Multicenter prospective clinical study to evaluate children short-term neurodevelopmental outcome in congenital heart disease (children NEURO-HEART): study protocol

I Ribera, A Ruiz, O Sánchez, E Eixarch, E Antolín, E Gómez-Montes, M Pérez-Cruz, M Cruz-Lemini, M Sanz-Cortés, S Arévalo, Q Ferrer, E Vázquez, L Vega, P Dolader, A Montoliu, H Boix, R V Simões, N Masoller, J Sánchez-de-Toledo, M Comas, J M Bartha, A Galindo, J M Martínez, L Gómez-Roig, F Crispi, O Gómez, E Carreras, L Cabero, E Gratacós, E Llurba, I Ribera, A Ruiz, O Sánchez, E Eixarch, E Antolín, E Gómez-Montes, M Pérez-Cruz, M Cruz-Lemini, M Sanz-Cortés, S Arévalo, Q Ferrer, E Vázquez, L Vega, P Dolader, A Montoliu, H Boix, R V Simões, N Masoller, J Sánchez-de-Toledo, M Comas, J M Bartha, A Galindo, J M Martínez, L Gómez-Roig, F Crispi, O Gómez, E Carreras, L Cabero, E Gratacós, E Llurba

Abstract

Background: Congenital heart disease (CHD) is the most prevalent congenital malformation affecting 1 in 100 newborns. While advances in early diagnosis and postnatal management have increased survival in CHD children, worrying long-term outcomes, particularly neurodevelopmental disability, have emerged as a key prognostic factor in the counseling of these pregnancies.

Methods: Eligible participants are women presenting at 20 to < 37 weeks of gestation carrying a fetus with CHD. Maternal/neonatal recordings are performed at regular intervals, from the fetal period to 24 months of age, and include: placental and fetal hemodynamics, fetal brain magnetic resonance imaging (MRI), functional echocardiography, cerebral oxymetry, electroencephalography and serum neurological and cardiac biomarkers. Neurodevelopmental assessment is planned at 12 months of age using the ages and stages questionnaire (ASQ) and at 24 months of age with the Bayley-III test. Target recruitment is at least 150 cases classified in three groups according to three main severe CHD groups: transposition of great arteries (TGA), Tetralogy of Fallot (TOF) and Left Ventricular Outflow Tract Obstruction (LVOTO).

Discussion: The results of NEURO-HEART study will provide the most comprehensive knowledge until date of children's neurologic prognosis in CHD and will have the potential for developing future clinical decisive tools and improving preventive strategies in CHD.

Trial registration: NCT02996630 , on 4th December 2016 (retrospectively registered).

Keywords: Cardiac function and fetal brain MR; Congenital heart disease; Neurodevelopment; Predictive markers.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Study procedures flowchart

