. Natl. Acad. Sci. USA. 2009;106:5859–5864. doi: 10.1073/pnas.0901529106.
    1. Brown A.J., Goldsworthy S.M., Barnes A.A., Eilert M.M., Tcheang L., Daniels D., Muir A.I., Wigglesworth M.J., Kinghorn I., Fraser N.J., et al. The Orphan G Protein-coupled Receptors GPR41 and GPR43 Are Activated by Propionate and Other Short Chain Carboxylic Acids. J. Biol. Chem. 2003;278:11312–11319. doi: 10.1074/jbc.M211609200.
    1. Karaki S., Mitsui R., Hayashi H., Kato I., Sugiya H., Iwanaga T., Furness J.B., Kuwahara A. Short-chain fatty acid receptor, GPR43, is expressed by enteroendocrine cells and mucosal mast cells in rat intestine. Cell Tissue Res. 2006;324:353–360. doi: 10.1007/s00441-005-0140-x.
    1. Maslowski K.M., Vieira A.T., Ng A., Kranich J., Sierro F., Yu D., Schilter H.C., Rolph M.S., Mackay F., Artis D., et al. Regulation of inflammatory responses by gut microbiota and chemoattractant receptor GPR43. Nature. 2009;461:1282–1286. doi: 10.1038/nature08530.
    1. Tazoe H., Otomo Y., Karaki S., Kato I., Fukami Y., Terasaki M., Kuwahara A. Expression of short-chain fatty acid receptor GPR41 in the human colon. Biomed. Res. 2009;30:149–156. doi: 10.2220/biomedres.30.149.
    1. Nohr M.K., Egerod K.L., Christiansen S.H., Gille A., Offermanns S., Schwartz T.W., Moller M. Expression of the short chain fatty acid receptor GPR41/FFAR3 in autonomic and somatic sensory ganglia. Neuroscience. 2015;290:126–137. doi: 10.1016/j.neuroscience.2015.01.040.
    1. Kekuda R., Manoharan P., Baseler W., Sundaram U. Monocarboxylate 4 mediated butyrate transport in a rat intestinal epithelial cell line. Dig. Dis. Sci. 2013;58:660–667. doi: 10.1007/s10620-012-2407-x.
    1. Mitchell R.W., On N.H., Bigio M.R.D., Miller D.W., Hatch G.M. Fatty acid transport protein expression in human brain and potential role in fatty acid transport across human brain microvessel endothelial cells. J. Neurochem. 2011;117:735–746. doi: 10.1111/j.1471-4159.2011.07245.x.
    1. Vijay N., Morris M.E. Role of monocarboxylate transporters in drug delivery to the brain. Curr. Pharm. Des. 2014;20:1487–1498. doi: 10.2174/13816128113199990462.
    1. Oldendorf W.H. Carrier-mediated blood-brain barrier transport of short-chain monocarboxylic organic acids. Am. J. Physiol. 1973;224:1450–1453. doi: 10.1152/ajplegacy.1973.224.6.1450.
    1. Song W.S., Nielson B.R., Banks K.P., Bradley Y.C. Normal organ standard uptake values in carbon-11 acetate PET imaging. Nucl. Med. Commun. 2009;30:462–465. doi: 10.1097/MNM.0b013e32832aa7ce.
    1. Kimura I., Inoue D., Maeda T., Hara T., Ichimura A., Miyauchi S., Kobayashi M., Hirasawa A., Tsujimoto G. Short-chain fatty acids and ketones directly regulate sympathetic nervous system via G protein-coupled receptor 41 (GPR41) Proc. Natl. Acad. Sci. USA. 2011;108:8030–8035. doi: 10.1073/pnas.1016088108.
    1. De Vadder F., Kovatcheva-Datchary P., Goncalves D., Vinera J., Zitoun C., Duchampt A., Bäckhed F., Mithieux G. Microbiota-generated metabolites promote metabolic benefits via gut-brain neural circuits. Cell. 2014;156:84–96. doi: 10.1016/j.cell.2013.12.016.
    1. Hoyles L., Snelling T., Umlai U.-K., Nicholson J.K., Carding S.R., Glen R.C., McArthur S. Microbiome–host systems interactions: Protective effects of propionate upon the blood–brain barrier. Microbiome. 2018;6 doi: 10.1186/s40168-018-0439-y.
    1. Jiang H., Ling Z., Zhang Y., Mao H., Ma Z., Yin Y., Wang W., Tang W., Tan Z., Shi J., et al. Altered fecal microbiota composition in patients with major depressive disorder. Brain. Behav. Immun. 2015;48:186–194. doi: 10.1016/j.bbi.2015.03.016.
    1. Bendtsen K.M.B., Krych L., Sørensen D.B., Pang W., Nielsen D.S., Josefsen K., Hansen L.H., Sørensen S.J., Hansen A.K. Gut Microbiota Composition Is Correlated to Grid Floor Induced Stress and Behavior in the BALB/c Mouse. PLoS ONE. 2012;7:e46231. doi: 10.1371/journal.pone.0046231.
    1. Vince A.J., McNeil N.I., Wager J.D., Wrong O.M. The effect of lactulose, pectin, arabinogalactan and cellulose on the production of organic acids and metabolism of ammonia by intestinal bacteria in a faecal incubation system. Br. J. Nutr. 1990;63:17–26. doi: 10.1079/BJN19900088.
    1. Zhang X., Pan L.-Y., Zhang Z., Zhou Y.-Y., Jiang H.-Y., Ruan B. Analysis of gut mycobiota in first-episode, drug-naïve Chinese patients with schizophrenia: A pilot study. Behav. Brain Res. 2020;379:112374. doi: 10.1016/j.bbr.2019.112374.
    1. Skonieczna-Żydecka K., Grochans E., Maciejewska D., Szkup M., Schneider-Matyka D., Jurczak A., Łoniewski I., Kaczmarczyk M., Marlicz W., Czerwińska-Rogowska M., et al. Faecal Short Chain Fatty Acids Profile is Changed in Polish Depressive Women. Nutrients. 2018;10:1939. doi: 10.3390/nu10121939.
    1. Szczesniak O., Hestad K.A., Hanssen J.F., Rudi K. Isovaleric acid in stool correlates with human depression. Nutr. Neurosci. 2016;19:279–283. doi: 10.1179/1476830515Y.0000000007.
