Delayed LY333013 (Oral) and LY315920 (Intravenous) Reverse Severe Neurotoxicity and Rescue Juvenile Pigs from Lethal Doses of Micrurus fulvius (Eastern Coral Snake) Venom

Matthew R Lewin, Lyndi L Gilliam, John Gilliam, Stephen P Samuel, Tommaso C Bulfone, Philip E Bickler, José María Gutiérrez, Matthew R Lewin, Lyndi L Gilliam, John Gilliam, Stephen P Samuel, Tommaso C Bulfone, Philip E Bickler, José María Gutiérrez

Abstract

Objective: There is a clear, unmet need for effective, lightweight, shelf-stable and economical snakebite envenoming therapies that can be given rapidly after the time of a snake's bite and as adjuncts to antivenom therapies in the hospital setting. The sPLA2 inhibitor, LY315920, and its orally bioavailable prodrug, LY333013, demonstrate surprising efficacy and have the characteristics of an antidote with potential for both field and hospital use.

Methods: The efficacy of the active pharmaceutical ingredient (LY315920) and its prodrug (LY333013) to treat experimental, lethal envenoming by Micrurus fulvius (Eastern coral snake) venom was tested using a porcine model. Inhibitors were administered by either intravenous or oral routes at different time intervals after venom injection. In some experiments, antivenom was also administered alone or in conjunction with LY333013.

Results: 14 of 14 animals (100%) receiving either LY315920 (intravenous) and/or LY333013 (oral) survived to the 120 h endpoint despite, in some protocols, the presence of severe neurotoxic signs. The study drugs demonstrated the ability to treat, rescue, and re-rescue animals with advanced manifestations of envenoming.

Conclusions: Low molecular mass sPLA2 inhibitors were highly effective in preventing lethality following experimental envenoming by M. fulvius. These findings suggest the plausibility of a new therapeutic approach to snakebite envenoming, in this example, for the treatment of a coral snake species for which there are limitations in the availability of effective antivenom.

Keywords: Micrurus fulvius; PLA2; antidote; antivenom; coral snake; envenoming; inhibitor; neurotoxicity; phospholipase A2; snakebite.

Conflict of interest statement

Ophirex, Inc. is a Public Benefit Corporation. M.R.L. is employed by Ophirex, Inc. and has stock; S.P.S., T.C.B., and P.E.B. have consulted for Ophirex, Inc. for compensation. L.L.G., J.G., J.M.G. have no competing interests.

Figures

Figure 1
Figure 1
Kaplan Meier curves of lethality in pigs receiving various doses of M. fulvius venom.
Figure 2
Figure 2
LY315920 (Intravenous) and LY3333013 (Oral) alone or in combination completely abrogated lethality induced by M. fulvius venom in different protocols: IV Rescue (A), IV to Oral transition (B) and Oral only and antivenom rescue (C) (see description of the various treatment protocols in the Materials and Methods section).
Figure 3
Figure 3
Evidence of systemic envenoming prior to initiation of treatment is illustrated by the incoagulability of blood. In this example, coagulopathy was corrected within a short time after oral administration of LY333013. Sonoclot (A) and Thromboelastography (TEG) (B). (C): A typical presentation of venom-induced gross intravascular hemolysis was frequently observed during the experiments. Samples correspond to plasma from pigs injected with 0.5 mg/kg venom and collected at times 0 min (1), 30 min (2), 1 h (3), 4 h (4) and 8 h (5). Notice the evident hemolysis in the sample at 1 h.
Figure 4
Figure 4
LY315920-treated animals showed a general preservation of hemostasis compared to controls. (A) Platelet counts remained normal but platelet function (B) was inhibited by venom. Platelet function was restored and maintained in the presence of drug. (C) Activated clotting time, (D) Prothrombin Time and (E) Creatine kinase largely remained within normal levels when animals were treated with sPLA2 inhibitors. Creatinine concentrations were normal for all subjects (F). Reference ranges: Platelet count 200–400 103/µL, Platelet Function 2–4.8 Units, ACT 69–221 s, PT 10.5–13.5 s, CK 100–400 IU/L, Creatinine 0.1-2 mg/dL.
Figure 5
Figure 5
Clinical score in envenomed animals. All animals that received the test drug avoided or recovered from neurotoxicity. When rescue antivenom was not efficacious, the drug resolved severe neurotoxicity (Protocol C.4).

