O2 supplementation to secure the near-infrared spectroscopy determined brain and muscle oxygenation in vascular surgical patients: a presentation of 100 cases

Kim Z Rokamp, Niels H Secher, Jonas Eiberg, Lars Lønn, Henning B Nielsen, Kim Z Rokamp, Niels H Secher, Jonas Eiberg, Lars Lønn, Henning B Nielsen

Abstract

This study addresses three questions for securing tissue oxygenation in brain (rScO2) and muscle (SmO2) for 100 patients (age 71 ± 6 years; mean ± SD) undergoing vascular surgery: (i) Does preoxygenation (inhaling 100% oxygen before anesthesia) increase tissue oxygenation, (ii) Does inhalation of 70% oxygen during surgery prevent a critical reduction in rScO2 (<50%), and (iii) is a decrease in rScO2 and/or SmO2 related to reduced blood pressure and/or cardiac output?Intravenous anesthesia was provided to all patients and the intraoperative inspired oxygen fraction was set to 0.70 while tissue oxygenation was determined by INVOS 5100C. Preoxygenation increased rScO2 (from 65 ± 8 to 72 ± 9%; P < 0.05) and SmO2 (from 75 ± 9 to 78 ± 9%; P < 0.05) and during surgery rScO2 and SmO2 were maintained at the baseline level in most patients. Following anesthesia and tracheal intubation an eventual change in rScO2 correlated to cardiac output and cardiac stroke volume (coefficient of contingence = 0.36; P = 0.0003) rather to a change in mean arterial pressure and for five patients rScO2 was reduced to below 50%. We conclude that (i) increased oxygen delivery enhances tissue oxygenation, (ii) oxygen supports tissue oxygenation but does not prevent a critical reduction in cerebral oxygenation sufficiently, and (iii) an eventual decrease in tissue oxygenation seems related to a reduction in cardiac output rather than to hypotension.

Keywords: blood pressure; cardiac output; cerebral oxygenation; muscle oxygenation.

Figures

Figure 1
Figure 1
Effects of O2 breathing on NIRS determined frontal lobe oxygenation. Data are individual responses from vascular surgical patients exposed to preoperative facial mask breathing with 100% O2.
Figure 2
Figure 2
The surgical changes in frontal lobe oxygenation (ScO2) and mean arterial pressure (MAP) related to cardiac output (CO; decrease is CO below the preoperative level and increase is CO above the preoperative level). The dotted line straight line (upper panel) at −10% represents the change in ScO2 considered to be critical. *Different value; P < 0.05.

