A cohort study investigating a simple, early assessment to predict upper extremity function after stroke - a part of the SALGOT study

Hanna C Persson, Margit Alt Murphy, Anna Danielsson, Åsa Lundgren-Nilsson, Katharina S Sunnerhagen, Hanna C Persson, Margit Alt Murphy, Anna Danielsson, Åsa Lundgren-Nilsson, Katharina S Sunnerhagen

Abstract

Background: For early prediction of upper extremity function, there is a need for short clinical measurements suitable for acute settings. Previous studies demonstrate correct prediction of function, but have ether included a complex assessment procedure or have an outcome that does not automatically correspond to motor function required to be useful in daily activity. The purpose of this study was to investigate whether a sub-set of items from the Action Research Arm Test (ARAT) at 3 days and 1 month post-stroke could predict the level of upper extremity motor function required for a drinking task at three later stages during the first year post-stroke.

Methods: The level of motor function required for a drinking task was identified with the Fugl-Meyer Assessment for Upper Extremity (FMA-UE). A structured process was used to select ARAT items not requiring special equipment and to find a cut-off level of the items' sum score. The early prognostic values of the selected items, aimed to determine the level of motor function required for a drinking task at 10 days and 1 and 12 months, were investigated in a cohort of 112 patients. The patients had a first time stroke and impaired upper extremity function at day 3 after stroke onset, were ≥18 years and received care in a stroke unit.

Results: Two items, "Pour water from glass to glass" and "Place hand on top of head", called ARAT-2, met the requirements to predict upper extremity motor function. ARAT-2 is a sum score (0-6) with a cut-off at 2 points, where >2 is considered an improvement. At the different time points, the sensitivity varied between 98% and 100%, specificity between 73% and 94%. Correctly classified patients varied between 81% and 96%.

Conclusions: Using ARAT-2, 3 days post-stroke could predict the level of motor function (assessed with FMA-UE) required for a drinking task during the first year after a stroke. ARAT-2 demonstrates high predictive values, is easily performed and has the potential to be clinically feasible.

Trail registration: ClinicalTrials.gov: NCT01115348.

Figures

Fig. 1
Fig. 1
Flowchart of the assessments and the drop-outs at different time points
Fig. 2
Fig. 2
Illustration of the selection process to identify items from the Action Research Arm Test (ARAT) feasible for clinical use in the acute stage to predict the motor function required for a drinking task (FMA-UE ≥32 points), within the first year after stroke
Fig. 3
Fig. 3
Illustration of the properties of the two item “Pour water from glass to glass” and “Place hand on top of head” (sum score 0-6 points) from the Action Research Arm Test (ARAT), to predict the patient’s ability to have the motor function required to use the paretic arm in a drinking task (FMA-UE ≥32 points), using receiver operating characteristic (ROC) curves. The optimal cut-off level at 2 points in the different assessments (A-D) is presented. A) the assessment at day 3 predicting day 10, B) the assessment at day 3 predicting month 1, C) the assessment at day 3 predicting month 12, D) the assessment at month 1 predicting month 12. Abbreviation: ACU, area under the curve