    1. Miyaoka T., Kanayama M., Wake R., Hashioka S., Hayashida M., Nagahama M., Okazaki S., Yamashita S., Miura S., Miki H., et al. Clostridium butyricum MIYAIRI 588 as Adjunctive Therapy for Treatment-Resistant Major Depressive Disorder: A Prospective Open-Label Trial. Clin. Neuropharmacol. 2018;41:151–155. doi: 10.1097/WNF.0000000000000299.
    1. Kelly J.R., Borre Y., O’ Brien C., Patterson E., El Aidy S., Deane J., Kennedy P.J., Beers S., Scott K., Moloney G., et al. Transferring the blues: Depression-associated gut microbiota induces neurobehavioural changes in the rat. J. Psychiatr. Res. 2016;82:109–118. doi: 10.1016/j.jpsychires.2016.07.019.
    1. Govindarajan N., Agis-Balboa R.C., Walter J., Sananbenesi F., Fischer A. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J. Alzheimers Dis. J. 2011;26:187–197. doi: 10.3233/JAD-2011-110080.
    1. Ho L., Ono K., Tsuji M., Mazzola P., Singh R., Pasinetti G.M. Protective roles of intestinal microbiota derived short chain fatty acids in Alzheimer’s disease-type beta-amyloid neuropathological mechanisms. Expert Rev. Neurother. 2018;18:83–90. doi: 10.1080/14737175.2018.1400909.
    1. Hopfner F., Kunstner A., Muller S.H., Kunzel S., Zeuner K.E., Margraf N.G., Deuschl G., Baines J.F., Kuhlenbaumer G. Gut microbiota in Parkinson disease in a northern German cohort. Brain Res. 2017;1667:41–45. doi: 10.1016/j.brainres.2017.04.019.
    1. Paiva I., Pinho R., Pavlou M.A., Hennion M., Wales P., Schütz A.-L., Rajput A., Szegő É.M., Kerimoglu C., Gerhardt E., et al. Sodium butyrate rescues dopaminergic cells from alpha-synuclein-induced transcriptional deregulation and DNA damage. Hum. Mol. Genet. 2017;26:2231–2246. doi: 10.1093/hmg/ddx114.
    1. St Laurent R., O’Brien L.M., Ahmad S.T. Sodium butyrate improves locomotor impairment and early mortality in a rotenone-induced Drosophila model of Parkinson’s disease. Neuroscience. 2013;246:382–390. doi: 10.1016/j.neuroscience.2013.04.037.
    1. Sharma S., Taliyan R., Singh S. Beneficial effects of sodium butyrate in 6-OHDA induced neurotoxicity and behavioral abnormalities: Modulation of histone deacetylase activity. Behav. Brain Res. 2015;291:306–314. doi: 10.1016/j.bbr.2015.05.052.
    1. Moretti M., Valvassori S.S., Varela R.B., Ferreira C.L., Rochi N., Benedet J., Scaini G., Kapczinski F., Streck E.L., Zugno A.I., et al. Behavioral and neurochemical effects of sodium butyrate in an animal model of mania. Behav. Pharmacol. 2011;22:766–772. doi: 10.1097/FBP.0b013e32834d0f1b.
    1. Resende W.R., Valvassori S.S., Réus G.Z., Varela R.B., Arent C.O., Ribeiro K.F., Bavaresco D.V., Andersen M.L., Zugno A.I., Quevedo J. Effects of sodium butyrate in animal models of mania and depression: Implications as a new mood stabilizer. Behav. Pharmacol. 2013;24:569–579. doi: 10.1097/FBP.0b013e32836546fc.
    1. Stilling R.M., van de Wouw M., Clarke G., Stanton C., Dinan T.G., Cryan J.F. The neuropharmacology of butyrate: The bread and butter of the microbiota-gut-brain axis? Neurochem. Int. 2016;99:110–132. doi: 10.1016/j.neuint.2016.06.011.
    1. Finegold S.M., Dowd S.E., Gontcharova V., Liu C., Henley K.E., Wolcott R.D., Youn E., Summanen P.H., Granpeesheh D., Dixon D., et al. Pyrosequencing study of fecal microflora of autistic and control children. Anaerobe. 2010;16:444–453. doi: 10.1016/j.anaerobe.2010.06.008.
    1. Sm F. Desulfovibrio Species Are Potentially Important in Regressive Autism. [(accessed on 12 June 2020)]; Available online:
    1. Choi J., Lee S., Won J., Jin Y., Hong Y., Hur T.-Y., Kim J.-H., Lee S.-R., Hong Y. Pathophysiological and neurobehavioral characteristics of a propionic acid-mediated autism-like rat model. PLoS ONE. 2018;13:e0192925. doi: 10.1371/journal.pone.0192925.
    1. Holota Y., Dovbynchuk T., Kaji I., Vareniuk I., Dzyubenko N., Chervinska T., Zakordonets L., Stetska V., Ostapchenko L., Serhiychuk T., et al. The long-term consequences of antibiotic therapy: Role of colonic short-chain fatty acids (SCFA) system and intestinal barrier integrity. PLoS ONE. 2019;14 doi: 10.1371/journal.pone.0220642.
    1. Vinolo M.A.R., Rodrigues H.G., Nachbar R.T., Curi R. Regulation of Inflammation by Short Chain Fatty Acids. Nutrients. 2011;3:858–876. doi: 10.3390/nu3100858.
    1. Vinolo M.A.R., Rodrigues H.G., Hatanaka E., Sato F.T., Sampaio S.C., Curi R. Suppressive effect of short-chain fatty acids on production of proinflammatory mediators by neutrophils. J. Nutr. Biochem. 2011;22:849–855. doi: 10.1016/j.jnutbio.2010.07.009.
    1. Arpaia N., Campbell C., Fan X., Dikiy S., van der Veeken J., deRoos P., Liu H., Cross J.R., Pfeffer K., Coffer P.J., et al. Metabolites produced by commensal bacteria promote peripheral regulatory T cell generation. Nature. 2013;504:451–455. doi: 10.1038/nature12726.
    1. Furusawa Y., Obata Y., Fukuda S., Endo T.A., Nakato G., Takahashi D., Nakanishi Y., Uetake C., Kato K., Kato T., et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature. 2013;504:446–450. doi: 10.1038/nature12721.
