Ultra-rapid access to words in chronic aphasia: the effects of intensive language action therapy (ILAT)

Lucy J MacGregor, Stephanie Difrancesco, Friedemann Pulvermüller, Yury Shtyrov, Bettina Mohr, Lucy J MacGregor, Stephanie Difrancesco, Friedemann Pulvermüller, Yury Shtyrov, Bettina Mohr

Abstract

Effects of intensive language action therapy (ILAT) on automatic language processing were assessed using Magnetoencephalography (MEG). Auditory magnetic mismatch negativity (MMNm) responses to words and pseudowords were recorded in twelve patients with chronic aphasia before and immediately after two weeks of ILAT. Following therapy, Patients showed significant clinical improvements of auditory comprehension as measured by the Token Test and in word retrieval and naming as measured by the Boston Naming Test. Neuromagnetic responses dissociated between meaningful words and meaningless word-like stimuli ultra-rapidly, approximately 50 ms after acoustic information first allowed for stimulus identification. Over treatment, there was a significant increase in the left-lateralisation of this early word-elicited activation, observed in perilesional fronto-temporal regions. No comparable change was seen for pseudowords. The results may reflect successful, therapy-induced, language restitution in the left hemisphere.

Figures

Fig. 1
Fig. 1
Bar charts showing significant improvements in performance in naming as measured by the Boston Naming Test (top) and in auditory comprehension as measured by the Token Test (bottom)
Fig. 2
Fig. 2
ERFs (n = 12) observed in response to standard stimuli (black line), deviant word stimuli (grey line) and deviant pseudoword stimuli (dotted line) before therapy (top panel) and after therapy (middle panel) for clusters of 12 gradiometer pairs in the left and right hemispheres (highlighted in the lower panel). For each gradiometer pair data were combined to give a single value by taking the square root of the sum of squares of the amplitudes of the two gradiometers. This calculation was performed separately for the averages of the standard and the deviant stimuli. Data are filtered between 0.1 and 70 Hz. Lower panel shows the location of the selected 24 gradiometer pairs over fronto-temporal areas of the left and right hemisphere
Fig. 3
Fig. 3
ERFs (n = 12) showing the MMNm responses (deviant minus standard) for words (black line) against pseudowords (grey line) before therapy (top panel) and after therapy (middle panel) for clusters of 12 gradiometer pairs in the left and right hemispheres (highlighted in the lower panel). For each gradiometer pair data were combined to give a single value by taking the square root of the sum of squares of the amplitudes of the two gradiometers. This calculation was performed separately for the averages of the MMNm responses for the words and the pseudowords. Data are filtered between 0.1 and 70 Hz. Topographical field gradient maps show the distribution of activations over the selected time window of 40–60 ms, for words and pseudowords, separately. Lower panel shows the location of the selected 24 gradiometer pairs over fronto-temporal areas of the left and right hemisphere

