Robot-Aided Systems for Improving the Assessment of Upper Limb Spasticity: A Systematic Review

Rubén de-la-Torre, Edwin Daniel Oña, Carlos Balaguer, Alberto Jardón, Rubén de-la-Torre, Edwin Daniel Oña, Carlos Balaguer, Alberto Jardón

Abstract

Spasticity is a motor disorder that causes stiffness or tightness of the muscles and can interfere with normal movement, speech, and gait. Traditionally, the spasticity assessment is carried out by clinicians using standardized procedures for objective evaluation. However, these procedures are manually performed and, thereby, they could be influenced by the clinician's subjectivity or expertise. The automation of such traditional methods for spasticity evaluation is an interesting and emerging field in neurorehabilitation. One of the most promising approaches is the use of robot-aided systems. In this paper, a systematic review of systems focused on the assessment of upper limb (UL) spasticity using robotic technology is presented. A systematic search and review of related articles in the literature were conducted. The chosen works were analyzed according to the morphology of devices, the data acquisition systems, the outcome generation method, and the focus of intervention (assessment and/or training). Finally, a series of guidelines and challenges that must be considered when designing and implementing fully-automated robot-aided systems for the assessment of UL spasticity are summarized.

Keywords: assessment; cooperative robots; robot-assisted rehabilitation; spasticity; upper limb.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(A): Simple biomechanical (dynamic) model of the upper extremity in OpenSim software. (B): Schematic drawing of the musculoskeletal model of the arm and Hill-type muscle unit, where contractile element (CE) is a contractile element, parallel (PE) is a parallel elastic element, series (SE) is a series elastic element, lCE is CE length, lSE is SE length.
Figure 2
Figure 2
Systems for upper limb rehabilitation, commercially available.
Figure 3
Figure 3
Essential components for robot-aided assessment of upper limb (UL) spasticity.

References

    1. Biering-Sørensen F., Nielsen J.B., Klinge K. Spasticity-assessment: A review. Spinal Cord. 2006;44:708–722. doi: 10.1038/sj.sc.3101928.
    1. Lance J.W. The control of muscle tone, reflexes, and movement: Robert Wartenbeg Lecture. Neurology. 1980;30:1303. doi: 10.1212/WNL.30.12.1303.
    1. Kuo C.L., Hu G.C. Post-stroke Spasticity: A Review of Epidemiology, Pathophysiology, and Treatments. Int. J. Gerontol. 2018;12:280–284. doi: 10.1016/j.ijge.2018.05.005.
    1. Rekand T. Clinical assessment and management of spasticity: A review: Clinical assessment and management of spasticity. Acta Neurol. Scand. 2010;122:62–66. doi: 10.1111/j.1600-0404.2010.01378.x.
    1. Kwakkel G., Meskers C.G.M. Botulinum toxin A for upper limb spasticity. Lancet Neurol. 2015;14:969–971. doi: 10.1016/S1474-4422(15)00222-7.
    1. Thibaut A., Chatelle C., Ziegler E., Bruno M.A., Laureys S., Gosseries O. Spasticity after stroke: Physiology, assessment and treatment. Brain Inj. 2013;27:1093–1105. doi: 10.3109/02699052.2013.804202.
    1. Kinnear B.Z., Lannin N.A., Cusick A., Harvey L.A., Rawicki B. Rehabilitation Therapies After Botulinum Toxin-A Injection to Manage Limb Spasticity: A Systematic Review. Phys. Ther. 2014;94:1569–1581. doi: 10.2522/ptj.20130408.
    1. Hesse S., Reiter F., Konrad M., Jahnke M.T. Botulinum toxin type A and short-term electrical stimulation in the treatment of upper limb flexor spasticity after stroke: A randomized, double-blind, placebo-controlled trial. Clin. Rehabil. 1998;12:381–388. doi: 10.1191/026921598668275996.
    1. Hoare B.J., Imms C. Upper-Limb Injections of Botulinum Toxin-A in Children With Cerebral Palsy: A Critical Review of the Literature and Clinical Implications for Occupational Therapists. Am. J. Occup. Ther. 2004;58:389–397. doi: 10.5014/ajot.58.4.389.
    1. Petek Balci B. Spasticty measurement. Arch. Neuropsychiatry. 2018;55:s49–s53. doi: 10.29399/npa.23339.
    1. Sherwood A., McKay W.B. Spasticity and Upper Motor Neuron Dysfunction. In: Akay M., editor. Wiley Encyclopedia of Biomedical Engineering. John Wiley & Sons, Inc.; Hoboken, NJ, USA: 2006. p. ebs1109.