References

    1. Hoffman JI, Kaplan S. The incidence of congenital heart disease. J Am Coll Cardiol. 2002;39:1890–1900. doi: 10.1016/S0735-1097(02)01886-7.
    1. Moons P, Sluysmans T, De Wolf D, Massin M, Suys B, Benatar A, Gewillig M. Congenital heart disease in 111 225 births in Belgium: birth prevalence, treatment and survival in the 21s century. Acta Paediatr. 2009;98:472–477. doi: 10.1111/j.1651-2227.2008.01152.x.
    1. Bakiler AR, Ozer EA, Kanik A, Kanit H, Aktas FN. Accuracy of prenatal diagnosis of congenital heart disease with fetal echocardiography. Fetal Diagn Ther. 2007;22:241–244. doi: 10.1159/000100782.
    1. Majnemer A, Limperopoulos C, Shevell M, Rosenblatt B, Rohlicek C, Tchervenkov C. Long-term neuromotor outcome at school entry of infants with congenital heart defects requiring open-heart surgery. J Pediatr. 2006;148:72–77. doi: 10.1016/j.jpeds.2005.08.036.
    1. Bellinger DC, Jonas RA, Rappaport LA, Wypij D, Wernovsky G, Kuban KCK, Barnes PD, Holmes GL, Hickey PR, Strand RD, Walsh AZ, Helmers SL, Constantinou JE, Carrazana EJ, Mayer JE, Hanley FL, Castaneda AR, Ware JH, Newburger JW. Developmental and neurologic status of children after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. N Engl J Med. 1995;332:549–555. doi: 10.1056/NEJM199503023320901.
    1. Massaro AN, Glass P, Brown J, Chang T, Krishnan A, Jonas RA, Donofrio MT. Neurobehavioral abnormalities in newborns with congenital heart disease requiring open-heart surgery. J Pediatr. 2011;158:678–681. doi: 10.1016/j.jpeds.2010.11.060.
    1. Newburger JW, Jonas RA, Wernovsky G, et al. A comparison of the perioperative neurologic effects of hypothermic circulatory arrest versus low-flow cardiopulmonary bypass in infant heart surgery. N Engl J Med. 1993;329:54–59. doi: 10.1056/NEJM199310073291501.
    1. Rosenblatt B. Monitoring the central nervous system in children with congenital heart defects: clinical neurophysiological techniques. Semin Pediatr Neurol. 1999;6(1):27–31. doi: 10.1016/S1071-9091(99)80044-8.
    1. McQuillen PS, et al. Temporal and anatomic risk profile of brain injury with neonatal repair of congenital heart defects. Stroke. 2007;38:736–741. doi: 10.1161/01.STR.0000247941.41234.90.
    1. Limperopoulos C, Majnemer A, Shevell M, Rosenblatt B, Rohlicek C, Tchervenkov C. Neurologic status of newborns with congenital heart defects before open heart surgery. Pediatrics. 1999;103:402–408. doi: 10.1542/peds.103.2.402.
    1. Limperopoulos C, Majnemer A, Shevell MI, Rosenblatt B, Rohlicek C, Tchervenkov C. Neurodevelopmental status of newborns and infants with congenital heart defects before and after open heart surgery. J Pediatr. 2000;137:638–645. doi: 10.1067/mpd.2000.109152.
    1. Ruiz A, Ferrer Q, Sanchez O, Ribera I, Arevalo S, Alomar O, Mendoza M, Cabero L, Carreras E, Llurba E. Placental related complications in women carrying a foetus with congenital heart disease. J Fetal Maternal Neonatal Medicine. 2016;29(20):3271–3275.
    1. Gaynor J, Parry S, Moldenhauer J, Simmons R, et al. The impact of the maternal-foetal environment on outcomes of surgery for congenital heart disease in neonates. Eur J Cardiothorac Surg. 2018;54:1–6. doi: 10.1093/ejcts/ezy015.
    1. Llurba E, Sanchez O, Ferrer Q, Nicolaides KH. Ruiz a et al maternal and foetal angiogenic imbalance in congenital heart defects. European Heart J. 2014;35(11):701–707. doi: 10.1093/eurheartj/eht389.
    1. Masoller N, Martínez JM, Gómez O, Bennasar M, Crispi F, Sanz-Cortés M, Egaña-Ugrinovic G, Bartrons J, Puerto B, Gratacós E. Evidence of second-trimester changes in head biometry and brain perfusion in fetuses with congenital heart disease. Ultrasound Obstet Gynecol. 2014;44:182–187. doi: 10.1002/uog.13373.