    1. Smith P.M., Howitt M.R., Panikov N., Michaud M., Gallini C.A., Bohlooly-Y M., Glickman J.N., Garrett W.S. The microbial metabolites, short chain fatty acids, regulate colonic Treg cell homeostasis. Science. 2013;341 doi: 10.1126/science.1241165.
    1. Atarashi K., Tanoue T., Oshima K., Suda W., Nagano Y., Nishikawa H., Fukuda S., Saito T., Narushima S., Hase K., et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature. 2013;500:232–236. doi: 10.1038/nature12331.
    1. Erny D., Hrabě de Angelis A.L., Prinz M. Communicating systems in the body: How microbiota and microglia cooperate. Immunology. 2017;150:7–15. doi: 10.1111/imm.12645.
    1. Xiao S., Zhang Z., Chen M., Zou J., Jiang S., Qian D., Duan J. Xiexin Tang ameliorates dyslipidemia in high-fat diet-induced obese rats via elevating gut microbiota-derived short chain fatty acids production and adjusting energy metabolism. J. Ethnopharmacol. 2019;241:112032. doi: 10.1016/j.jep.2019.112032.
    1. Tan J., McKenzie C., Potamitis M., Thorburn A.N., Mackay C.R., Macia L. The Role of Short-Chain Fatty Acids in Health and Disease. Adv. Immunol. 2014;121:91–119. doi: 10.1016/B978-0-12-800100-4.00003-9.
    1. Frost G., Sleeth M.L., Sahuri-Arisoylu M., Lizarbe B., Cerdan S., Brody L., Anastasovska J., Ghourab S., Hankir M., Zhang S., et al. The short-chain fatty acid acetate reduces appetite via a central homeostatic mechanism. Nat. Commun. 2014;5 doi: 10.1038/ncomms4611.
    1. Dehhaghi M., Kazemi Shariat Panahi H., Guillemin G.J. Microorganisms, Tryptophan Metabolism, and Kynurenine Pathway: A Complex Interconnected Loop Influencing Human Health Status. Int. J. Tryptophan Res. 2019;12 doi: 10.1177/1178646919852996.
    1. Richard D.M., Dawes M.A., Mathias C.W., Acheson A., Hill-Kapturczak N., Dougherty D.M. L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int. J. Tryptophan Res. 2009;2:45–60. doi: 10.4137/IJTR.S2129.
    1. Fernstrom J.D. Role of precursor availability in control of monoamine biosynthesis in brain. Physiol. Rev. 1983;63:484–546. doi: 10.1152/physrev.1983.63.2.484.
    1. Moroni F. Tryptophan metabolism and brain function: Focus on kynurenine and other indole metabolites. Eur. J. Pharmacol. 1999;375:87–100. doi: 10.1016/S0014-2999(99)00196-X.
    1. Chen Y., Guillemin G.J. Kynurenine pathway metabolites in humans: Disease and healthy States. Int. J. Tryptophan Res. 2009;2:1–19. doi: 10.4137/IJTR.S2097.
    1. Clarke G., McKernan D.P., Gaszner G., Quigley E.M., Cryan J.F., Dinan T.G. A Distinct Profile of Tryptophan Metabolism along the Kynurenine Pathway Downstream of Toll-Like Receptor Activation in Irritable Bowel Syndrome. Front. Pharmacol. 2012;3:90. doi: 10.3389/fphar.2012.00090.
    1. Bruijn L.I., Miller T.M., Cleveland D.W. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu. Rev. Neurosci. 2004;27:723–749. doi: 10.1146/annurev.neuro.27.070203.144244.
    1. Guillemin G.J., Kerr S.J., Brew B.J. Involvement of quinolinic acid in AIDS dementia complex. Neurotox. Res. 2005;7:103–123. doi: 10.1007/BF03033781.
    1. Guillemin G.J., Brew B.J. Implications of the kynurenine pathway and quinolinic acid in Alzheimer’s disease. Redox Rep. Commun. Free Radic. Res. 2002;7:199–206. doi: 10.1179/135100002125000550.
    1. Kennedy P.J., Cryan J.F., Dinan T.G., Clarke G. Kynurenine pathway metabolism and the microbiota-gut-brain axis. Neuropharmacology. 2017;112:399–412. doi: 10.1016/j.neuropharm.2016.07.002.
    1. Bryn V., Verkerk R., Skjeldal O.H., Saugstad O.D., Ormstad H. Kynurenine Pathway in Autism Spectrum Disorders in Children. Neuropsychobiology. 2017;76:82–88. doi: 10.1159/000488157.
    1. Agus A., Planchais J., Sokol H. Gut Microbiota Regulation of Tryptophan Metabolism in Health and Disease. Cell Host Microbe. 2018;23:716–724. doi: 10.1016/j.chom.2018.05.003.
    1. Kaur M., Tyagi S., Kundu N. Effect of Brewing Methods and Time on Secondary Metabolites, Total Flavonoid and Phenolic Content of Green and Roasted coffee Coffea arabica, Coffea canephora and Monsooned Malabar. Eur. J. Med. Plants. 2018:1–16. doi: 10.9734/EJMP/2018/40565.
    1. Roager H.M., Licht T.R. Microbial tryptophan catabolites in health and disease. Nat. Commun. 2018;9:1–10. doi: 10.1038/s41467-018-05470-4.
    1. Bercik P., Verdu E.F., Foster J.A., Macri J., Potter M., Huang X., Malinowski P., Jackson W., Blennerhassett P., Neufeld K.A., et al. Chronic gastrointestinal inflammation induces anxiety-like behavior and alters central nervous system biochemistry in mice. Gastroenterology. 2010;139:2102–2112.e1. doi: 10.1053/j.gastro.2010.06.063.
    1. Freewan M., Rees M.D., Plaza T.S.S., Glaros E., Lim Y.J., Wang X.S., Yeung A.W.S., Witting P.K., Terentis A.C., Thomas S.R. Human indoleamine 2,3-dioxygenase is a catalyst of physiological heme peroxidase reactions: Implications for the inhibition of dioxygenase activity by hydrogen peroxide. J. Biol. Chem. 2013;288:1548–1567. doi: 10.1074/jbc.M112.410993.
    1. Gao J., Xu K., Liu H., Liu G., Bai M., Peng C., Li T., Yin Y. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism. Front. Cell. Infect. Microbiol. 2018;8:13. doi: 10.3389/fcimb.2018.00013.