References

    1. Editorial Board Snake-bite envenoming: A priority neglected tropical disease. Lancet (London, England) 2017;390:2. doi: 10.1016/S0140-6736(17)31751-8.
    1. Sharma S.K., Chappuis F.F., Jha N., Bovier P.A., Loutan L., Koirala S. Impact of snake bites and determinants of fatal outcomes in Southeastern Nepal. Am. J. Trop. Med. Hyg. 2004;71:234–238. doi: 10.4269/ajtmh.2004.71.234.
    1. Longbottom J., Shearer F.M., Devine M., Alcoba G., Chappuis F., Weiss D.J., Ray S.E., Ray N., Warrell D.A., Ruiz de Castañeda R., et al. Vulnerability to snakebite envenoming: A global mapping of hotspots. Lancet (London, England) 2018;392:673–684. doi: 10.1016/S0140-6736(18)31224-8.
    1. Vaiyapuri S., Vaiyapuri R., Ashokan R., Ramasamy K., Nattamaisundar K., Jeyaraj A., Chandran V., Gajjeraman P. Snakebite and Its Socio-Economic Impact on the Rural Population of Tamil Nadu, India. PLoS ONE. 2013;8:e80090. doi: 10.1371/journal.pone.0080090.
    1. Harrison R.A., Hargreaves A., Wagstaff S.C., Faragher B., Lalloo D.G. Snake Envenoming: A Disease of Poverty. PLoS Negl. Trop. Dis. 2009;3:e569. doi: 10.1371/journal.pntd.0000569.
    1. Gutiérrez J.M., Calvete J.J., Habib A.G., Harrison R.A., Williams D.J., Warrell D.A. Snakebite envenoming. Nat. Rev. Dis. Prim. 2017;3:17063. doi: 10.1038/nrdp.2017.63.
    1. Lewin M., Samuel S., Merkel J., Bickler P. Varespladib (LY315920) Appears to Be a Potent, Broad-Spectrum, Inhibitor of Snake Venom Phospholipase A2 and a Possible Pre-Referral Treatment for Envenomation. Toxins (Basel) 2016;8:248. doi: 10.3390/toxins8090248.
    1. Laustsen A.H., Engmark M., Milbo C., Johannesen J., Lomonte B., Gutierrez J.M., Lohse B. From Fangs to Pharmacology: The Future of Snakebite Envenoming Therapy. Curr. Pharm. Des. 2016;22:5270–5293. doi: 10.2174/1381612822666160623073438.
    1. Tasoulis T., Isbister G.K. A Review and Database of Snake Venom Proteomes. Toxins (Basel) 2017;9:290. doi: 10.3390/toxins9090290.
    1. Calvete J.J. Proteomic tools against the neglected pathology of snake bite envenoming. Expert Rev. Proteomics. 2011;8:739–758. doi: 10.1586/epr.11.61.
    1. Harris J.B., Grubb B.D., Maltin C.A., Dixon R. The neurotoxicity of the venom phospholipases A(2), notexin and taipoxin. Exp. Neurol. 2000;161:517–526. doi: 10.1006/exnr.1999.7275.
    1. Gutiérrez J.M., Ownby C.L. Skeletal muscle degeneration induced by venom phospholipases A2: Insights into the mechanisms of local and systemic myotoxicity. Toxicon. 2003;42:915–931. doi: 10.1016/j.toxicon.2003.11.005.
    1. Clemetson K.J., Lu Q., Clemetson J.M. Snake venom proteins affecting platelets and their applications to anti-thrombotic research. Curr. Pharm. Des. 2007;13:2887–2892. doi: 10.2174/138161207782023702.
    1. Stief T.W. Phospholipase A(2) activates hemostasis. Drug Target Insights. 2007;2:83–96. doi: 10.1177/117739280700200019.
    1. David S., Greenhalgh A.D., López-Vales R. Role of phospholipase A2s and lipid mediators in secondary damage after spinal cord injury. Cell Tissue Res. 2012;349:249–267. doi: 10.1007/s00441-012-1430-8.
