FIGHT-302: first-line pemigatinib vs gemcitabine plus cisplatin for advanced cholangiocarcinoma with FGFR2 rearrangements

Tanios S Bekaii-Saab, Juan W Valle, Eric Van Cutsem, Lorenza Rimassa, Junji Furuse, Tatsuya Ioka, Davide Melisi, Teresa Macarulla, John Bridgewater, Harpreet Wasan, Mitesh J Borad, Ghassan K Abou-Alfa, Ping Jiang, Christine F Lihou, Huiling Zhen, Ekaterine Asatiani, Luis Féliz, Arndt Vogel, Tanios S Bekaii-Saab, Juan W Valle, Eric Van Cutsem, Lorenza Rimassa, Junji Furuse, Tatsuya Ioka, Davide Melisi, Teresa Macarulla, John Bridgewater, Harpreet Wasan, Mitesh J Borad, Ghassan K Abou-Alfa, Ping Jiang, Christine F Lihou, Huiling Zhen, Ekaterine Asatiani, Luis Féliz, Arndt Vogel

Abstract

FGFR2 rearrangements resulting in dysregulated signaling are drivers of cholangiocarcinoma (CCA) tumorigenesis, and occur almost exclusively in intrahepatic CCA. Pemigatinib, a selective, potent, oral inhibitor of FGFR1-3, has demonstrated efficacy and safety in a Phase II study of patients with previously treated locally advanced/metastatic CCA harboring FGFR2 fusions/rearrangements. We describe the study design of FIGHT-302, an open-label, randomized, active-controlled, multicenter, global, Phase III study comparing the efficacy and safety of first-line pemigatinib versus gemcitabine plus cisplatin in patients with advanced CCA with FGFR2 rearrangements (NCT03656536). The primary end point is progression-free survival; secondary end points are objective response rate, overall survival, duration of response, disease control rate, safety and quality of life. Clinical Trial Registration: NCT03656536 (ClinicalTrials.gov).

Keywords: FGFR; INCB054828; cholangiocarcinoma; pemigatinib.

Figures

Figure 1.. FIGHT-302 study schema.
Figure 1.. FIGHT-302 study schema.
CCA: Cholangiocarcinoma; CR: Complete response; ECOG PS: Eastern Cooperative Oncology Group performance status; PD: Progressive disease; PR: Partial response; QD: Once daily; SD: Stable disease.

References

    1. Blechacz B. Cholangiocarcinoma: current knowledge and new developments. Gut Liver 11(1), 13–26 (2017).
    1. Huguet JM, Lobo M, Labrador JM et al. Diagnostic-therapeutic management of bile duct cancer. World J. Clin. Cases 7(14), 1732–1752 (2019).
    1. Florio AA, Ferlay J, Znaor A et al. Global trends in intrahepatic and extrahepatic cholangiocarcinoma incidence from 1993 to 2012. Cancer 126(11), 2666–2678 (2020).
    1. Mukkamalla SKR, Naseri HM, Kim BM, Katz SC, Armenio VA. Trends in incidence and factors affecting survival of patients with cholangiocarcinoma in the United States. J. Natl Compr. Canc. Netw. 16(4), 370–376 (2018).
    1. Bertuccio P, Malvezzi M, Carioli G et al. Global trends in mortality from intrahepatic and extrahepatic cholangiocarcinoma. J. Hepatol. 71(1), 104–114 (2019).
    1. Meng ZW, Pan W, Hong HJ, Chen JZ, Chen YL. Macroscopic types of intrahepatic cholangiocarcinoma and the eighth edition of AJCC/UICC TNM staging system. Oncotarget 8(60), 101165–101174 (2017).
    1. Waseem D, Tushar P. Intrahepatic, perihilar and distal cholangiocarcinoma: management and outcomes. Ann. Hepatol. 16(1), 133–139 (2017).
    1. Banales JM, Cardinale V, Carpino G et al. Expert consensus document: cholangiocarcinoma: current knowledge and future perspectives consensus statement from the European Network for the Study of Cholangiocarcinoma (ENS-CCA). Nat. Rev. Gastroenterol. Hepatol. 13(5), 261–280 (2016).
    1. Kitano Y, Yamashita YI, Nakagawa S et al. Effectiveness of surgery for recurrent cholangiocarcinoma: a single center experience and brief literature review. Am. J. Surg. 219(1), 175–180 (2020).
    1. Cillo U, Fondevila C, Donadon M et al. Surgery for cholangiocarcinoma. Liver Int. 39(Suppl. 1), 143–155 (2019).
    1. Valle J, Wasan H, Palmer DH et al. Cisplatin plus gemcitabine versus gemcitabine for biliary tract cancer. N. Engl. J. Med. 362(14), 1273–1281 (2010).
    2. •• Pivotal Phase III study that establishes cisplatin and gemcitabine combination therapy as standard of care for first-line treatment of patients with advanced biliary cancer.