    1. Valladares R., Bojilova L., Potts A.H., Cameron E., Gardner C., Lorca G., Gonzalez C.F. Lactobacillus johnsonii inhibits indoleamine 2,3-dioxygenase and alters tryptophan metabolite levels in BioBreeding rats. FASEB J. 2013;27:1711–1720. doi: 10.1096/fj.12-223339.
    1. Desbonnet L., Garrett L., Clarke G., Bienenstock J., Dinan T.G. The probiotic Bifidobacteria infantis: An assessment of potential antidepressant properties in the rat. J. Psychiatr. Res. 2008;43:164–174. doi: 10.1016/j.jpsychires.2008.03.009.
    1. Clarke G., Grenham S., Scully P., Fitzgerald P., Moloney R.D., Shanahan F., Dinan T.G., Cryan J.F. The microbiome-gut-brain axis during early life regulates the hippocampal serotonergic system in a sex-dependent manner. Mol. Psychiatry. 2013;18:666–673. doi: 10.1038/mp.2012.77.
    1. El Aidy S., van Baarlen P., Derrien M., Lindenbergh-Kortleve D.J., Hooiveld G., Levenez F., Doré J., Dekker J., Samsom J.N., Nieuwenhuis E.E.S., et al. Temporal and spatial interplay of microbiota and intestinal mucosa drive establishment of immune homeostasis in conventionalized mice. Mucosal Immunol. 2012;5:567–579. doi: 10.1038/mi.2012.32.
    1. Mardinoglu A., Shoaie S., Bergentall M., Ghaffari P., Zhang C., Larsson E., Bäckhed F., Nielsen J. The gut microbiota modulates host amino acid and glutathione metabolism in mice. Mol. Syst. Biol. 2015;11:834. doi: 10.15252/msb.20156487.
    1. Khalil O.S., Pisar M., Forrest C.M., Vincenten M.C.J., Darlington L.G., Stone T.W. Prenatal inhibition of the kynurenine pathway leads to structural changes in the hippocampus of adult rat offspring. Eur. J. Neurosci. 2014;39:1558–1571. doi: 10.1111/ejn.12535.
    1. Pisar M., Forrest C.M., Khalil O.S., McNair K., Vincenten M.C.J., Qasem S., Darlington L.G., Stone T.W. Modified neocortical and cerebellar protein expression and morphology in adult rats following prenatal inhibition of the kynurenine pathway. Brain Res. 2014;1576:1–17. doi: 10.1016/j.brainres.2014.06.016.
    1. Alexander K.S., Pocivavsek A., Wu H.-Q., Pershing M.L., Schwarcz R., Bruno J.P. Early developmental elevations of brain kynurenic acid impair cognitive flexibility in adults: Reversal with galantamine. Neuroscience. 2013;238:19–28. doi: 10.1016/j.neuroscience.2013.01.063.
    1. Pershing M.L., Bortz D.M., Pocivavsek A., Fredericks P.J., Jørgensen C.V., Vunck S.A., Leuner B., Schwarcz R., Bruno J.P. Elevated levels of kynurenic acid during gestation produce neurochemical, morphological, and cognitive deficits in adulthood: Implications for schizophrenia. Neuropharmacology. 2015;90:33–41. doi: 10.1016/j.neuropharm.2014.10.017.
    1. Pocivavsek A., Wu H.-Q., Elmer G.I., Bruno J.P., Schwarcz R. Pre- and postnatal exposure to kynurenine causes cognitive deficits in adulthood. Eur. J. Neurosci. 2012;35:1605–1612. doi: 10.1111/j.1460-9568.2012.08064.x.
    1. Rizzatti G., Lopetuso L.R., Gibiino G., Binda C., Gasbarrini A. Proteobacteria: A Common Factor in Human Diseases. BioMed Res. Int. 2017;2017:9351507. doi: 10.1155/2017/9351507.
    1. Evrensel A., Ceylan M.E. The Gut-Brain Axis: The Missing Link in Depression. Clin. Psychopharmacol. Neurosci. 2015;13:239–244. doi: 10.9758/cpn.2015.13.3.239.
    1. Knecht L.D., O’Connor G., Mittal R., Liu X.Z., Daftarian P., Deo S.K., Daunert S. Serotonin Activates Bacterial Quorum Sensing and Enhances the Virulence of Pseudomonas aeruginosa in the Host. EBioMedicine. 2016;9:161–169. doi: 10.1016/j.ebiom.2016.05.037.
    1. Jenkins T.A., Nguyen J.C.D., Polglaze K.E., Bertrand P.P. Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients. 2016;8 doi: 10.3390/nu8010056.
    1. Waclawiková B., El Aidy S. Role of Microbiota and Tryptophan Metabolites in the Remote Effect of Intestinal Inflammation on Brain and Depression. Pharm. Basel Switz. 2018;11 doi: 10.3390/ph11030063.
    1. Geldenhuys W.J., Van der Schyf C.J. Role of serotonin in Alzheimer’s disease: A new therapeutic target? CNS Drugs. 2011;25:765–781. doi: 10.2165/11590190-000000000-00000.
    1. Oxenkrug G. Serotonin-kynurenine hypothesis of depression: Historical overview and recent developments. Curr. Drug Targets. 2013;14:514–521. doi: 10.2174/1389450111314050002.
    1. Munoz-Bellido J.L., Munoz-Criado S., Garcìa-Rodrìguez J.A. Antimicrobial activity of psychotropic drugs: Selective serotonin reuptake inhibitors. Int. J. Antimicrob. Agents. 2000;14:177–180. doi: 10.1016/S0924-8579(99)00154-5.
    1. Henry L.K., Meiler J., Blakely R.D. Bound to be different: Neurotransmitter transporters meet their bacterial cousins. Mol. Interv. 2007;7:306–309. doi: 10.1124/mi.7.6.4.
    1. Singh S.K., Yamashita A., Gouaux E. Antidepressant binding site in a bacterial homologue of neurotransmitter transporters. Nature. 2007;448:952–956. doi: 10.1038/nature06038.
    1. Furukawa S., Usuda K., Abe M., Ogawa I. Effect of indole-3-acetic acid derivatives on neuroepithelium in rat embryos. J. Toxicol. Sci. 2005;30:165–174. doi: 10.2131/jts.30.165.