    1. Wang H., Huang P., Li X., Samuel O.W., Xiang Y., Li G. Spasticity Assessment Based on the Maximum Isometrics Voluntary Contraction of Upper Limb Muscles in Post-stroke Hemiplegia. Front. Neurol. 2019;10:465. doi: 10.3389/fneur.2019.00465.
    1. Johnson G.R. Outcome measures of spasticity. Eur. J. Neurol. 2002;9:10–16. doi: 10.1046/j.1468-1331.2002.0090s1010.x.
    1. Ashworth N., Satkunam L., Deforge D. Treatment for spasticity in amyotrophic lateral sclerosis/motor neuron disease. In: The Cochrane Collaboration, editor. The Cochrane Database of Systematic Reviews. John Wiley & Sons, Ltd.; Chichester, UK: 2004. p. CD004156.pub2.
    1. Walton K. Management of Patients With Spasticity-A Practical Approach. Pract. Neurol. 2003;3:342–353.
    1. Li S., Francisco G.E. New insights into the pathophysiology of post-stroke spasticity. Front. Hum. Neurosci. 2015;9:192. doi: 10.3389/fnhum.2015.00192.
    1. Trompetto C., Marinelli L., Mori L., Pelosin E., Currà A., Molfetta L., Abbruzzese G. Pathophysiology of spasticity: Implications for neurorehabilitation. Biomed Res. Int. 2014;2014 doi: 10.1155/2014/354906.
    1. Priori A., Cogiamanian F., Mrakic-Sposta S. Pathophysiology of spasticity. Neurol. Sci. 2006;27:s307–s309. doi: 10.1007/s10072-006-0647-2.
    1. Ward A.B. A literature review of the pathophysiology and onset of post-stroke spasticity. Eur. J. Neurol. 2012;19:21–27. doi: 10.1111/j.1468-1331.2011.03448.x.
    1. Mukherjee A., Chakravarty A. Spasticity mechanisms–for the clinician. Front. Neurol. 2010;1:149. doi: 10.3389/fneur.2010.00149.
    1. Malhotra S., Pandyan A., Day C., Jones P., Hermens H. Spasticity, an impairment that is poorly defined and poorly measured. Clin. Rehabil. 2009;23:651–658. doi: 10.1177/0269215508101747.
    1. Denny-Brown D. The Cerebral Control of Movement. Liverpool University Press; Liverpool, UK: 1966.
    1. Burridge J., Wood D., Hermens H.J., Voerman G., Johnson G., Wijck F.V., Platz T., Gregoric M., Hitchcock R., Pandyan A. Theoretical and methodological considerations in the measurement of spasticity. Disabil. Rehabil. 2005;27:69–80. doi: 10.1080/09638280400014592.
    1. Petropoulou K. Spasticity - Management with a Focus on Rehabilitation. International Neuromodulation Society. [(accessed on 25 June 2020)];2017 Available online: .
    1. Aloraini S.M., Gäverth J., Yeung E., MacKay-Lyons M. Assessment of spasticity after stroke using clinical measures: A systematic review. Disabil. Rehabil. 2015;37:2313–2323. doi: 10.3109/09638288.2015.1014933.
    1. Hugos C.L., Cameron M.H. Assessment and Measurement of Spasticity in MS: State of the Evidence. Curr. Neurol. Neurosci. Rep. 2019;19:79. doi: 10.1007/s11910-019-0991-2.
    1. Platz T., Eickhof C., Nuyens G., Vuadens P. Clinical scales for the assessment of spasticity, associated phenomena, and function: A systematic review of the literature. Disabil. Rehabil. 2005;27:7–18. doi: 10.1080/09638280400014634.
    1. Lee K.C., Carson L., Kinnin E., Patterson V. The Ashworth Scale: A Reliable and Reproducible Method of Measuring Spasticity. Neurorehabilit. Neural Repair. 1989;3:205–209. doi: 10.1177/136140968900300406.
    1. Pandyan A.D., Johnson G.R., Price C.I.M., Curless R.H., Barnes M.P., Rodgers H. A review of the properties and limitations of the Ashworth and modified Ashworth Scales as measures of spasticity. Clin. Rehabil. 1999;13:373–383. doi: 10.1191/026921599677595404.