    1. Titsworth W.L., Liu N.-K., Xu X.-M. Role of secretory phospholipase a(2) in CNS inflammation: Implications in traumatic spinal cord injury. CNS Neurol. Disord. Drug Targets. 2008;7:254–269. doi: 10.2174/187152708784936671.
    1. Uhl W., Büchler M., Nevalainen T.J., Deller A., Beger H.G. Serum phospholipase A2 in patients with multiple injuries. J. Trauma. 1990;30:1285–1290. doi: 10.1097/00005373-199010000-00015.
    1. Liu N.-K., Titsworth W.L., Zhang Y.P., Xhafa A.I., Shields C.B., Xu X.-M. Characterizing phospholipase A2-induced spinal cord injury-a comparison with contusive spinal cord injury in adult rats. Transl. Stroke Res. 2011;2:608–618. doi: 10.1007/s12975-011-0089-x.
    1. Gutiérrez J.M., Lomonte B., Sanz L., Calvete J.J., Pla D. Immunological profile of antivenoms: Preclinical analysis of the efficacy of a polyspecific antivenom through antivenomics and neutralization assays. J. Proteomics. 2014;105:340–350. doi: 10.1016/j.jprot.2014.02.021.
    1. Sanhajariya S., Duffull S.B., Isbister G.K. Pharmacokinetics of Snake Venom. Toxins (Basel) 2018;10:73. doi: 10.3390/toxins10020073.
    1. Laustsen A.H., Gutiérrez J.M., Knudsen C., Johansen K.H., Bermúdez-Méndez E., Cerni F.A., Jürgensen J.A., Ledsgaard L., Martos-Esteban A., Øhlenschlæger M., et al. Pros and cons of different therapeutic antibody formats for recombinant antivenom development. Toxicon. 2018;146:151–175. doi: 10.1016/j.toxicon.2018.03.004.
    1. Adis R&D Profile Varespladib. Am. J. Cardiovasc. Drugs. 2011;11:137–143.
    1. Wang Y., Zhang J., Zhang D., Xiao H., Xiong S., Huang C. Exploration of the Inhibitory Potential of Varespladib for Snakebite Envenomation. Molecules. 2018;23:391. doi: 10.3390/molecules23020391.
    1. Xiao H., Li H., Zhang D., Li Y., Sun S., Huang C., Xiao H., Li H., Zhang D., Li Y., Sun S., Huang C. Inactivation of Venom PLA2 Alleviates Myonecrosis and Facilitates Muscle Regeneration in Envenomed Mice: A Time Course Observation. Molecules. 2018;23:1911. doi: 10.3390/molecules23081911.
    1. Dennis E.A., Cao J., Hsu Y.-H., Magrioti V., Kokotos G. Phospholipase A2 Enzymes: Physical Structure, Biological Function, Disease Implication, Chemical Inhibition, and Therapeutic Intervention. Chem. Rev. 2011;111:6130–6185. doi: 10.1021/cr200085w.
    1. Lewin M.R., Gutiérrez J.M., Samuel S.P., Herrera M., Bryan-Quirós W., Lomonte B., Bickler P.E., Bulfone T.C., Williams D.J. Delayed Oral LY333013 Rescues Mice from Highly Neurotoxic, Lethal Doses of Papuan Taipan (Oxyuranus scutellatus) Venom. Toxins (Basel) 2018;10:380. doi: 10.3390/toxins10100380.
    1. Vergara I., Pedraza-Escalona M., Paniagua D., Restano-Cassulini R., Zamudio F., Batista C.V.F., Possani L.D., Alagón A. Eastern coral snake Micrurus fulvius venom toxicity in mice is mainly determined by neurotoxic phospholipases A2. J. Proteomics. 2014;105:295–306. doi: 10.1016/j.jprot.2014.02.027.
    1. Arce-Bejarano R., Lomonte B., Gutiérrez J.M. Intravascular hemolysis induced by the venom of the Eastern coral snake, Micrurus fulvius, in a mouse model: Identification of directly hemolytic phospholipases A2. Toxicon. 2014;90:26–35. doi: 10.1016/j.toxicon.2014.07.010.