    1. Puurunen J., Sulkama S., Tiira K., Araujo C., Lehtonen M., Hanhineva K., Lohi H. A non-targeted metabolite profiling pilot study suggests that tryptophan and lipid metabolisms are linked with ADHD-like behaviours in dogs. Behav. Brain Funct. BBF. 2016;12:27. doi: 10.1186/s12993-016-0112-1.
    1. DeMyer M.K., Shea P.A., Hendrie H.C., Yoshimura N.N. Plasma tryptophan and five other amino acids in depressed and normal subjects. Arch. Gen. Psychiatry. 1981;38:642–646. doi: 10.1001/archpsyc.1981.01780310042003.
    1. Xu H.-B., Fang L., Hu Z.-C., Chen Y.-C., Chen J.-J., Li F.-F., Lu J., Mu J., Xie P. Potential clinical utility of plasma amino acid profiling in the detection of major depressive disorder. Psychiatry Res. 2012;200:1054–1057. doi: 10.1016/j.psychres.2012.05.027.
    1. Ogawa S., Fujii T., Koga N., Hori H., Teraishi T., Hattori K., Noda T., Higuchi T., Motohashi N., Kunugi H. Plasma L-tryptophan concentration in major depressive disorder: New data and meta-analysis. J. Clin. Psychiatry. 2014;75:e906–e915. doi: 10.4088/JCP.13r08908.
    1. Doolin K., Allers K.A., Pleiner S., Liesener A., Farrell C., Tozzi L., O’Hanlon E., Roddy D., Frodl T., Harkin A., et al. Altered tryptophan catabolite concentrations in major depressive disorder and associated changes in hippocampal subfield volumes. Psychoneuroendocrinology. 2018;95:8–17. doi: 10.1016/j.psyneuen.2018.05.019.
    1. Bonvicini C., Minelli A., Scassellati C., Bortolomasi M., Segala M., Sartori R., Giacopuzzi M., Gennarelli M. Serotonin transporter gene polymorphisms and treatment-resistant depression. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2010;34:934–939. doi: 10.1016/j.pnpbp.2010.04.020.
    1. Karg K., Burmeister M., Shedden K., Sen S. The serotonin transporter promoter variant (5-HTTLPR), stress, and depression meta-analysis revisited: Evidence of genetic moderation. Arch. Gen. Psychiatry. 2011;68:444–454. doi: 10.1001/archgenpsychiatry.2010.189.
    1. Mahar I., Bambico F.R., Mechawar N., Nobrega J.N. Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neurosci. Biobehav. Rev. 2014;38:173–192. doi: 10.1016/j.neubiorev.2013.11.009.
    1. Köhler S., Cierpinsky K., Kronenberg G., Adli M. The serotonergic system in the neurobiology of depression: Relevance for novel antidepressants. J. Psychopharmacol. Oxf. Engl. 2016;30:13–22. doi: 10.1177/0269881115609072.
    1. Kraus C., Castrén E., Kasper S., Lanzenberger R. Serotonin and neuroplasticity - Links between molecular, functional and structural pathophysiology in depression. Neurosci. Biobehav. Rev. 2017;77:317–326. doi: 10.1016/j.neubiorev.2017.03.007.
    1. Robinson O.J., Overstreet C., Allen P.S., Pine D.S., Grillon C. Acute tryptophan depletion increases translational indices of anxiety but not fear: Serotonergic modulation of the bed nucleus of the stria terminalis? Neuropsychopharmacology. 2012;37:1963–1971. doi: 10.1038/npp.2012.43.
    1. Hsiao C.Y., Tsai H.C., Chi M.H., Chen K.C., Chen P.S., Lee I.H., Yeh T.L., Yang Y.K. The Association between Baseline Subjective Anxiety Rating and Changes in Cardiac Autonomic Nervous Activity in Response to Tryptophan Depletion in Healthy Volunteers. Medicine (Baltimore) 2016;95:e3498. doi: 10.1097/MD.0000000000003498.
    1. Gauthier C., Hassler C., Mattar L., Launay J.-M., Callebert J., Steiger H., Melchior J.-C., Falissard B., Berthoz S., Mourier-Soleillant V., et al. Symptoms of depression and anxiety in anorexia nervosa: Links with plasma tryptophan and serotonin metabolism. Psychoneuroendocrinology. 2014;39:170–178. doi: 10.1016/j.psyneuen.2013.09.009.
    1. Hubbard T.D., Murray I.A., Perdew G.H. Indole and Tryptophan Metabolism: Endogenous and Dietary Routes to Ah Receptor Activation. Drug Metab. Dispos. Biol. Fate Chem. 2015;43:1522–1535. doi: 10.1124/dmd.115.064246.
    1. Alexeev E.E., Lanis J.M., Kao D.J., Campbell E.L., Kelly C.J., Battista K.D., Gerich M.E., Jenkins B.R., Walk S.T., Kominsky D.J., et al. Microbiota-Derived Indole Metabolites Promote Human and Murine Intestinal Homeostasis through Regulation of Interleukin-10 Receptor. Am. J. Pathol. 2018;188:1183–1194. doi: 10.1016/j.ajpath.2018.01.011.
    1. Zelante T., Iannitti R.G., Cunha C., De Luca A., Giovannini G., Pieraccini G., Zecchi R., D’Angelo C., Massi-Benedetti C., Fallarino F., et al. Tryptophan catabolites from microbiota engage aryl hydrocarbon receptor and balance mucosal reactivity via interleukin-22. Immunity. 2013;39:372–385. doi: 10.1016/j.immuni.2013.08.003.
    1. Schiering C., Wincent E., Metidji A., Iseppon A., Li Y., Potocnik A.J., Omenetti S., Henderson C.J., Wolf C.R., Nebert D.W., et al. Feedback control of AHR signalling regulates intestinal immunity. Nature. 2017;542:242–245. doi: 10.1038/nature21080.
    1. Metidji A., Omenetti S., Crotta S., Li Y., Nye E., Ross E., Li V., Maradana M.R., Schiering C., Stockinger B. The Environmental Sensor AHR Protects from Inflammatory Damage by Maintaining Intestinal Stem Cell Homeostasis and Barrier Integrity. Immunity. 2019;50:1542. doi: 10.1016/j.immuni.2019.05.024.