    1. Malka D, Cervera P, Foulon S et al. Gemcitabine and oxaliplatin with or without cetuximab in advanced biliary-tract cancer (BINGO): a randomised, open-label, non-comparative Phase II trial. Lancet Oncol. 15(8), 819–828 (2014).
    1. Valle JW, Wasan H, Lopes A et al. Cediranib or placebo in combination with cisplatin and gemcitabine chemotherapy for patients with advanced biliary tract cancer (ABC-03): a randomised Phase II trial. Lancet Oncol. 16(8), 967–978 (2015).
    1. Phelip JM, Edeline J, Blanc JF et al. Modified FOLFIRINOX versus CisGem first-line chemotherapy for locally advanced non resectable or metastatic biliary tract cancer (AMEBICA)-PRODIGE 38: study protocol for a randomized controlled multicenter Phase II/III study. Dig. Liver Dis. 51(2), 318–320 (2019).
    1. Lamarca A, Palmer DH, Wasan HS et al. ABC-06 | A randomised Phase III, multi-centre, open-label study of active symptom control (ASC) alone or ASC with oxaliplatin/5-FU chemotherapy (ASC+mFOLFOX) for patients (pts) with locally advanced/metastatic biliary tract cancers (ABC) previously-treated with cisplatin/gemcitabine (CisGem) chemotherapy. J. Clin. Oncol. 37(Suppl. 15), 4003 (2019).
    1. Edeline J, Touchefeu Y, Guiu B et al. Radioembolization plus chemotherapy for first-line treatment of locally advanced intrahepatic cholangiocarcinoma: a Phase II clinical trial. JAMA Oncol. 6(1), 51–59 (2019).
    1. Cercek A, Boerner T, Tan BR et al. Assessment of hepatic arterial infusion of floxuridine in combination with systemic gemcitabine and oxaliplatin in patients with unresectable intrahepatic cholangiocarcinoma: a Phase II clinical trial. JAMA Oncol. 6(1), 60–67 (2019).
    1. El-Khoueiry AB, Rankin CJ, Ben-Josef E et al. SWOG 0514: a Phase II study of sorafenib in patients with unresectable or metastatic gallbladder carcinoma and cholangiocarcinoma. Invest. New Drugs 30(4), 1646–1651 (2012).
    1. Moehler M, Maderer A, Schimanski C et al. Gemcitabine plus sorafenib versus gemcitabine alone in advanced biliary tract cancer: a double-blind placebo-controlled multicentre Phase II AIO study with biomarker and serum programme. Eur. J. Cancer 50(18), 3125–3135 (2014).
    1. Lee J, Park SH, Chang HM et al. Gemcitabine and oxaliplatin with or without erlotinib in advanced biliary-tract cancer: a multicentre, open-label, randomised, Phase III study. Lancet Oncol. 13(2), 181–188 (2012).
    1. Vogel A, Kasper S, Bitzer M et al. PICCA study: panitumumab in combination with cisplatin/gemcitabine chemotherapy in KRAS wild-type patients with biliary cancer – a randomised biomarker-driven clinical Phase II AIO study. Eur. J. Cancer 92, 11–19 (2018).
    1. Goyal L, Zheng H, Yurgelun MB et al. A Phase II and biomarker study of cabozantinib in patients with advanced cholangiocarcinoma. Cancer 123(11), 1979–1988 (2017).
    1. Moehler M, Maderer A, Ehrlich A et al. Safety and efficacy of afatinib as add-on to standard therapy of gemcitabine/cisplatin in chemotherapy-naive patients with advanced biliary tract cancer: an open-label, Phase I trial with an extensive biomarker program. BMC Cancer 19(1), 55 (2019).
    1. Bridgewater J, Lopes A, Beare S et al. A Phase Ib study of selumetinib in combination with cisplatin and gemcitabine in advanced or metastatic biliary tract cancer: the ABC-04 study. BMC Cancer 16, 153 (2016).
    1. Santoro A, Gebbia V, Pressiani T et al. A randomized, multicenter, Phase II study of vandetanib monotherapy versus vandetanib in combination with gemcitabine versus gemcitabine plus placebo in subjects with advanced biliary tract cancer: the VanGogh study. Ann. Oncol. 26(3), 542–547 (2015).
    1. Marabelle A, Le DT, Ascierto PA et al. Efficacy of pembrolizumab in patients with noncolorectal high microsatellite instability/mismatch repair-deficient cancer: results from the Phase II KEYNOTE-158 study. J. Clin. Oncol. 38(1), 1–10 (2020).
    1. Bonneville R, Krook MA, Kautto EA et al. Landscape of microsatellite instability across 39 cancer types. JCO Precis. Oncol. 2017, (2017) (Epub ahead of print).
    1. Javle MM, Murugesan K, Shroff RT et al. Profiling of 3,634 cholangiocarcinomas (CCA) to identify genomic alterations (GA), tumor mutational burden (TMB), and genomic loss of heterozygosity (gLOH). J. Clin. Oncol. 37(Suppl. 15), 4087 (2019).
    1. Le DT, Durham JN, Smith KN et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 357(6349), 409–413 (2017).
    1. Ueno M, Chung HC, Nagrial A et al. Pembrolizumab for advanced biliary adenocarcinoma: results from the multicohort, Phase II KEYNOTE-158 study [abstract 625PD]. Ann. Oncol. 29(Suppl. 8), viii210 (2018).
    1. Loeuillard E, Conboy CB, Gores GJ, Rizvi S. Immunobiology of cholangiocarcinoma. JHEP Reports 1(4), 297–311 (2019).
    1. Churi CR, Shroff R, Wang Y et al. Mutation profiling in cholangiocarcinoma: prognostic and therapeutic implications. PLoS ONE 9(12), e115383 (2014).
    1. Javle M, Bekaii-Saab T, Jain A et al. Biliary cancer: utility of next-generation sequencing for clinical management. Cancer 122(24), 3838–3847 (2016).
    2. •• Large, multicenter series of intrahepatic cholangiocarcinoma, extrahepatic cholangiocarcinoma and gallbladder cancer cases that noted a large number of actionable mutations.