    1. Oña Simbaña E.D., Sánchez-Herrera Baeza P., Jardón Huete A., Balaguer C. Review of Automated Systems for Upper Limbs Functional Assessment in Neurorehabilitation. IEEE Access. 2019;7:32352–32367. doi: 10.1109/ACCESS.2019.2901814.
    1. Lum P.S., Burgar C.G., Loos M.V.d., Shor P.C., Majmundar M., Yap R. MIME robotic device for upper-limb neurorehabilitation in subacute stroke subjects: A follow-up study. J. Rehabil. Res. Dev. 2006;43:631. doi: 10.1682/JRRD.2005.02.0044.
    1. Volpe B.T., Lynch D., Rykman-Berland A., Ferraro M., Galgano M., Hogan N., Krebs H.I. Intensive Sensorimotor Arm Training Mediated by Therapist or Robot Improves Hemiparesis in Patients With Chronic Stroke. Neurorehabilit. Neural Repair. 2008;22:305–310. doi: 10.1177/1545968307311102.
    1. Rosati G., Gallina P., Masiero S. Design, Implementation and Clinical Tests of a Wire-Based Robot for Neurorehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 2007;15:560–569. doi: 10.1109/TNSRE.2007.908560.
    1. Kung P.C., Ju M.S., Lin C.C.K. Design of a forearm rehabilitation robot; Proceedings of the 2007 IEEE 10th International Conference on Rehabilitation Robotics; Noordwijk, Netherlands. 13–15 June 2007; pp. 228–233.
    1. Fonseca L.A., Grecco L.A.C., Politti F., Frigo C., Pavan E., Corrêa J.C.F., Oliveira C.S. Use a Portable Device for Measuring Spasticity in Individuals with Cerebral Palsy. J. Phys. Ther. Sci. 2013;25:271–275. doi: 10.1589/jpts.25.271.
    1. Lunenburger L., Colombo G., Riener R., Dietz V. Clinical Assessments Performed During Robotic Rehabilitation by the Gait Training Robot Lokomat; Proceedings of the 9th International Conference on Rehabilitation Robotics, ICORR 2005; Chicago, IL, USA. 28 June–1 July 2005; pp. 345–348.
    1. Oña E.D., Cano-de-la Cuerda R., Sánchez-Herrera P., Balaguer C., Jardón A. A review of robotics in neurorehabilitation: Towards an automated process for upper limb. J. Healthc. Eng. 2018;2018:9758939. doi: 10.1155/2018/9758939.
    1. Zhou Z., Sun Y., Wang N., Gao F., Wei K., Wang Q. Robot-Assisted Rehabilitation of Ankle Plantar Flexors Spasticity: A 3-Month Study with Proprioceptive Neuromuscular Facilitation. Front. Neurorobot. 2016;10 doi: 10.3389/fnbot.2016.00016.
    1. Abu-Dakk F.J., Valera A., Escalera J., Vallés M., Mata V., Abderrahim M. Trajectory Adaptation and Learning for Ankle Rehabilitation Using a 3-PRS Parallel Robot. In: Liu H., Kubota N., Zhu X., Dillmann R., Zhou D., editors. Intelligent Robotics and Applications. Volume 9245. Springer International Publishing; Cham, Switzerland: Berlin/Heidelberg, Germany: 2015. pp. 483–494.
    1. Bucca G., Bezzolato A., Bruni S., Molteni F. A Mechatronic Device for the Rehabilitation of Ankle Motor Function. J. Biomech. Eng. 2009;131:125001. doi: 10.1115/1.4000083.
    1. Adewusi S., Rakheja S., Marcotte P. Biomechanical models of the human hand-arm to simulate distributed biodynamic responses for different postures. Int. J. Ind. Ergon. 2012;42:249–260. doi: 10.1016/j.ergon.2012.01.005.
    1. Basteris A., Nijenhuis S.M., Stienen A.H., Buurke J.H., Prange G.B., Amirabdollahian F. Training modalities in robot-mediated upper limb rehabilitation in stroke: A framework for classification based on a systematic review. J. Neuroeng. Rehabil. 2014;11:111. doi: 10.1186/1743-0003-11-111.
    1. Norton B.J., Bomze H.A., Chaplin H. An Approach to the Objective Measurement of Spasticity. Phys. Ther. 1972;52:15–24. doi: 10.1093/ptj/52.1.15.