    1. Rothhammer V., Quintana F.J. The aryl hydrocarbon receptor: An environmental sensor integrating immune responses in health and disease. Nat. Rev. Immunol. 2019;19:184–197. doi: 10.1038/s41577-019-0125-8.
    1. Natividad J.M., Agus A., Planchais J., Lamas B., Jarry A.C., Martin R., Michel M.-L., Chong-Nguyen C., Roussel R., Straube M., et al. Impaired Aryl Hydrocarbon Receptor Ligand Production by the Gut Microbiota Is a Key Factor in Metabolic Syndrome. Cell Metab. 2018;28:737–749.e4. doi: 10.1016/j.cmet.2018.07.001.
    1. Dash S., Clarke G., Berk M., Jacka F.N. The gut microbiome and diet in psychiatry: Focus on depression. Curr. Opin. Psychiatry. 2015;28:1–6. doi: 10.1097/YCO.0000000000000117.
    1. Strawbridge R., Arnone D., Danese A., Papadopoulos A., Herane Vives A., Cleare A.J. Inflammation and clinical response to treatment in depression: A meta-analysis. Eur. Neuropsychopharmacol. 2015;25:1532–1543. doi: 10.1016/j.euroneuro.2015.06.007.
    1. Hayley S., Audet M.-C., Anisman H. Inflammation and the microbiome: Implications for depressive disorders. Curr. Opin. Pharmacol. 2016;29:42–46. doi: 10.1016/j.coph.2016.06.001.
    1. Groen R.N., de Clercq N.C., Nieuwdorp M., Hoenders H.J.R., Groen A.K. Gut microbiota, metabolism and psychopathology: A critical review and novel perspectives. Crit. Rev. Clin. Lab. Sci. 2018;55:283–293. doi: 10.1080/10408363.2018.1463507.
    1. Latchney S.E., Hein A.M., O’Banion M.K., DiCicco-Bloom E., Opanashuk L.A. Deletion or activation of the aryl hydrocarbon receptor alters adult hippocampal neurogenesis and contextual fear memory. J. Neurochem. 2013;125:430–445. doi: 10.1111/jnc.12130.
    1. Snyder J.S., Soumier A., Brewer M., Pickel J., Cameron H.A. Adult hippocampal neurogenesis buffers stress responses and depressive behaviour. Nature. 2011;476:458–461. doi: 10.1038/nature10287.
    1. Surget A., Tanti A., Leonardo E.D., Laugeray A., Rainer Q., Touma C., Palme R., Griebel G., Ibarguen-Vargas Y., Hen R., et al. Antidepressants recruit new neurons to improve stress response regulation. Mol. Psychiatry. 2011;16:1177–1188. doi: 10.1038/mp.2011.48.
    1. Franz C.M., Holzapfel W.H., Stiles M.E. Enterococci at the crossroads of food safety? Int. J. Food Microbiol. 1999;47:1–24. doi: 10.1016/S0168-1605(99)00007-0.
    1. de Roos N.M., Katan M.B. Effects of probiotic bacteria on diarrhea, lipid metabolism, and carcinogenesis: A review of papers published between 1988 and 1998. Am. J. Clin. Nutr. 2000;71:405–411. doi: 10.1093/ajcn/71.2.405.
    1. Li B., Evivie S.E., Jin D., Meng Y., Li N., Yan F., Huo G., Liu F. Complete genome sequence of Enterococcus durans KLDS6.0933, a potential probiotic strain with high cholesterol removal ability. Gut Pathog. 2018;10:32. doi: 10.1186/s13099-018-0260-y.
    1. Natori Y., Kano Y., Imamoto F. Nucleotide sequences and genomic constitution of five tryptophan genes of Lactobacillus casei. J. Biochem. (Tokyo) 1990;107:248–255. doi: 10.1093/oxfordjournals.jbchem.a123034.
    1. Kazemi A., Noorbala A.A., Azam K., Eskandari M.H., Djafarian K. Effect of probiotic and prebiotic vs placebo on psychological outcomes in patients with major depressive disorder: A randomized clinical trial. Clin. Nutr. Edinb. Scotl. 2019;38:522–528. doi: 10.1016/j.clnu.2018.04.010.
    1. Schwarcz R., Bruno J.P., Muchowski P.J., Wu H.-Q. Kynurenines in the mammalian brain: when physiology meets pathology. Nat. Rev. Neurosci. 2012;13:465–477. doi: 10.1038/nrn3257.
    1. Gu Q., Li P. Biosynthesis of Vitamins by Probiotic Bacteria. Probiotics Prebiotics Hum. Nutr. Health. 2016 doi: 10.5772/63117.
    1. LeBlanc J.G., Milani C., de Giori G.S., Sesma F., van Sinderen D., Ventura M. Bacteria as vitamin suppliers to their host: A gut microbiota perspective. Curr. Opin. Biotechnol. 2013;24:160–168. doi: 10.1016/j.copbio.2012.08.005.
    1. Das P., Babaei P., Nielsen J. Metagenomic analysis of microbe-mediated vitamin metabolism in the human gut microbiome. BMC Genomics. 2019;20:208. doi: 10.1186/s12864-019-5591-7.
    1. Magnúsdóttir S., Ravcheev D., de Crécy-Lagard V., Thiele I. Systematic genome assessment of B-vitamin biosynthesis suggests co-operation among gut microbes. Front. Genet. 2015;6:148. doi: 10.3389/fgene.2015.00148.
    1. Hosomi K., Kunisawa J. The Specific Roles of Vitamins in the Regulation of Immunosurveillance and Maintenance of Immunologic Homeostasis in the Gut. Immune Netw. 2017;17:13–19. doi: 10.4110/in.2017.17.1.13.
    1. Yoshii K., Hosomi K., Sawane K., Kunisawa J. Metabolism of Dietary and Microbial Vitamin B Family in the Regulation of Host Immunity. Front. Nutr. 2019;6 doi: 10.3389/fnut.2019.00048.
    1. Serbus L.R., Rodriguez B.G., Sharmin Z., Momtaz A.J.M.Z., Christensen S. Predictive Genomic Analyses Inform the Basis for Vitamin Metabolism and Provisioning in Bacteria-Arthropod Endosymbioses. G3 Genes Genomes Genetics. 2017;7:1887–1898. doi: 10.1534/g3.117.042184.