References

    1. Beaussier M., Paugam C., Deriaz H., Mestari M., Chandon M., Sautet A., et al. (2000). Haemodynamic stability during moderate hypotensive anaesthesia for spinal surgery. A comparison between desflurane and isoflurane. Acta Anaesthesiol. Scand. 44, 1154–1159 10.1034/j.1399-6576.2000.440921.x
    1. Belda F. J., Aguilera L., García de la Asunción J., Alberti J., Vicente R., Ferrándiz L., et al. (2005). Spanish Reduccion de la Tasa de Infeccion Quirurgica Group. Supplemental perioperative oxygen and the risk of surgical wound infection: a randomized controlled trial. JAMA 294, 2035–2042 10.1001/jama.294.16.2035
    1. Bogert L. W., van Lieshout J. J. (2005). Non-invasive pulsatile arterial pressure and stroke volume changes from the human finger. Exp. Physiol. 90, 437–446 10.1113/expphysiol.2005.030262
    1. Boonmak S., Boonmak P., Laopaiboon M. (2013). Deliberate hypotension with propofol under anaesthesia for functional endoscopic sinus surgery (FESS). Cochrane Database Syst. Rev. 6, CD006623 10.1002/14651858.CD006623.pub2
    1. Bundgaard-Nielsen M., Holte K., Secher N. H., Kehlet H. (2007). Monitoring of peri-operative fluid administration by individualized goal-directed therapy. Acta Anaesthesiol. Scand. 51, 331–340 10.1111/j.1399-6576.2006.01221.x
    1. Bundgaard-Nielsen M., Jørgensen C. C., Kehlet H., Secher N. H. (2010). Normovolemia defined according to cardiac stroke volume in healthy supine humans. Clin. Physiol. Funct. Imaging 30, 318–322 10.1111/j.1475-097X.2010.00944.x
    1. Bustamante J., Tamayo E., Alvarez F. J., García-Cuenca I., Flórez S., Fierro I., et al. (2011). Intraoperative PaO2 is not related to the development of surgical site infections after major cardiac surgery. J. Cardiothorac. Surg. 6, 4 10.1186/1749-8090-6-4
    1. Casati A., Fanelli G., Pietropaoli P., Proietti R., Tufano R., Danelli G., et al. (2005). Continuous monitoring of cerebral oxygen saturation in elderly patients undergoing major abdominal surgery minimizes brain exposure to potential hypoxia. Anesth. Analg. 101, 740–747 10.1213/
    1. Cheng-Ching E., Fong J., Ontaneda D., Hussain M. S., Katzan I., Gupta R. (2010). Intracranial atherosclerosis as a risk factor for ischemic stroke during open heart surgery. J. Stroke Cerebrovasc. Dis. 19, 257–260 10.1016/j.jstrokecerebrovasdis.2009.04.011
    1. Davie S. N., Grocott H. P. (2012). Impact of extracranial contamination on regional cerebral oxygen saturation: a comparison of three cerebral oximetry technologies. Anesthesiology 116, 834–840 10.1097/ALN.0b013e31824c00d7
    1. Dixon B. J., Dixon J. B., Carden J. R., Burn A. J., Schachter L. M., Playfair J. M., et al. (2005). Preoxygenation is more effective in the 25 degrees head-up position than in the supine position in severely obese patients: a randomized controlled study. Anesthesiology 102, 1110–1115 10.1097/00000542-200506000-00009
    1. Fries R. B., Wallace W. A., Roy S., Kuppusamy P., Bergdall V., Gordillo G. M., et al. (2005). Dermal excisional wound healing in pigs following treatment with topically applied pure oxygen. Mutat. Res. 579, 172–181 10.1016/j.mrfmmm.2005.02.023
    1. García-de-la-Asunción J., Barber G., Rus D., Perez-Griera J., Belda F. J., Martí F., et al. (2011). Hyperoxia during colon surgery is associated with a reduction of xanthine oxidase activity and oxidative stress in colonic mucosa. Redox Rep. 16, 121–128 10.1179/174329211X13049558293632
    1. Greif R., Akça O., Horn E. P., Kurz A., Sessler D. I., Outcomes Research Group. (2000). Supplemental perioperative oxygen to reduce the incidence of surgical-wound infection. N. Engl. J. Med. 342, 161–167 10.1056/NEJM200001203420303
    1. Hedenstierna G. (2012). Oxygen and anesthesia: what lung do we deliver to the post-operative ward? Acta Anaesthesiol. Scand. 56, 675–685 10.1111/j.1399-6576.2012.02689.x
    1. Heringlake M., Garbers C., Käbler J. H., Anderson I., Heinze H., Schön J., et al. (2011). Preoperative cerebral oxygen saturation and clinical outcomes in cardiac surgery. Anesthesiology 114, 58–69 10.1097/ALN.0b013e3181fef34e
    1. Hertzer N. R., Beven E. G., Young J. R., O'Hara P. J., Ruschhaupt W. F., 3rd., Graor R. A., et al. (1984). Coronary artery disease in peripheral vascular patients. A classification of 1000 coronary angiograms and results of surgical management. Ann. Surg. 199, 223–233 10.1097/00000658-198402000-00016
    1. Hunt T. K., Pai M. P. (1972). The effect of varying ambient oxygen tension on wound metabolism and collagen synthesis. Surg. Gynecol. Obstet. 135, 561–567
    1. Ide K., Gulløv A. L., Pott F., Van Lieshout J. J., Koefoed B. G., Petersen P., et al. (1999). Middle cerebral artery blood velocity during exercise in patients with atrial fibrillation. Clin. Physiol. 19, 284–289 10.1046/j.1365-2281.1999.00178.x