References

    1. Aaltonen O, Tuomainen J, Laine M, Niemi P. Cortical differences in tonal versus vowel processing as revealed by an ERP component called mismatch negativity (MMN) Brain Lang. 1993;44(2):139–152. doi: 10.1006/brln.1993.1009.
    1. Alho K. Cerebral generators of mismatch negativity (MMN) and its magnetic counterpart (MMNm) elicited by sound changes. Ear Hear. 1995;16(1):38–51. doi: 10.1097/00003446-199502000-00004.
    1. Berthier ML, Pulvermüller F. Neuroscience insights improve neurorehabilitation of poststroke aphasia. Nat Rev Neurol. 2011;7:86–97. doi: 10.1038/nrneurol.2010.201.
    1. Berthier ML, Green C, Lara JP, Higueras C, Barbancho MA, Davila G, Pulvermüller F. Memantine and constraint-induced aphasia therapy in 140 chronic poststroke aphasia. Ann Neurol. 2009;65(5):577–585. doi: 10.1002/ana.21597.
    1. Berthier ML, Garcia-Casares N, Walsh SF, Nabrozidis A, Ruíz de Mier RJ, Green C, Pulvermüller F. Recovery from post-stroke aphasia: lessons from brain imaging and implications for rehabilitation and biological treatments. Discov Med. 2011;12:275–289.
    1. Bhogal SK, Teasell R, Speechley M. Intensity of aphasia therapy, impact on recovery. Stroke. 2003;34:987–993. doi: 10.1161/01.STR.0000062343.64383.D0.
    1. Breier JI, Maher LM, Novak B, Papanicolaou AC. Functional imaging before and after constraint-induced language therapy for aphasia using magnetoencephalography. Neurocase. 2006;12(6):322–331. doi: 10.1080/13554790601126054.
    1. Breier JI, Maher LM, Schmadeke S, Hasan KM, Papanicolaou AC. Changes in language-specific brain activation after therapy for aphasia using magnetoencephalography: a case study. Neurocase. 2007;13(3):169–177. doi: 10.1080/13554790701448200.
    1. Breier JI, Juranek J, Maher LM, Schmadeke S, Men D, Papanicolaou AC. Behavioral and neurophysiologic response to therapy for chronic aphasia. Arch Phys Med Rehabil. 2009;90(12):2026–2033. doi: 10.1016/j.apmr.2009.08.144.
    1. Cherney LR (2012) Aphasia treatment: intensity, dose parameters, and script training. Int J Speech Lang Pathol 14(5):424–431
    1. Crosson B, Moore AB, Gopinath K, White KD, Wierenga CE, Gaiefsky ME, Fabrizio KS, Peck KK, Soltysik D, Milsted C, Briggs RW, Conway TW, Gonzalez Rothi LJ. Role of the right and left hemispheres in recovery of function during treatment of intention in aphasia. J Cogn Neurosci. 2005;17(3):392–406. doi: 10.1162/0898929053279487.
    1. Csépe V, Osman-Sági J, Molnár M, Gósy M. Impaired speech perception in aphasic patients: event-related potential and neuropsychological assessment. Neuropsychologia. 2001;39(11):1194–1208. doi: 10.1016/S0028-3932(01)00052-5.
    1. De Renzi A, Vignolo LA. Token test: a sensitive test to detect receptive disturbances in aphasics. Brain. 1962;85:665–678. doi: 10.1093/brain/85.4.665.
    1. Difrancesco S, Pulvermüller F, Mohr B. Intensive language action therapy (ILAT): the methods. Aphasiology. 2012;26(11):1317–1351. doi: 10.1080/02687038.2012.705815.
    1. Endrass T, Mohr B, Pulvermüller F. Enhanced mismatch negativity brain response after binaural word presentation. Eur J Neurosci. 2004;19:1653–1660. doi: 10.1111/j.1460-9568.2004.03247.x.
    1. Garagnani M, Wennekers T, Pulvermüller F. A neuroanatomically grounded Hebbian-learning model of attention-language interactions in the human brain. Eur J Neurosci. 2008;27(2):492–513. doi: 10.1111/j.1460-9568.2008.06015.x.
    1. Garagnani M, Shtyrov Y, Pulvermüller F. Effects of attention on what is known and what is not: MEG evidence for functionally discrete memory circuits. Front Hum Neurosci. 2009;3:10. doi: 10.3389/neuro.09.010.2009.
    1. Goodglass K, Kaplan E. Assessment of aphasia and related disorders. Philadelphia: Lea and Febiger; 1972.
    1. Huber W, Poeck K, Weniger D, Willmes K. Aachener Aphasie Test. Gottingen: Hogrefe; 1983.
    1. Huotilainen M, Winkler I, Alho K, Escera C, Virtanen J, Ilmoniemi RJ, Jaäskelainen IP, Pekkonen E, Näätänen R. Combined mapping of human auditory EEG and MEG responses. Electroencephalogr Clin Neurophysiol. 1998;108:370–379. doi: 10.1016/S0168-5597(98)00017-3.
    1. Ilvonen TM, Kujala T, Kiesiläinen A, Salonen O, Kozou H, Pekkonen E, Roine RO, Kaste M, Näätänen R. Auditory discrimination after left-hemisphere stroke: a mismatch negativity follow-up study. Stroke. 2003;34:1746–1751. doi: 10.1161/01.STR.0000078836.26328.3B.