    1. Ueland P.M., McCann A., Midttun Ø., Ulvik A. Inflammation, vitamin B6 and related pathways. Mol. Aspects Med. 2017;53:10–27. doi: 10.1016/j.mam.2016.08.001.
    1. Leklem J.E. Quantitative aspects of tryptophan metabolism in humans and other species: A review. Am. J. Clin. Nutr. 1971;24:659–672. doi: 10.1093/ajcn/24.6.659.
    1. Thakur K., Tomar S.K., De S. Lactic acid bacteria as a cell factory for riboflavin production. Microb. Biotechnol. 2016;9:441–451. doi: 10.1111/1751-7915.12335.
    1. Johansson M.L., Nobaek S., Berggren A., Nyman M., Björck I., Ahrné S., Jeppsson B., Molin G. Survival of Lactobacillus plantarum DSM 9843 (299v), and effect on the short-chain fatty acid content of faeces after ingestion of a rose-hip drink with fermented oats. Int. J. Food Microbiol. 1998;42:29–38. doi: 10.1016/S0168-1605(98)00055-5.
    1. Deguchi Y., Morishita T., Mutai M. Comparative Studies on Synthesis of Water-soluble Vitamins among Human Species of Bifidobacteria. Agric. Biol. Chem. 1985;49:13–19. doi: 10.1080/00021369.1985.10866683.
    1. Paul L., Ueland P.M., Selhub J. Mechanistic perspective on the relationship between pyridoxal 5′-phosphate and inflammation. Nutr. Rev. 2013;71:239–244. doi: 10.1111/nure.12014.
    1. Theofylaktopoulou D., Ulvik A., Midttun Ø., Ueland P.M., Vollset S.E., Nygård O., Hustad S., Tell G.S., Eussen S.J.P.M. Vitamins B2 and B6 as determinants of kynurenines and related markers of interferon-γ-mediated immune activation in the community-based Hordaland Health Study. Br. J. Nutr. 2014;112:1065–1072. doi: 10.1017/S0007114514001858.
    1. Lorbek G., Lewinska M., Rozman D. Cytochrome P450s in the synthesis of cholesterol and bile acids--From mouse models to human diseases. FEBS J. 2012;279:1516–1533. doi: 10.1111/j.1742-4658.2011.08432.x.
    1. Russell D.W. The enzymes, regulation, and genetics of bile acid synthesis. Annu. Rev. Biochem. 2003;72:137–174. doi: 10.1146/annurev.biochem.72.121801.161712.
    1. Wang H., Chen J., Hollister K., Sowers L.C., Forman B.M. Endogenous bile acids are ligands for the nuclear receptor FXR/BAR. Mol. Cell. 1999;3:543–553. doi: 10.1016/S1097-2765(00)80348-2.
    1. Bookout A.L., Jeong Y., Downes M., Yu R.T., Evans R.M., Mangelsdorf D.J. Anatomical profiling of nuclear receptor expression reveals a hierarchical transcriptional network. Cell. 2006;126:789–799. doi: 10.1016/j.cell.2006.06.049.
    1. McMillin M., Frampton G., Quinn M., Ashfaq S., de los Santos M., Grant S., DeMorrow S. Bile Acid Signaling Is Involved in the Neurological Decline in a Murine Model of Acute Liver Failure. Am. J. Pathol. 2016;186:312–323. doi: 10.1016/j.ajpath.2015.10.005.
    1. Lehmann J.M., McKee D.D., Watson M.A., Willson T.M., Moore J.T., Kliewer S.A. The human orphan nuclear receptor PXR is activated by compounds that regulate CYP3A4 gene expression and cause drug interactions. J. Clin. Investig. 1998;102:1016–1023. doi: 10.1172/JCI3703.
    1. Yanovsky Y., Schubring S.R., Yao Q., Zhao Y., Li S., May A., Haas H.L., Lin J.-S., Sergeeva O.A. Waking action of ursodeoxycholic acid (UDCA) involves histamine and GABAA receptor block. PLoS ONE. 2012;7:e42512. doi: 10.1371/journal.pone.0042512.
    1. McMillin M., DeMorrow S. Effects of bile acids on neurological function and disease. FASEB J. 2016;30:3658–3668. doi: 10.1096/fj.201600275R.
    1. Lieu T., Jayaweera G., Zhao P., Poole D.P., Jensen D., Grace M., McIntyre P., Bron R., Wilson Y.M., Krappitz M., et al. The Bile Acid Receptor TGR5 Activates the TRPA1 Channel to Induce Itch in Mice. Gastroenterology. 2014;147:1417–1428. doi: 10.1053/j.gastro.2014.08.042.
    1. Zhu S., Jiang Y., Xu K., Cui M., Ye W., Zhao G., Jin L., Chen X. The progress of gut microbiome research related to brain disorders. J. Neuroinflammation. 2020;17:25. doi: 10.1186/s12974-020-1705-z.
    1. Zhu W., Gregory J.C., Org E., Buffa J.A., Gupta N., Wang Z., Li L., Fu X., Wu Y., Mehrabian M., et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk. Cell. 2016;165:111–124. doi: 10.1016/j.cell.2016.02.011.
    1. Janeiro M.H., Ramírez M.J., Milagro F.I., Martínez J.A., Solas M. Implication of Trimethylamine N-Oxide (TMAO) in Disease: Potential Biomarker or New Therapeutic Target. Nutrients. 2018;10 doi: 10.3390/nu10101398.
    1. Xu R., Wang Q. Towards understanding brain-gut-microbiome connections in Alzheimer’s disease. BMC Syst. Biol. 2016;10(Suppl. 3):63. doi: 10.1186/s12918-016-0307-y.
    1. Yang D.S., Yip C.M., Huang T.H., Chakrabartty A., Fraser P.E. Manipulating the amyloid-beta aggregation pathway with chemical chaperones. J. Biol. Chem. 1999;274:32970–32974. doi: 10.1074/jbc.274.46.32970.
    1. Renshaw P.F., Lafer B., Babb S.M., Fava M., Stoll A.L., Christensen J.D., Moore C.M., Yurgelun-Todd D.A., Bonello C.M., Pillay S.S., et al. Basal ganglia choline levels in depression and response to fluoxetine treatment: An in vivo proton magnetic resonance spectroscopy study. Biol. Psychiatry. 1997;41:837–843. doi: 10.1016/S0006-3223(96)00256-9.
