Kallikrein-kinin blockade in patients with COVID-19 to prevent acute respiratory distress syndrome

Frank L van de Veerdonk, Mihai G Netea, Marcel van Deuren, Jos Wm van der Meer, Quirijn de Mast, Roger J Brüggemann, Hans van der Hoeven, Frank L van de Veerdonk, Mihai G Netea, Marcel van Deuren, Jos Wm van der Meer, Quirijn de Mast, Roger J Brüggemann, Hans van der Hoeven

Abstract

COVID-19 patients can present with pulmonary edema early in disease. We propose that this is due to a local vascular problem because of activation of bradykinin 1 receptor (B1R) and B2R on endothelial cells in the lungs. SARS-CoV-2 enters the cell via ACE2 that next to its role in RAAS is needed to inactivate des-Arg9 bradykinin, the potent ligand of the B1R. Without ACE2 acting as a guardian to inactivate the ligands of B1R, the lung environment is prone for local vascular leakage leading to angioedema. Here, we hypothesize that a kinin-dependent local lung angioedema via B1R and eventually B2R is an important feature of COVID-19. We propose that blocking the B2R and inhibiting plasma kallikrein activity might have an ameliorating effect on early disease caused by COVID-19 and might prevent acute respiratory distress syndrome (ARDS). In addition, this pathway might indirectly be responsive to anti-inflammatory agents.

Keywords: COVID-19; SARS; bradykinin; human biology; icatibant; immunology; inflammation; kinin; medicine; virus.

Conflict of interest statement

Fv, MN, Mv, Qd, RB, Hv No competing interests declared, Jv Senior editor, eLife

© 2020, van de Veerdonk et al.

Figures

Figure 1.. The kinin-kallikrein system and ACE/ACE2.
Figure 1.. The kinin-kallikrein system and ACE/ACE2.
The pathways of processing of low-molecular-weight kininogen (LMWK) and high-molecular-weight kallikrein (HMWK) leading to Bradykinin 1 (B1) receptor agonists and Bradykinin 2 (B2) receptor agonists. CPM = carboxypeptidaseM; CPN = carboxypeptidaseN.
Figure 2.. Schematic view of treatment strategies…
Figure 2.. Schematic view of treatment strategies in COVID-19.
Figure 3.. Alveolus in normal setting and…
Figure 3.. Alveolus in normal setting and during moderate and severe COVID-19, (A) normal, (B) mild inflammation, (C) hyperinflammation.
ACE2 downregulation by the SARS-CoV-2 is followed by loss of neutralizing capacity of Lys-des-arg9-bradykinin (BK) in the lung leading to plasma leakage. Subsequently plasma leakage results in more B1R ligands (des-arg9-BK) and B2R ligands (bradykinin).