    1. Reinkensmeyer D., Dewald J., Rymer W. Guidance-based quantification of arm impairment following brain injury: A pilot study. IEEE Trans. Rehabil. Eng. 1999;7:1–11. doi: 10.1109/86.750543.
    1. Pandyan A., Price C., Rodgers H., Barnes M., Johnson G. Biomechanical examination of a commonly used measure of spasticity. Clin. Biomech. 2001;16:859–865. doi: 10.1016/S0268-0033(01)00084-5.
    1. Lee H.M., Chen J.J.J., Ju M.S., Lin C.C.K., Poon P.P. Validation of portable muscle tone measurement device for quantifying velocity-dependent properties in elbow spasticity. J. Electromyogr. Kinesiol. 2004;14:577–589. doi: 10.1016/j.jelekin.2004.02.002.
    1. Wu Y.N., Huang S.C., Chen J.J.J., Wang Y.L., Piotrkiewicz M. Spasticity Evaluation of Hemiparetic Limbs in Stroke Patients before Intervention by Using Portable Stretching Device and EMG. J. Med. Biol. Eng. 2004;24:6.
    1. Chen J.J.J., Wu Y.N., Huang S.C., Lee H.M., Wang Y.L. The Use of a Portable Muscle Tone Measurement Device to Measure the Effects of Botulinum Toxin Type A on Elbow Flexor Spasticity. Arch. Phys. Med. Rehabil. 2005;86:1655–1660. doi: 10.1016/j.apmr.2005.03.019.
    1. Kumar R.T.S., Pandyan A.D., Sharma A.K. Biomechanical measurement of post-stroke spasticity. Age Ageing. 2006;35:371–375. doi: 10.1093/ageing/afj084.
    1. Fazekas G., Horvath M., Toth A. A novel robot training system designed to supplement upper limb physiotherapy of patients with spastic hemiparesis. Int. J. Rehabil. Res. 2006;29:251–254. doi: 10.1097/01.mrr.0000230050.16604.d9.
    1. Pandyan A.D., Van Wijck F.M.J., Stark S., Vuadens P., Johnson G.R., Barnes M.P. The construct validity of a spasticity measurement device for clinical practice: An alternative to the Ashworth scales. Disabil. Rehabil. 2006;28:579–585. doi: 10.1080/09638280500242390.
    1. Nef T., Mihelj M., Riener R. ARMin: A robot for patient-cooperative arm therapy. Med. Biol. Eng. Comput. 2007;45:887–900. doi: 10.1007/s11517-007-0226-6.
    1. Takahashi C.D., Der-Yeghiaian L., Le V., Motiwala R.R., Cramer S.C. Robot-based hand motor therapy after stroke. Brain. 2008;131:425–437. doi: 10.1093/brain/awm311.
    1. Calota A., Feldman A.G., Levin M.F. Spasticity measurement based on tonic stretch reflex threshold in stroke using a portable device. Clin. Neurophysiol. 2008;119:2329–2337. doi: 10.1016/j.clinph.2008.07.215.
    1. Bovolenta F., Goldoni M., Clerici P., Agosti M., Franceschini M. Robot therapy for functional recovery of the upper limbs: A pilot study on patients after stroke. J. Rehabil. Med. 2009;41:971–975. doi: 10.2340/16501977-0402.
    1. Posteraro F., Mazzoleni S., Aliboni S., Cesqui B., Battaglia A., Dario P., Micera S. Robot-mediated therapy for paretic upper limb of chronic patients following neurological injury. J. Rehabil. Med. 2009;41:976–980. doi: 10.2340/16501977-0403.
    1. Posteraro F., Mazzoleni S., Aliboni S., Cesqui B., Battaglia A., Carrozza M., Dario P., Micera S. Upper limb spasticity reduction following active training: A robot-mediated study in patients with chronic hemiparesis. J. Rehabil. Med. 2010;42:279–281. doi: 10.2340/16501977-0500.
    1. Ferreira J., Moreira V., Machado J., Soares F. Biomedical device for spasticity quantification based on the velocity dependence of the Stretch Reflex threshold; Proceedings of the ETFA2011; Toulouse, France. 5–9 September 2011; pp. 1–4.
    1. Fazekas G., Zsiga K., Dénes Z. Robot-mediated upper limb physiotherapy: Review and recommendations for future clinical trials. Int. J. Rehabil. Res. 2011;34:196–202. doi: 10.1097/MRR.0b013e328346e8ad.