    1. Ilvonen TM, Kujala T, Kozou H, Kiesiläinen A, Salonen O, Alku P, Näätänen R. The processing of speech and non-speech sounds in aphasic patients as reflected by the mismatch negativity (MMN) Neurosci Lett. 2004;366:235–240. doi: 10.1016/j.neulet.2004.05.024.
    1. Korzyukov O, Pflieger ME, Wagner M, Bowyer SM, Rosburg T, Sundaresan K, Elger CE, Boutros NN. Generators of the intracranial P50 response in auditory sensory gating. Neuroimage. 2007;35(2):814–826. doi: 10.1016/j.neuroimage.2006.12.011.
    1. Kurland J, Pulvermüller F, Silva N, Burke K, Andrianopoulos M. Constrained versus unconstrained intensive language therapy in two individuals with chronic, moderate-to-severe aphasia and apraxia of speech: behavioral and fMRI outcomes. Am J Speech Lang Pathol. 2012;21(2):65–87. doi: 10.1044/1058-0360(2012/11-0113).
    1. Lazar RM, Speizer AE, Festa JR, Krakauer JW, Marshall RS. Variability in language recovery after first-time stroke. J Neurol Neurosurg Psychiatry. 2008;79:530–534. doi: 10.1136/jnnp.2007.122457.
    1. Ligeois-Chauvel C, Musolino A, Badier JM, Marquis P, Chauvel P. Evoked potentials recorded from the auditory cortex in man: evaluation and topography of the middle latency components. Electroencephalogr Clin Neurophysiol. 1994;92:414–421. doi: 10.1016/0168-5597(94)90018-3.
    1. MacGregor LJ, Pulvermüller F, Van Casteren M, Shtyrov Y. Ultra-rapid access to words in the brain. Nat Commun. 2012;3:711. doi: 10.1038/ncomms1715.
    1. Meinzer M, Flaisch T, Obleser J, Assadollahi R, Djundja D, Barthel G, Rockstroh B. Brain regions essential for improved lexical access in an aged aphasic patient: a case report. BMC Neurol. 2006;6:28. doi: 10.1186/1471-2377-6-28.
    1. Meinzer M, Flaisch T, Breitenstein C, Wienbruch C, Elbert T, Rockstroh B. Functional re-recruitment of dysfunctional brain areas predicts language recovery in chronic aphasia. Neuroimage. 2008;39(4):2038–2046. doi: 10.1016/j.neuroimage.2007.10.008.
    1. Mohr B, Pulvermüller F, Zaidel E. Lexical decision after left, right, and bilateral presentation of content words, function words, and non-words: evidence for interhemispheric interaction. Neuropsychologia. 1994;32:105–124. doi: 10.1016/0028-3932(94)90073-6.
    1. Mohr B, Endrass T, Pulvermüller F. Neurophysiological correlates of the bilateral redundancy gain for words: an ERP study. Neuropsychologia. 2007;45:2114–2124. doi: 10.1016/j.neuropsychologia.2007.01.015.
    1. Näätänen R. The perception of speech sounds by the human brain as reflected by the mismatch negativity (MMN) and its magnetic equivalent (MMNm) Psychophysiology. 2001;38:1–21. doi: 10.1111/1469-8986.3810001.
    1. Näätänen R, Alho K. Mismatch negativity—a unique measure of sensory processing in audition. Int J Neurosci. 1995;80:317–337. doi: 10.3109/00207459508986107.
    1. Näätänen R, Lehtokoski A, Lennes M, Cheour M, Houtilainen M, Ilvonen A. Language-specific phoneme representations revealed by electric and magnetic brain responses. Nature. 1997;385:432–434. doi: 10.1038/385432a0.
    1. Näätänen R, Paavilainen P, Rinne T, Alho K. The mismatch negativity (MMN) in basic research of central auditory processing: a review. Clin Neurophysiol. 2007;118:2544–2590. doi: 10.1016/j.clinph.2007.04.026.
    1. Oldfield RC. The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychologia. 1971;9(1):97–113. doi: 10.1016/0028-3932(71)90067-4.
    1. Pedersen PM, Jorgensen HS, Nakayama H, Raaschou HO, Olsen TS. Aphasia in acute stroke: incidence, determinants, and recovery. Ann Neurol. 1995;38:659–666. doi: 10.1002/ana.410380416.
    1. Pettigrew CM, Murdoch BE, Ponton CW, Finnigan S, Alku P, Kei J, et al. Automatic auditory processing of English words as indexed by the mismatch negativity, using a multiple deviant paradigm. Ear Hear. 2004;25:284–301. doi: 10.1097/01.AUD.0000130800.88987.03.
    1. Pulvermüller F. How neurons make meaning: brain mechanisms for embodied and abstract-symbolic semantics. Trends Cogn Sci. 2013;17(9):458–470. doi: 10.1016/j.tics.2013.06.004.
    1. Pulvermüller F, Berthier ML. Aphasia therapy on a neuroscience basis. Aphasiology. 2008;22(6):563–599. doi: 10.1080/02687030701612213.