    1. De Roodt A.R., Lago N.R., Stock R.P. Myotoxicity and nephrotoxicity by Micrurus venoms in experimental envenomation. Toxicon. 2012;59:356–364. doi: 10.1016/j.toxicon.2011.11.009.
    1. Smyrnioudis M.E., O’Rourke D.P., Rosenbaum M.D., Brewer K.L., Meggs W.J. Long-term efficacy of pressure immobilization bandages in a porcine model of coral snake envenomation. Am. J. Emerg. Med. 2014;32:1024–1026. doi: 10.1016/j.ajem.2014.06.002.
    1. German B.T., Hack J.B., Brewer K., Meggs W.J. Pressure-Immobilization Bandages Delay Toxicity in a Porcine Model of Eastern Coral Snake (Micrurus fulvius fulvius) Envenomation. Ann. Emerg. Med. 2005;45:603–608. doi: 10.1016/j.annemergmed.2004.11.025.
    1. Parker-Cote J.L., O’Rourke D.P., Brewer K.L., Lertpiriyapong K., Punja M., Bush S.P., Miller S.N., Meggs W.J. Efficacy of Trypsin in Treating Coral Snake Envenomation in the Porcine Model. J. Med. Toxicol. 2015;11:430–432. doi: 10.1007/s13181-015-0468-x.
    1. Hack J.B., Deguzman J.M., Brewer K.L., Meggs W.J., O’Rourke D., O’rourke D. A Localizing Circumferential Compression Device Increases Survival after Coral Snake Envenomation to the Torso of an Animal Model. JEM. 2011;41:102–107. doi: 10.1016/j.jemermed.2010.04.027.
    1. LD50 and Venom Yields|. [(accessed on 28 August 2018)]; Available online: .
    1. Silva A., Johnston C., Kuruppu S., Kneisz D., Maduwage K., Kleifeld O., Smith A.I., Siribaddana S., Buckley N.A., Hodgson W.C., et al. Clinical and Pharmacological Investigation of Myotoxicity in Sri Lankan Russell’s Viper (Daboia russelii) Envenoming. PLoS Negl. Trop. Dis. 2016;10:e0005172. doi: 10.1371/journal.pntd.0005172.
    1. Silva A., Hodgson W., Isbister G. Cross-Neutralisation of In Vitro Neurotoxicity of Asian and Australian Snake Neurotoxins and Venoms by Different Antivenoms. Toxins (Basel) 2016;8:302. doi: 10.3390/toxins8100302.
    1. Fernández M.L., Quartino P.Y., Arce-Bejarano R., Fernández J., Camacho L.F., Gutiérrez J.M., Kuemmel D., Fidelio G., Lomonte B. Intravascular hemolysis induced by phospholipases A 2 from the venom of the Eastern coral snake, Micrurus fulvius: Functional profiles of hemolytic and non-hemolytic isoforms. Toxicol. Lett. 2018;286:39–47. doi: 10.1016/j.toxlet.2017.11.037.
    1. Davis S.S., Illum L., Hinchcliffe M. Gastrointestinal transit of dosage forms in the pig. J. Pharm. Pharmacol. 2001;53:33–39. doi: 10.1211/0022357011775163.
    1. World Health Organization . WHO Guidelines for the Production, Control and Regulation of Snake Antivenom Immunoglobulins. WHO; Geneva, Switzerland: 2010.
    1. Lomonte B., Rey-Suárez P., Fernández J., Sasa M., Pla D., Vargas N., Bénard-Valle M., Sanz L., Corrêa-Netto C., Núñez V., et al. Venoms of Micrurus coral snakes: Evolutionary trends in compositional patterns emerging from proteomic analyses. Toxicon. 2016;122:7–25. doi: 10.1016/j.toxicon.2016.09.008.
    1. Kini R.M. Structure-function relationships and mechanism of anticoagulant phospholipase A2 enzymes from snake venoms. Toxicon. 2005;45:1147–1161. doi: 10.1016/j.toxicon.2005.02.018.