    1. Kim E.H., Jang M.C., Seo J.P., Jang S.H., Song J.C., Jo H.M. The Effect of a Hand-Stretching Device During the Management of Spasticity in Chronic Hemiparetic Stroke Patients. Ann. Rehabil. Med. 2013;37:235. doi: 10.5535/arm.2013.37.2.235.
    1. Hu X., Tong K., Wei X., Rong W., Susanto E., Ho S. The effects of post-stroke upper-limb training with an electromyography (EMG)-driven hand robot. J. Electromyogr. Kinesiol. 2013;23:1065–1074. doi: 10.1016/j.jelekin.2013.07.007.
    1. Ferreira J., Moreira V., Machado J., Soares F. Improved biomedical device for spasticity quantification; Proceedings of the 2013 IEEE 3rd Portuguese Meeting in Bioengineering (ENBENG); Braga, Portugal. 20–23 February 2013; pp. 1–4.
    1. Sale P., Franceschini M., Mazzoleni S., Palma E., Agosti M., Posteraro F. Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. J. Neuroeng. Rehabil. 2014;11:104. doi: 10.1186/1743-0003-11-104.
    1. Taveggia G., Borboni A., Salvi L., Mulé C., Fogliaresi S., Villafañe J.H., Casale R. Efficacy of robot-assisted rehabilitation for the functional recovery of the upper limb in post-stroke patients: A randomized controlled study. Eur. J. Phys. Rehabil. Med. 2016;52:767–773.
    1. Pennati G.V., Plantin J., Borg J., Lindberg P.G. Normative NeuroFlexor data for detection of spasticity after stroke: A cross-sectional study. J. Neuroeng. Rehabil. 2016;13:30. doi: 10.1186/s12984-016-0133-x.
    1. Dehem S., Gilliaux M., Lejeune T., Detrembleur C., Galinski D., Sapin J., Vanderwegen M., Stoquart G. Assessment of upper limb spasticity in stroke patients using the robotic device REAplan. J. Rehabil. Med. 2017;49:565–571. doi: 10.2340/16501977-2248.
    1. Lee D.J., Bae S.J., Jang S.H., Chang P.H. Design of a clinically relevant upper-limb exoskeleton robot for stroke patients with spasticity; Proceedings of the 2017 International Conference on Rehabilitation Robotics (ICORR); London, UK. 17–20 July 2017; pp. 622–627.
    1. Calabrò R.S., Naro A., Russo M., Milardi D., Leo A., Filoni S., Trinchera A., Bramanti P. Is two better than one? Muscle vibration plus robotic rehabilitation to improve upper limb spasticity and function: A pilot randomized controlled trial. PLoS ONE. 2017;12:e0185936. doi: 10.1371/journal.pone.0185936.
    1. Posteraro F., Crea S., Mazzoleni S., Berteanu M., Ciobanu I., Vitiello N., Cempini M., Gervasio S., Mrachacz-Kersting N. Technologically-advanced assessment of upper-limb spasticity: A pilot study. Eur. J. Phys. Rehabil. Med. 2018;54:9.
    1. Sin M., Kim W.S., Cho K., Paik N.J. Isokinetic Robotic Device to Improve Test-Retest and Inter-Rater Reliability for Stretch Reflex Measurements in Stroke Patients with Spasticity. J. Vis. Exp. 2019:59814. doi: 10.3791/59814.
    1. Htoon Z.L., Sidek S.N., Fatai S., Rashid M.M. Estimation of Upper Limb Impedance Parameters Using Recursive Least Square Estimator; Proceedings of the 2016 International Conference on Computer and Communication Engineering (ICCCE); Kuala Lumpur, Malaysia. 26–27 July 2016; pp. 144–148.
    1. Sidiropoulos A., Karayiannidis Y., Doulgeri Z. Human-robot collaborative object transfer using human motion prediction based on dynamic movement primitives; Proceedings of the 2019 18th European Control Conference (ECC); Naples, Italy. 25–28 June 2019; pp. 2583–2588.
    1. Oña E.D., Jardón A., Cuesta-Gómez A., Sánchez-Herrera-Baeza P., Cano-de-la Cuerda R., Balaguer C. Validity of a Fully-Immersive VR-Based Version of the Box and Blocks Test for Upper Limb Function Assessment in Parkinson’s Disease. Sensors. 2020;20:2773. doi: 10.3390/s20102773.