    1. Pulvermüller F, Shtyrov Y. Spatiotemporal signatures of large-scale synfire chains for speech processing as revealed by MEG. Cereb Cortex. 2009;19:79–88. doi: 10.1093/cercor/bhn060.
    1. Pulvermüller F, Neininger B, Elbert T, Mohr B, Rockstroh B, Koebbel P, Taub E. Constraint-Induced therapy of chronic aphasia after stroke. Stroke. 2001;32:1621–1626. doi: 10.1161/01.STR.32.7.1621.
    1. Pulvermüller F, Kujala T, Shtyrov Y, Simola J, Tiitinen H, Alku P, et al. Memory traces for words as revealed by the mismatch negativity. Neuroimage. 2001;14:607–616. doi: 10.1006/nimg.2001.0864.
    1. Pulvermüller F, Shtyrov Y, Kujala T, Naatanen R. Word-specific cortical activity as revealed by the mismatch negativity. Psychophysiology. 2004;41:106–112. doi: 10.1111/j.1469-8986.2003.00135.x.
    1. Pulvermüller F, Hauk O, Zohsel K, Neininger B, Mohr B. Therapy-related reorganization of language in both hemispheres of patients with chronic aphasia. Neuroimage. 2005;28:481–489. doi: 10.1016/j.neuroimage.2005.06.038.
    1. Pulvermüller F, Kherif F, Hauk O, Mohr B, Nimmo-Smith I. Cortical cell assemblies for general lexical and category-specific semantic processing as revealed by fMRI cluster analysis. Hum Brain Mapp. 2009;30(12):3837–3850. doi: 10.1002/hbm.20811.
    1. Richter M, Miltner WHR, Straube T. Association between therapy outcome and right-hemispheric activation in chronic aphasia. Brain. 2008;131(5):1391–1401. doi: 10.1093/brain/awn043.
    1. Saur D, Lange R, Baumgaertner A, Schraknepper V, Willmes K, Rijntjes M, Weiller C. Dynamics of language reorganization after stroke. Brain. 2006;129:1371–1384. doi: 10.1093/brain/awl090.
    1. Shtyrov Y. Automaticity and attentional control in spoken language processing: neurophysiological evidence. Mental Lex. 2010;5(2):255–276. doi: 10.1075/ml.5.2.06sht.
    1. Shtyrov Y, Pulvermüller F. Neurophysiological evidence of memory traces for words in the human brain. NeuroReport. 2002;13:521–525. doi: 10.1097/00001756-200203250-00033.
    1. Shtyrov Y, Pulvermüller F. Language in the mismatch negativity design: motivations, benefits and prospects. J Psychophysiol. 2007;21(3–4):176–187. doi: 10.1027/0269-8803.21.34.176.
    1. Shtyrov Y, Pulvermüller F. Early MEG activation dynamics in the left temporal and inferior frontal cortex reflect semantic context integration. J Cogn Neurosci. 2007;19(10):1633–1642. doi: 10.1162/jocn.2007.19.10.1633.
    1. Shtyrov Y, Kujala T, Pulvermüller F. Interactions between language and attention systems: early automatic lexical processing? J Cogn Neurosci. 2010;22:1465–1478. doi: 10.1162/jocn.2009.21292.
    1. Shtyrov Y, Smith ML, Horner A, Henson R, Bullmore E, Nathan P, Pulvermüller F. Attention to language: novel MEG paradigm for registering involuntary language processing in the brain. Neuropsychologia. 2012;50(11):2605–2616. doi: 10.1016/j.neuropsychologia.2012.07.012.
    1. Szaflarski JP, Binder JR, Possing ET, McKiernan KA, Ward BD, Hammeke TA. Neurology. 2002;59(2):238–244. doi: 10.1212/WNL.59.2.238.
    1. Taulu S, Kajola M. Presentation of electromagnetic multichannel data: the signal space separation method. J Appl Phys. 2005;97(12):124905–124910. doi: 10.1063/1.1935742.
    1. Teki S, Barnes GR, Penny WD, Iverson P, Woodhead ZV, Griffiths TD, Leff AP. The right hemisphere supports but does not replace left hemisphere auditory function in patients with persisting aphasia. Brain. 2013;136(Pt 6):1901–1912. doi: 10.1093/brain/awt087.
    1. Warburton E, Price CJ, Swinburn K, Wise RJS. Mechanisms of recovery from aphasia: evidence from positron emission tomography studies. J Neurol Neurosurg Psychiatry. 1999;66:155–161. doi: 10.1136/jnnp.66.2.155.
    1. Wertz RT, Auther LL, Burch-Sims GP, Abou-Khalil R, Kirshner HS, Duncan GW. A comparison of the mismatch negativity (MMN) event-related potential to tone and speech stimuli in normal and aphasic adults. Aphasiology. 1998;12:499–507. doi: 10.1080/02687039808249553.
    1. Young MP, Rugg M. Word frequency and multiple repetition as determinants of the modulation of event-related potentials in a semantic classification task. Psychophysiology. 1992;29:664–676. doi: 10.1111/j.1469-8986.1992.tb02044.x.

Source: PubMed

3
Se inscrever