References

    1. Batlle D, Wysocki J, Satchell K. Soluble angiotensin-converting enzyme 2: a potential approach for coronavirus infection therapy? Clinical Science. 2020;134:543–545. doi: 10.1042/CS20200163.
    1. Bhoola KD, Figueroa CD, Worthy K. Bioregulation of kinins: kallikreins, Kininogens, and kininases. Pharmacological Reviews. 1992;44:1–80.
    1. Ceravolo GS, Montezano AC, Jordão MT, Akamine EH, Costa TJ, Takano AP, Fernandes DC, Barreto-Chaves ML, Laurindo FR, Tostes RC, Fortes ZB, Chopard RP, Touyz RM, Carvalho MH. An interaction of renin-angiotensin and kallikrein-kinin systems contributes to vascular hypertrophy in angiotensin II-induced hypertension: in vivo and in vitro studies. PLOS ONE. 2014;9:e111117. doi: 10.1371/journal.pone.0111117.
    1. European Medicines Agency . Assessment Report: Firazyr, INN-Icatibant. London, UK: European Medicines Agency; 2014.
    1. Fang L, Karakiulakis G, Roth M. Are patients with hypertension and diabetes mellitus at increased risk for COVID-19 infection? The Lancet Respiratory Medicine. 2020;8:e21. doi: 10.1016/S2213-2600(20)30116-8.
    1. Fu Y, Cheng Y, Wu Y. Understanding SARS-CoV-2-Mediated inflammatory responses: from mechanisms to potential therapeutic tools. Virologica Sinica. 2020;85:4. doi: 10.1007/s12250-020-00207-4.
    1. Gattinoni L, Chiumello D, Caironi P, Busana M, Romitti F, Brazzi L, Camporota L. COVID-19 pneumonia: different respiratory treatments for different phenotypes? Intensive Care Medicine. 2020a;382:2. doi: 10.1007/s00134-020-06033-2.
    1. Gattinoni L, Chiumello D, Rossi S. COVID-19 pneumonia: ards or not? Critical Care. 2020b;24:154. doi: 10.1186/s13054-020-02880-z.
    1. Glowacka I, Bertram S, Herzog P, Pfefferle S, Steffen I, Muench MO, Simmons G, Hofmann H, Kuri T, Weber F, Eichler J, Drosten C, Pöhlmann S. Differential downregulation of ACE2 by the spike proteins of severe acute respiratory syndrome coronavirus and human coronavirus NL63. Journal of Virology. 2010;84:1198–1205. doi: 10.1128/JVI.01248-09.
    1. Gralinski LE, Sheahan TP, Morrison TE, Menachery VD, Jensen K, Leist SR, Whitmore A, Heise MT, Baric RS. Complement activation contributes to severe acute respiratory syndrome coronavirus pathogenesis. mBio. 2018;9:e01753-18. doi: 10.1128/mBio.01753-18.
    1. Guan W-J, Z-y N, Hu Y, Liang W-H, C-Q O, J-x H, Liu L, Shan H, Lei C-L, Dsc H, Du B, Li L-J ZG, Yuen K-Y, Chen R-C, Tang C-L, Wang T, Chen P-Y, Xiang J, Li S-Y WJ-L, Liang Z-J, Peng Y-X, Wei L, Liu Y, Y-h H, Peng P, Wang J-M, Liu J-Y, Chen Z, Li G, Zheng Z-J, Qiu S-Q, Luo J, C-j Y, Zhu S-Y, Zhong N-S, China Medical Treatment Expert Group for Covid-19 Clinical characteristics of coronavirus disease 2019 in China. The New England Journal of Medicine. 2020;13:2002032. doi: 10.1056/NEJMoa2002032.
    1. Imai Y, Kuba K, Rao S, Huan Y, Guo F, Guan B, Yang P, Sarao R, Wada T, Leong-Poi H, Crackower MA, Fukamizu A, Hui CC, Hein L, Uhlig S, Slutsky AS, Jiang C, Penninger JM. Angiotensin-converting enzyme 2 protects from severe acute lung failure. Nature. 2005;436:112–116. doi: 10.1038/nature03712.
    1. Jurado‐Palomo J, Caballero T. A Comprehensive Review of Urticaria and Angioedema. InTechOpen; 2017. Pathophysiology of Bradykinin-Mediated Angioedema: The Role of the Complement System.
    1. Kuba K, Imai Y, Rao S, Gao H, Guo F, Guan B, Huan Y, Yang P, Zhang Y, Deng W, Bao L, Zhang B, Liu G, Wang Z, Chappell M, Liu Y, Zheng D, Leibbrandt A, Wada T, Slutsky AS, Liu D, Qin C, Jiang C, Penninger JM. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine. 2005;11:875–879. doi: 10.1038/nm1267.
    1. Kuduk SD, Di Marco CN, Chang RK, Wood MR, Schirripa KM, Kim JJ, Wai JM, DiPardo RM, Murphy KL, Ransom RW, Harrell CM, Reiss DR, Holahan MA, Cook J, Hess JF, Sain N, Urban MO, Tang C, Prueksaritanont T, Pettibone DJ, Bock MG. Development of orally bioavailable and CNS penetrant biphenylaminocyclopropane carboxamide bradykinin B1 receptor antagonists. Journal of Medicinal Chemistry. 2007;50:272–282. doi: 10.1021/jm061094b.
    1. Levi M, Cohn DM, Zeerleder S. Hereditary angioedema: linking complement regulation to the coagulation system. Research and Practice in Thrombosis and Haemostasis. 2019;3:38–43. doi: 10.1002/rth2.12175.
    1. Marceau F, Bawolak MT, Fortin JP, Morissette G, Roy C, Bachelard H, Gera L, Charest-Morin X. Bifunctional ligands of the bradykinin B1 and B2 receptors: an exercise in peptide hormone plasticity. Peptides. 2018;105:37–50. doi: 10.1016/j.peptides.2018.05.007.
    1. Nasseri S, Gurusamy M, Jung B, Lee D, Khang G, Doods H, Wu D. Kinin B1 receptor antagonist BI113823 reduces acute lung injury. Critical Care Medicine. 2015;43:e499–e507. doi: 10.1097/CCM.0000000000001268.
    1. Passos GF, Fernandes ES, Campos MM, Araújo JG, Pesquero JL, Souza GE, Avellar MC, Teixeira MM, Calixto JB. Kinin B1 receptor up-regulation after lipopolysaccharide administration: role of proinflammatory cytokines and neutrophil influx. The Journal of Immunology. 2004;172:1839–1847. doi: 10.4049/jimmunol.172.3.1839.
    1. Qadri F, Bader M. Kinin B1 receptors as a therapeutic target for inflammation. Expert Opinion on Therapeutic Targets. 2018;22:31–44. doi: 10.1080/14728222.2018.1409724.
    1. Quitterer U, AbdAlla S. Vasopressor meets vasodepressor: the AT1-B2 receptor heterodimer. Biochemical Pharmacology. 2014;88:284–290. doi: 10.1016/j.bcp.2014.01.019.
    1. Sodhi CP, Wohlford-Lenane C, Yamaguchi Y, Prindle T, Fulton WB, Wang S, McCray PB, Chappell M, Hackam DJ, Jia H. Attenuation of pulmonary ACE2 activity impairs inactivation of des-Arg9 bradykinin/BKB1R Axis and facilitates LPS-induced neutrophil infiltration. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2018;314:L17–L31. doi: 10.1152/ajplung.00498.2016.
    1. Walls AC, Park YJ, Tortorici MA, Wall A, McGuire AT, Veesler D. Structure, function, and antigenicity of the SARS-CoV-2 spike glycoprotein. Cell. 2020;181:281–292. doi: 10.1016/j.cell.2020.02.058.

Source: PubMed

3
Se inscrever