    1. Madsen P., Lyck F., Pedersen M., Olesen H. L., Nielsen H. B., Secher N. H. (1995). Brain and muscle oxygen saturation during head-up-tilt-induced central hypovolaemia in humans. Clin. Physiol. 15, 523–533 10.1111/j.1475-097X.1995.tb00541.x
    1. Madsen P. L., Secher N. H. (1999). Near-infrared oximetry of the brain. Prog. Neurobiol. 58, 541–560 10.1016/S0301-0082(98)00093-8
    1. Martin D. S., Galliano R. (1965). Bloodless liver resection under hypotensive hypothermia. Am. J. Surg. 109, 625–628
    1. Meyhoff C. S., Wetterslev J., Jorgensen L. N., Henneberg S. W., Høgdall C., Lundvall L., et al. (2009). PROXI Trial Group. Effect of high perioperative oxygen fraction on surgical site infection and pulmonary complications after abdominal surgery: the PROXI randomized clinical trial. JAMA 302, 1543–1550 10.1001/jama.2009.1452
    1. Murkin J. M. (2011). Cerebral oximetry: monitoring the brain as the index organ. Anesthesiology 114, 12–13 10.1097/ALN.0b013e3181fef5d2
    1. Murkin J. M., Arango M. (2009). Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br. J. Anaesth. 103, i3–i13 10.1093/bja/aep299
    1. Nielsen H. B., Boushel R., Madsen P., Secher N. H. (1999). Cerebral desaturation during exercise reversed by O2 supplementation. Am. J. Physiol. 277, H1045–H1052
    1. Niinikoski J. (1969). Effect of oxygen supply on wound healing and formation of experimental granulation tissue. Acta Physiol. Scand. (Suppl.) 334, 1–72
    1. Nissen P., van Lieshout J. J., Nielsen H. B., Secher N. H. (2009). Frontal lobe oxygenation is maintained during hypotension following propofol-fentanyl anesthesia. AANA J. 77, 271–276
    1. Olsson C., Thelin S. (2006). Regional cerebral saturation monitoring with near-infrared spectroscopy during selective antegrade cerebral perfusion: diagnostic performance and relationship to postoperative stroke. J. Thorac. Cardiovasc. Surg. 131, 371–379 10.1016/j.jtcvs.2005.08.068
    1. Paulson O. B., Strandgaard S., Edvinsson L. (1990). Cerebral autoregulation. Cerebrovasc. Brain Metab. Rev. 2, 161–192
    1. Pedersen P. K., Kiens B., Saltin B. (1999). Hyperoxia does not increase peak muscle oxygen uptake in small muscle group exercise. Acta Physiol. Scand. 166, 309–318 10.1046/j.1365-201x.1999.00575.x
    1. Petrozza P. H. (1990). Induced hypotension. Int. Anesthesiol. Clin. 28, 223–229 10.1097/00004311-199002840-00008
    1. Proctor D. N., Joyner M. J. (1997). Skeletal muscle mass and the reduction of VO2max in trained older subjects. J. Appl. Physiol. 82, 1411–1415
    1. Pryor K. O., Fahey T. J., 3rd., Lien C. A., Goldstein P. A. (2004). Surgical site infection and the routine use of perioperative hyperoxia in a general surgical population: a randomized controlled trial. JAMA 291, 79–87 10.1001/jama.291.1.79
    1. Slater J. P., Guarino T., Stack J., Vinod K., Bustami R. T., Brown J. M., 3rd., et al. (2009). Cerebral oxygen desaturation predicts cognitive decline and longer hospital stay after cardiac surgery. Ann. Thorac. Surg. 87, 36–44 10.1016/j.athoracsur.2008.08.070
    1. Smith K. J., Wong L. E., Eves N. D., Koelwyn G. J., Smirl J. D., Willie C. K., et al. (2012). Regional cerebral blood flow distribution during exercise: influence of oxygen. Respir. Physiol. Neurobiol. 184, 97–105 10.1016/j.resp.2012.07.014
    1. Soerensen H., Secher N. H., Siebenmann C., Nielsen H. B., Kohl-Bareis M., Lundby C., et al. (2012). Cutaneous vasoconstriction affects spectroscopy-determined cerebral oxygen saturation during administration of norepinephrine. Anesthesiology 117, 263–270 10.1097/ALN.0b013e3182605afe
    1. Tubbs R. S., Elton S., Salter G., Blount J. P., Grabb P. A., Oakes W. J. (2002). Superficial surgical landmarks for the frontal sinus. J. Neurosurg. 96, 320–322 10.3171/jns.2002.96.2.0320
    1. Turtiainen J., Saimanen E. I., Partio T. J., Mäkinen K. T., Reinikainen M. T., Virkkunen J. J., et al. (2011). Supplemental postoperative oxygen in the prevention of surgical wound infection after lower limb vascular surgery: a randomized controlled trial. World J. Surg. 35, 1387–1395 10.1007/s00268-011-1090-y
    1. Waggoner J. R., 3rd., Wass C. T., Polis T. Z., Faust R. J., Schroeder D. R., Offord K. P., et al. (2001). The effect of changing transfusion practice on rates of perioperative stroke and myocardial infarction in patients undergoing carotid endarterectomy: a retrospective analysis of 1114 Mayo Clinic patients. Mayo Perioperative Outcomes Group. Mayo Clin. Proc. 76, 376–383
    1. Welch H. G., Bonde-Petersen F., Graham T., Klausen K., Secher N. H. (1977). Effects of hyperoxia on leg blood flow and metabolism during exercise. J. Appl. Physiol. 42, 385–390
    1. Yamada S., Brauer F., Knierim D., Purtzer T., Fuse T., Hayward W., et al. (1988). Safety limits of controlled hypotension in humans. Acta Neurochir. 42, 14–17 10.1007/978-3-7091-8975-7_3

Source: PubMed

3
Se inscrever