    1. Lowery MA, Ptashkin R, Jordan E et al. Comprehensive molecular profiling of intrahepatic and extrahepatic cholangiocarcinomas: potential targets for intervention. Clin. Cancer Res. 24(17), 4154–4161 (2018).
    2. • Demonstrates the therapeutic and prognostic inferences of comprehensive genomic analysis of patients with advanced cholangiocarcinoma.

    1. Lamarca A, Ross P, Wasan HS et al. Advanced intrahepatic cholangiocarcinoma: post hoc analysis of the ABC-01, -02 and -03 clinical trials. J. Natl Cancer Inst. 112(2), 200–210 (2020).
    2. •• A post hoc analysis of patient data collected from the prospective ABC-01, -02 and -03 clinical trials, providing reference survival data in order to inform the design of such studies.

    1. Jain A, Borad MJ, Kelley RK et al. Cholangiocarcinoma with FGFR genetic aberrations: a unique clinical phenotype. JCO Precis. Oncol. 2, 1–12 (2018) (Epub ahead of print).
    2. •• Clinical evidence showing that patients with FGFR genetic aberrations had significantly better survival, regardless of treatment, compared with those without FGFR genetic aberrations, and had significantly better outcomes with FGFR-targeted therapy compared with standard treatment.

    1. Silverman IM, Murugesan K, Lihou CF et al. Comprehensive genomic profiling in FIGHT-202 reveals the landscape of actionable alterations in advanced cholangiocarcinoma. J. Clin. Oncol. 37(Suppl. 15), 4080 (2019).
    1. Tella SH, Kommalapati A, Borad MJ, Mahipal A. Second-line therapies in advanced biliary tract cancers. Lancet Oncol. 21(1), e29–e41 (2020).
    2. •• A comprehensive review of second-line therapies including all FGFR-targeted drugs.