    1. Ende G., Braus D.F., Walter S., Weber-Fahr W., Henn F.A. The hippocampus in patients treated with electroconvulsive therapy: A proton magnetic resonance spectroscopic imaging study. Arch. Gen. Psychiatry. 2000;57:937–943. doi: 10.1001/archpsyc.57.10.937.
    1. Charles H.C., Lazeyras F., Krishnan K.R., Boyko O.B., Payne M., Moore D. Brain choline in depression: In vivo detection of potential pharmacodynamic effects of antidepressant therapy using hydrogen localized spectroscopy. Prog. Neuropsychopharmacol. Biol. Psychiatry. 1994;18:1121–1127. doi: 10.1016/0278-5846(94)90115-5.
    1. MacMaster F.P., Kusumakar V. Choline in Pediatric Depression. McGill J. Med. MJM. 2006;9:24–27.
    1. Romano K.A., Martinez-Del Campo A., Kasahara K., Chittim C.L., Vivas E.I., Amador-Noguez D., Balskus E.P., Rey F.E. Metabolic, Epigenetic, and Transgenerational Effects of Gut Bacterial Choline Consumption. Cell Host Microbe. 2017;22:279–290.e7. doi: 10.1016/j.chom.2017.07.021.
    1. Paternain L., Martisova E., Campion J., Martinez J.A., Ramirez M.J., Milagro-Yoldi F.I. Methyl donor supplementation in rats reverses the deleterious effect of maternal separation on depression-like behaviour. Behav. Brain Res. 2016;299:51–58. doi: 10.1016/j.bbr.2015.11.031.
    1. Collins A.L., Sullivan P.F. Genome-Wide Association Studies in Psychiatry: What Have We Learned? Br. J. Psychiatry J. Ment. Sci. 2013;202:1–4. doi: 10.1192/bjp.bp.112.117002.
    1. Reay W.R., Cairns M.J. Pairwise common variant meta-analyses of schizophrenia with other psychiatric disorders reveals shared and distinct gene and gene-set associations. Transl. Psychiatry. 2020;10:1–11. doi: 10.1038/s41398-020-0817-7.
    1. Pasikanti K.K., Ho P.C., Chan E.C.Y. Gas chromatography/mass spectrometry in metabolic profiling of biological fluids. J. Chromatogr. B. 2008;871:202–211. doi: 10.1016/j.jchromb.2008.04.033.
    1. Board on Life Sciences. Division on Earth and Life Studies. National Academies of Sciences, Engineering, and Medicine . Use of Metabolomics to Advance Research on Environmental Exposures and the Human Exposome: Workshop in Brief. National Academies Press (US); Washington, DC, USA: 2016. The National Academies Collection: Reports funded by National Institutes of Health.
    1. Zhang X., Li Q., Xu Z., Dou J. Mass spectrometry-based metabolomics in health and medical science: A systematic review. RSC Adv. 2020;10:3092–3104. doi: 10.1039/C9RA08985C.
    1. Sethi S., Brietzke E. Omics-Based Biomarkers: Application of Metabolomics in Neuropsychiatric Disorders. Int. J. Neuropsychopharmacol. 2015;19:pyv096. doi: 10.1093/ijnp/pyv096.
    1. Guest P.C., Guest F.L., Martins-de Souza D. Making Sense of Blood-Based Proteomics and Metabolomics in Psychiatric Research. Int. J. Neuropsychopharmacol. 2016;19 doi: 10.1093/ijnp/pyv138.
    1. Humer E., Probst T., Pieh C. Metabolomics in Psychiatric Disorders: What We Learn from Animal Models. Metabolites. 2020;10 doi: 10.3390/metabo10020072.
    1. Liu L., Zhou X., Zhang Y., Liu Y., Yang L., Pu J., Zhu D., Zhou C., Xie P. The identification of metabolic disturbances in the prefrontal cortex of the chronic restraint stress rat model of depression. Behav. Brain Res. 2016;305:148–156. doi: 10.1016/j.bbr.2016.03.005.
    1. Zhang Y., Yuan S., Pu J., Yang L., Zhou X., Liu L., Jiang X., Zhang H., Teng T., Tian L., et al. Integrated Metabolomics and Proteomics Analysis of Hippocampus in a Rat Model of Depression. Neuroscience. 2018;371:207–220. doi: 10.1016/j.neuroscience.2017.12.001.
    1. Shao W., Chen J., Fan S., Lei Y., Xu H., Zhou J., Cheng P., Yang Y., Rao C., Wu B., et al. Combined Metabolomics and Proteomics Analysis of Major Depression in an Animal Model: Perturbed Energy Metabolism in the Chronic Mild Stressed Rat Cerebellum. Omics J. Integr. Biol. 2015;19:383–392. doi: 10.1089/omi.2014.0164.
    1. Yang C., Wang X., Wang J., Wang X., Chen W., Lu N., Siniossoglou S., Yao Z., Liu K. Rewiring Neuronal Glycerolipid Metabolism Determines the Extent of Axon Regeneration. Neuron. 2020;105:276–292.e5. doi: 10.1016/j.neuron.2019.10.009.
    1. Bot M., Milaneschi Y., Al-Shehri T., Amin N., Garmaeva S., Onderwater G.L.J., Pool R., Thesing C.S., Vijfhuizen L.S., Vogelzangs N., et al. Metabolomics Profile in Depression: A Pooled Analysis of 230 Metabolic Markers in 5283 Cases With Depression and 10,145 Controls. Biol. Psychiatry. 2020;87:409–418. doi: 10.1016/j.biopsych.2019.08.016.
    1. Chaves Filho A.J.M., Lima C.N.C., Vasconcelos S.M.M., de Lucena D.F., Maes M., Macedo D. IDO chronic immune activation and tryptophan metabolic pathway: A potential pathophysiological link between depression and obesity. Prog. Neuropsychopharmacol. Biol. Psychiatry. 2018;80:234–249. doi: 10.1016/j.pnpbp.2017.04.035.
    1. Gevi F., Zolla L., Gabriele S., Persico A.M. Urinary metabolomics of young Italian autistic children supports abnormal tryptophan and purine metabolism. Mol. Autism. 2016;7:47. doi: 10.1186/s13229-016-0109-5.

Source: PubMed

3
Se inscrever