    1. Ruiz A, Cruz-Lemini M, Masoller N, Sanz-Cortés M, Ferrer Q, Ribera I, Martínez JM, Crispi F, Arévalo S, Gómez O, Pérez-Hoyos S, Carreras E, Gratacós E, Llurba E. Longitudinal changes in foetal biometries and cerebroplacental haemodynamics in foetuses with congenital heart disease. Ultrasound Obstet Gynecol. 2017;49(3):379–386. doi: 10.1002/uog.15970.
    1. Rychik J, Goff D, McKay E, Mott A, Tian Z, Licht D, Gaynor JW. Characterization of the placenta in the newborn with congenital heart disease: distinctions based on type of cardiac malformation. Pediatr Cardiol. 2018;39(6):1165–1171. doi: 10.1007/s00246-018-1876-x.
    1. Robinson HP, Sweet EM, Adam AH. The accuracy of radiological estimates of gestational age using early fetal crown-rump length measurements by ultrasound as a basis for comparison. Br J Obstet Gynaecol. 1979;86(7):525–528. doi: 10.1111/j.1471-0528.1979.tb10804.x.
    1. Hadlock FP, Harrist RB, Shah YP, King DE, Park SK, Sharman RS. Estimating fetal age using multiple parameters: a prospective evaluation in a racially mixed population. Am J Obstet Gynecol. 1987;156(4):955–957. doi: 10.1016/0002-9378(87)90365-6.
    1. Carrascosa A, Fernandez JM, Fernandez C, Ferrandez A, Lopez-Siguero JP, Sanchez E, et al. Spanish growth studies 2008. New anthropometric standards. Endocrinol Nutr. 2008;55(10):484–506. doi: 10.1016/S1575-0922(08)75845-5.
    1. Kurmanavicius J, Wright EM, Royston P, Wisser J, Huch R, Huch A, et al. Fetal ultrasound biometry: 1. Head reference values. Br J Obstet Gynaecol. 1999;106(2):126–135. doi: 10.1111/j.1471-0528.1999.tb08212.x.
    1. Kurmanavicius J, Wright EM, Royston P, Zimmermann R, Huch R, Huch A, et al. Fetal ultrasound biometry: 2. Abdomen and femur length reference values. Br J Obstet Gynaecol. 1999;106(2):136–143. doi: 10.1111/j.1471-0528.1999.tb08213.x.
    1. Figueras F, Meler E, Iraola A, Eixarch E, Coll O, Figueras J, et al. Customized birthweight standards for a Spanish population. Eur J Obstet Gynecol Reprod Biol. 2008;136(1):20–24. doi: 10.1016/j.ejogrb.2006.12.015.
    1. International Society of Ultrasound in O, Gynecology. Carvalho JS, Allan LD, Chaoui R, Copel JA, et al. ISUOG Practice Guidelines (updated): sonographic screening examination of the fetal heart. Ultrasound Obstet Gynecol. 2013;41(3):348–359. doi: 10.1002/uog.12403.
    1. Crispi F, Valenzuela-Alcaraz B, Cruz-Lemini M, Gratacós E. Ultrasound assessment of fetal cardiac function. Australas J Ultrasound Med. 2013;16(4):158–167. doi: 10.1002/j.2205-0140.2013.tb00242.x.
    1. Comas M, Crispi F. Assessment of fetal cardiac function using tissue Doppler techniques. Fetal Diagn Ther. 2012;32(1-2):30–38. doi: 10.1159/000335028.
    1. Tremblay E, Therasse E, Thomassin Naggara I, Trop I. Quality initiatives: guidelines for use of medical imaging during pregnancy and lactation. Radiographics. 2012;32:897–911. doi: 10.1148/rg.323115120.
    1. Damodaram MS, Story L, Eixarch E. Foetal volumetry using magnetic resonance imaging in intrauterine growth restriction. Early Hum Dev. 2012;88(Suppl 1):S35–S40. doi: 10.1016/j.earlhumdev.2011.12.026.
    1. Pistorius LR, Stoutenbeek P, Groenendaal F, de Vries L, Manten G, Mulder E, Visser G. Grade and symmetry of normal fetal cortical development al longitudinal ultrasound study. Ultrasound Obstet Gynecol. 2010;36(6):700–708. doi: 10.1002/uog.7705.
    1. Alonso I. Depth of brain fissures in normal fetuses by prenatal ultrasound between 19 and 30 weeks of gestation. Ultrasound Obstet Gynecol. 2010;36:693–699. doi: 10.1002/uog.7660.
    1. Egaña G, Sanz-Cortés M, Figueras F, Bargalló N, Gratacós E. Differences in cortical development assessed by fetal MRI in late-onset intrauterine growth restriction. AJOG. 2013;209(2):126.e1–126.e8. doi: 10.1016/j.ajog.2013.04.008.
    1. Simoes RV, et al. Feasibility and technical features of fetal brain magnetic resonance spectroscopy in 1.5 T scanners. Am J Obstet Gynecol. 2015;213(5):741–742. doi: 10.1016/j.ajog.2015.06.033.