    1. Babina IS, Turner NC. Advances and challenges in targeting FGFR signalling in cancer. Nat. Rev. Cancer 17(5), 318–332 (2017).
    1. Farshidfar F, Zheng S, Gingras MC et al. Integrative genomic analysis of cholangiocarcinoma identifies distinct IDH-mutant molecular profiles. Cell Rep. 18(11), 2780–2794 (2017).
    1. Ng MCH, Goyal L, Bang YJ et al. Debio 1347 in patients with cholangiocarcinoma harboring an FGFR gene alteration: preliminary results [abstract AB065. P-36]. Hepatobiliary Surg. Nutr. 8(Suppl. 1), AB065 (2019).
    1. Goyal L, Arkenau H-T, Tran B et al. Early clinical efficacy of TAS-120, a covalently bound FGFR inhibitor, in patients with cholangiocarcinoma [abstract O-020]. Ann. Oncol. 28(Suppl. 3), 145 (2017).
    1. Droz Dit Busset M, El-Rayes BF, Harris WP et al. Derazantinib (DZB) provides antitumor efficacy regardless of line of therapy in patients (pts) with FGFR2-fusion positive advanced intrahepatic cholangiocarcinoma (iCCA). J. Clin. Oncol. 37(Suppl. 15), e15607 (2019).
    1. Javle M, Kelley RK, Roychowdhury S et al. AB051. P-19. A Phase II study of infigratinib (BGJ398) in previously-treated advanced cholangiocarcinoma containing FGFR2 fusions. Hepatobiliary Surg. Nutr. 8(Suppl. 1), AB051 (2019).
    1. Javle M, Lowery M, Shroff RT et al. Phase II study of BGJ398 in patients with FGFR-altered advanced cholangiocarcinoma. J. Clin. Oncol. 36(3), 276–282 (2018).
    2. •• Proof-of-concept study of an FGFR-targeted therapy for cholangiocarcinoma.

    1. Droz Dit Busset M, Braun S, El-Rayes B et al. Efficacy of derazantinib (DZB) in patients (pts) with intrahepatic cholangiocarcinoma (iCCA) expressing FGFR2-fusion or FGFR2 mutations/amplifications [abstract 721P]. Ann. Oncol. 30(Suppl. 5), v253–v324 (2019).
    1. Goyal L, Meric-Bernstam F, Hollebecque A et al. FOENIX-CCA2: a Phase II, open-label, multicenter study of futibatinib in patients (pts) with intrahepatic cholangiocarcinoma (iCCA) harboring FGFR2 gene fusions or other rearrangements. J. Clin. Oncol. 38(Suppl. 15), 108 (2020).
    1. Liu PCC, Koblish H, Wu L et al. INCB054828 (pemigatinib), a potent and selective inhibitor of fibroblast growth factor receptors 1, 2, and 3, displays activity against genetically defined tumor models. PLoS ONE 15(4), e0231877 (2020).
    1. Subbiah V, Barve M, Iannotti NO et al. FIGHT-101: a Phase I/II study of pemigatinib, a highly selective fibroblast growth factor receptor (FGFR) inhibitor, as monotherapy and as combination therapy in patients with advanced malignancies [abstract A078]. Mol. Cancer Ther. 18(Suppl. 12), A078 (2019).
    1. Abou-Alfa GK, Sahai V, Hollebecque A et al. Pemigatinib for previously treated, locally advanced or metastatic cholangiocarcinoma: a multicentre, open-label, Phase II study. Lancet Oncol. 21(5), 671–684 (2020).
    1. Amin MB, Edge S, Greene F et al. AJCC Cancer Staging Manual (8th Edition). Springer International Publishing, (2017).
    1. Lyou Y, Grivas P, Rosenberg JE et al. Relationship between hyperphosphatemia with infigratinib (BGJ398) and efficacy in FGFR3-altered advanced/metastatic urothelial carcinoma (aUC). J. Clin. Oncol. 38(Suppl. 6), 576 (2020).
    1. Tagawa ST, Siefker-Radtke AO, Dosne A et al. Hyperphosphatemia due to erdafitinib and anti-tumor activity among patients with advanced urothelial cancer. Ann. Oncol. 30(Suppl. 5), v356–v402 (2019).

Source: PubMed

3
Se inscrever