    1. Scano A., Molteni F., Molinari Tosatti L. Low-Cost Tracking Systems Allow Fine Biomechanical Evaluation of Upper-Limb Daily-Life Gestures in Healthy People and Post-Stroke Patients. Sensors. 2019;19:1224. doi: 10.3390/s19051224.
    1. Zhang L.Q., Chung S., Lin A., van Rey E., Bai Z., Grant T., Roth E. A portable intelligent stretching device for treating spasticity and contracture with outcome evaluation; Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society, Engineering in Medicine and Biology; Houston, TX, USA. 23–26 October 2002; pp. 2453–2454.
    1. Ang W.S., Geyer H., Chen I.M., Ang W.T. Objective Assessment of Spasticity With a Method Based on a Human Upper Limb Model. IEEE Trans. Neural Syst. Rehabil. Eng. 2018;26:1414–1423. doi: 10.1109/TNSRE.2018.2821197.
    1. Jayaraman P.P., Forkan A.R.M., Morshed A., Haghighi P.D., Kang Y.B. Healthcare 4.0: A review of frontiers in digital health. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2020;10:e1350. doi: 10.1002/widm.1350.
    1. Heung H.L., Tang Z.Q., Shi X.Q., Tong K.Y., Li Z. Soft Rehabilitation Actuator With Integrated Post-stroke Finger Spasticity Evaluation. Front. Bioeng. Biotechnol. 2020;8:111. doi: 10.3389/fbioe.2020.00111.
    1. Oña E.D., Garcia-Haro J.M., Jardón A., Balaguer C. Robotics in health care: Perspectives of robot-aided interventions in clinical practice for rehabilitation of upper limbs. Appl. Sci. 2019;9:2586. doi: 10.3390/app9132586.
    1. Yee J., Low C.Y., Ong P., Soh W.S., Hanapiah F.A., Zakaria N.A.C., Enzberg S.v., Asmar L., Dumitrescu R. Verification of Mathematical Model for Upper Limb Spasticity with Clinical Data. Iop Conf. Ser. Mater. Sci. Eng. 2020;824:012013. doi: 10.1088/1757-899X/824/1/012013.
    1. Fleuren J.F., Voerman G.E., Erren-Wolters C.V., Snoek G.J., Rietman J.S., Hermens H.J., Nene A.V. Stop using the Ashworth Scale for the assessment of spasticity. J. Neurol. Neurosurg. Psychiatry. 2010;81:46–52. doi: 10.1136/jnnp.2009.177071.
    1. Stein J., Krebs H.I., Frontera W.R., Fasoli S.E., Hughes R., Hogan N. Comparison of Two Techniques of Robot-Aided Upper Limb Exercise Training After Stroke. Am. J. Phys. Med. Rehabil. 2004;83:720–728. doi: 10.1097/01.PHM.0000137313.14480.CE.
    1. Hermens H.J., Freriks B., Disselhorst-Klug C., Rau G. Development of recommendations for SEMG sensors and sensor placement procedures. J. Electromyogr. Kinesiol. 2000;10:361–374. doi: 10.1016/S1050-6411(00)00027-4.
    1. Riener R., Nef T., Colombo G. Robot-aided neurorehabilitation of the upper extremities. Med. Biol. Eng. Comput. 2005;43:2–10. doi: 10.1007/BF02345116.
    1. Toigo M., Flück M., Riener R., Klamroth-Marganska V. Robot-assisted assessment of muscle strength. J. Neuroeng. Rehabil. 2017;14:103. doi: 10.1186/s12984-017-0314-2.
    1. Hu X.L., Tong K.Y., Song R., Zheng X.J., Lui K.H. Robot-assisted wrist training for chronic stroke: A comparison between electromyography (EMG) driven robot and passive motion; Proceedings of the 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics; Scottsdale, AZ, USA. 19–22 October 2008; pp. 637–641.
    1. Malhotra S., Cousins E., Ward A., Day C., Jones P., Roffe C., Pandyan A. An investigation into the agreement between clinical, biomechanical and neurophysiological measures of spasticity. Clin. Rehabil. 2008;22:1105–1115. doi: 10.1177/0269215508095089.
    1. Jobin A., Levin M.F. Regulation of stretch reflex threshold in elbow flexors in children with cerebral palsy: A new measure of spasticity. Dev. Med. Child Neurol. 2000;42:531–540. doi: 10.1017/S0012162200001018.

Source: PubMed

3
Se inscrever