    1. Morgan D. Snakes in Myth, Magic, and History: The Story of a Human Obsession. Praeger; Santa Barbara, CA, USA: 2008.
    1. Arias A.S., Rucavado A., Gutierrez J.-M. Peptidomimetic hydroxamate metalloproteinase inhibitors abrogate local and systemic toxicity induced by Echis ocellatus (saw-scaled) snake venom. Toxicon. 2017;132:40–49. doi: 10.1016/j.toxicon.2017.04.001.
    1. Escalante T., Franceschi A., Rucavado A., Gutiérrez J.M. Effectiveness of batimastat, a synthetic inhibitor of matrix metalloproteinases, in neutralizing local tissue damage induced by BaP1, a hemorrhagic metalloproteinase from the venom of the snake bothrops asper. Biochem. Pharmacol. 2000;60:269–274. doi: 10.1016/S0006-2952(00)00302-6.
    1. Herzel B., Samuel S.P., Bulfone T.C., Raj C.S., Lewin M.R., Kahn J.G. Snakebite: An Exploratory Cost-Effectiveness Analysis of Adjunct Treatment Strategies. Am. J. Trop. Med. Hyg. 2018 doi: 10.4269/ajtmh.17-0922. in press.
    1. Hessel M.M., McAninch S.A. Coral Snake Toxicity. StatPearls; Tampa, FL, USA: 2018.
    1. Sheikh S., Leffers P. Emergency department management of North American snake envenomations. Emerg. Med. Pract. 2018;20:1–26.
    1. Sasaki J., Khalil P.A., Chegondi M., Raszynski A., Meyer K.G., Totapally B.R. Coral Snake Bites and Envenomation in Children. Pediatr. Emerg. Care. 2014;30:262–265. doi: 10.1097/PEC.0000000000000109.
    1. Kitchens C.S., Van Mierop L.H. Envenomation by the Eastern coral snake (Micrurus fulvius fulvius). A study of 39 victims. JAMA. 1987;258:1615–1618. doi: 10.1001/jama.1987.03400120065026.
    1. Abraham E., Naum C., Bandi V., Gervich D., Lowry S.F., Wunderink R., Schein R.M., Macias W., Skerjanec S., Dmitrienko A., et al. Efficacy and safety of LY315920Na/S-5920, a selective inhibitor of 14-kDa group IIA secretory phospholipase A2, in patients with suspected sepsis and organ failure. Crit. Care Med. 2003;31:718–728. doi: 10.1097/01.CCM.0000053648.42884.89.
    1. Rojas G., Jiménez J.M., Gutiérrez J.M. Caprylic acid fractionation of hyperimmune horse plasma: Description of a simple procedure for antivenom production. Toxicon. 1994;32:351–363. doi: 10.1016/0041-0101(94)90087-6.
    1. Arce V., Rojas E., Ownby C.L., Rojas G., Gutiérrez J.M. Preclinical assessment of the ability of polyvalent (Crotalinae) and anticoral (Elapidae) antivenoms produced in Costa Rica to neutralize the venoms of North American snakes. Toxicon. 2003;41:851–860. doi: 10.1016/S0041-0101(03)00043-6.
    1. Flournoy W.S., Mani S. Percutaneous external jugular vein catheterization in piglets using a triangulation technique. Lab. Anim. 2009;43:344–349. doi: 10.1258/la.2009.0080092.
    1. Larréché S., Jean F.-X., Benois A., Mayet A., Bousquet A., Vedy S., Clapson P., Dehan C., Rapp C., Kaiser E., et al. Thromboelastographic study of the snakebite-related coagulopathy in Djibouti. Blood Coagul. Fibrinol. 2018;29:196–204. doi: 10.1097/MBC.0000000000000702.
    1. Hett D.A., Walker D., Pilkington S.N., Smith D.C. Sonoclot analysis. Br. J. Anaesth. 1995;75:771–776. doi: 10.1093/bja/75.6.771.

Source: PubMed

3
Se inscrever