    1. Smith Stephen M., Jenkinson Mark, Woolrich Mark W., Beckmann Christian F., Behrens Timothy E.J., Johansen-Berg Heidi, Bannister Peter R., De Luca Marilena, Drobnjak Ivana, Flitney David E., Niazy Rami K., Saunders James, Vickers John, Zhang Yongyue, De Stefano Nicola, Brady J. Michael, Matthews Paul M. Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage. 2004;23:S208–S219. doi: 10.1016/j.neuroimage.2004.07.051.
    1. Bartha A, et al. The normal neonatal brain: MR imaging, diffusion tensor imaging, and 3D MR spectroscopy in healthy term neonates. AJNR Am J Neuroradiol. 2007;28(6):1015–1021. doi: 10.3174/ajnr.A0521.
    1. Vossough A, Limperopoulos C. Developmentand Validation of a semiquantitative brain maturation score on fetal MR images. Radiology. 2013;268(1):200–207. doi: 10.1148/radiol.13111715.
    1. Mebius MJ, et al. Near-infrared spectroscopy as a predictor of clinical deterioration: a case report of two infants with duct-dependent congenital heart disease. BMC Pediatr. 2017;17(1):79. doi: 10.1186/s12887-017-0839-3.
    1. Milne S, McDonald J, Comino EJ. The use of the Bayley Scales of Infant and Toddler Development III with clinical populations: a preliminary exploration. Phys Occup Ther Pediatr. 2012;32(1):24–33. doi: 10.3109/01942638.2011.592572.
    1. Cruz-Martinez R, Figueras F, Hernandez-Andrade E, Benavides-Serralde A, Gratacos E. Normal reference ranges of fetal regional cerebral blood perfusion as measured by fractional moving blood volume. Ultrasound Obstet Gynecol. 2011;37:196–201. doi: 10.1002/uog.7722.
    1. Arduini D, Rizzo G. Normal values of Pulsatility index from fetal vessels: a cross-sectional study on 1556 healthy fetuses. J PerinatMed. 1990;18:165–172.
    1. Baschat AA, Gembruch U. The cerebroplacental Doppler ratio revisited. Ultrasound Obstet Gynecol. 2003;21:124–127. doi: 10.1002/uog.20.
    1. Donofrio Mary T., Massaro An N. Impact of Congenital Heart Disease on Brain Development and Neurodevelopmental Outcome. International Journal of Pediatrics. 2010;2010:1–13. doi: 10.1155/2010/359390.
    1. Khalil A, Suff N, Thilaganathan B, Hurrell A, Cooper D, Carvalho JS. Brain abnormalities and neurodevelopmental delay in congenital heart disease: systematic review and meta-analysis. Ultrasound Obstet Gynecol. 2014;43:14–24. doi: 10.1002/uog.12526.
    1. Bellinger DC, Rappaport LA, Wypij D, Wernovsky G, Newburger JW. Patterns of developmental dysfunction after surgery during infancy to correct transposition of the great arteries. J Dev Behav Pediatr. 1997;18:75–83. doi: 10.1097/00004703-199704000-00001.
    1. Bellinger DC, Wypij D, Kuban KC, et al. Developmental and neurological status of children at 4 years of age after heart surgery with hypothermic circulatory arrest or low-flow cardiopulmonary bypass. Circulation. 1999;100:526–532. doi: 10.1161/01.CIR.100.5.526.
    1. Hovels-Gurich HH, Seghaye MC, Dabritz S, Messmer BJ, von Bernuth G. Cognitive and motor development in preschool and school-aged children after neonatal arterial switch operation. J Thorac Cardiovasc Surg. 1991;114:578–585. doi: 10.1016/S0022-5223(97)70047-3.
    1. Blackwood M, Haka-Ikse K, Steward D. Developmental outcome in children undergoing surgery with profound hypothermia. Anesthesiology. 1986;65:437–440. doi: 10.1097/00000542-198610000-00018.
    1. Ferry PC. Neurologic sequelae of cardiac surgery in children. Am J Dis Child. 1990;144:369–373. doi: 10.1001/archpedi.1990.02150270119040.
    1. Sanchez-de-Toledo J, et al. Cerebral regional oxygen saturation and serum neuromarkers for the prediction of adverse neurologic outcome in pediatric cardiac surgery. Neurocrit Care. 2014;21(1):133–139. doi: 10.1007/s12028-013-9934-y.

Source: PubMed

3
Se inscrever