References

    1. Persson HC, Parziali M, Danielsson A, Sunnerhagen KS. Outcome and upper extremity function within 72 hours after first occasion of stroke in an unselected population at a stroke unit. A part of the SALGOT study. BMC neurology. 2012;12:162. doi: 10.1186/1471-2377-12-162.
    1. Pollock A, St George B, Fenton M, Firkins L. Top 10 research priorities relating to life after stroke–consensus from stroke survivors, caregivers, and health professionals. Int J Stroke. 2014;9(3):313–20. doi: 10.1111/j.1747-4949.2012.00942.x.
    1. Fugl-Meyer AR, Jaasko L, Leyman I, Olsson S, Steglind S. The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scand J Rehabil Med. 1975;7(1):13–31.
    1. Lyle RC. A performance test for assessment of upper limb function in physical rehabilitation treatment and research. Int J Rehabil Res. 1981;4(4):483–92. doi: 10.1097/00004356-198112000-00001.
    1. Hsieh CL, Hsueh IP, Chiang FM, Lin PH. Inter-rater reliability and validity of the action research arm test in stroke patients. Age Ageing. 1998;27(2):107–13. doi: 10.1093/ageing/27.2.107.
    1. Yozbatiran N, Der-Yeghiaian L, Cramer SC. A standardized approach to performing the action research arm test. Neurorehabil Neural Repair. 2008;22(1):78–90. doi: 10.1177/1545968307305353.
    1. Kwakkel G, Kollen BJ. Predicting activities after stroke: what is clinically relevant? Int J Stroke. 2013;8(1):25–32. doi: 10.1111/j.1747-4949.2012.00967.x.
    1. Coupar F, Pollock A, Rowe P, Weir C, Langhorne P. Predictors of upper limb recovery after stroke: a systematic review and meta-analysis. Clin Rehabil. 2012;26(4):291–313. doi: 10.1177/0269215511420305.
    1. Chen SY, Winstein CJ. A systematic review of voluntary arm recovery in hemiparetic stroke: critical predictors for meaningful outcomes using the international classification of functioning, disability, and health. J Neurol Phys Ther. 2009;33(1):2–13. doi: 10.1097/NPT.0b013e318198a010.
    1. Nijland RH, van Wegen EE, Harmeling-van der Wel BC, Kwakkel G. Presence of finger extension and shoulder abduction within 72 hours after stroke predicts functional recovery: early prediction of functional outcome after stroke: the EPOS cohort study. Stroke. 2010;41(4):745-50. doi:10.1161/STROKEAHA.109.572065
    1. Smania N, Gambarin M, Tinazzi M, Picelli A, Fiaschi A, Moretto G, et al. Are indexes of arm recovery related to daily life autonomy in patients with stroke? European journal of physical and rehabilitation medicine. 2009;45(3):349–54.
    1. Smania N, Paolucci S, Tinazzi M, Borghero A, Manganotti P, Fiaschi A, et al. Active finger extension: a simple movement predicting recovery of arm function in patients with acute stroke. Stroke; a journal of cerebral circulation. 2007;38(3):1088–90. doi: 10.1161/01.STR.0000258077.88064.a3.
    1. Stinear CM, Barber PA, Petoe M, Anwar S, Byblow WD. The PREP algorithm predicts potential for upper limb recovery after stroke. Brain. 2012;135(Pt 8):2527–35. doi: 10.1093/brain/aws146.
    1. Alt Murphy M, Persson HC, Danielsson A, Broeren J, Lundgren-Nilsson A, Sunnerhagen KS. SALGOT - Stroke Arm Longitudinal study at the University of Gothenburg, prospective cohort study protocol. BMC Neurol. 2011;11(1):56. doi: 10.1186/1471-2377-11-56.
    1. Duncan PW, Propst M, Nelson SG. Reliability of the Fugl-Meyer assessment of sensorimotor recovery following cerebrovascular accident. Phys Ther. 1983;63(10):1606–10.
    1. Alt Murphy M, Willen C, Sunnerhagen KS. Movement kinematics during a drinking task are associated with the activity capacity level after stroke. Neurorehabilitation and neural repair. 2012;26(9):1106–15. doi: 10.1177/1545968312448234.
    1. Brott T, Adams HP, Jr, Olinger CP, Marler JR, Barsan WG, Biller J, et al. Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989;20(7):864–70. doi: 10.1161/01.STR.20.7.864.
    1. Bamford J, Sandercock P, Dennis M, Burn J, Warlow C. Classification and natural history of clinically identifiable subtypes of cerebral infarction. Lancet. 1991;337(8756):1521–6. doi: 10.1016/0140-6736(91)93206-O.
    1. Socialstyrelsen (National board of health and welfare) Nationell utvärdering 2011 Strokevård (National assessment 2011. Stockholm: Socialstyrelsen; 2011.
    1. Nordin A, Alt Murphy M, Danielsson A. Intra-rater and inter-rater reliability at the item level of the Action Research Arm Test for patients with stroke. J Rehabil Med. 2014;46(8):738–45. doi: 10.2340/16501977-1831.
    1. Koh CL, Hsueh IP, Wang WC, Sheu CF, Yu TY, Wang CH, et al. Validation of the action research arm test using item response theory in patients after stroke. Journal of rehabilitation medicine : official journal of the UEMS European Board of Physical and Rehabilitation Medicine. 2006;38(6):375–80. doi: 10.1080/16501970600803252.
    1. Field A. Discovering statistics using IBM SPSS statistics : and sex and drugs and rock 'n' roll. 4. Los Angeles London: Sage; 2013.
    1. Hollander M, Wolfe DA. Nonparametric statistical methods. 2. New York, NY: John Wiley & Sons; 1999.
    1. Nam JM. Confidence-Limits for the Ratio of 2 Binomial Proportions Based on Likelihood Scores - Noniterative Method. Biometrical J. 1995;37(3):375-9. doi:10.1002/bimj.4710370311.
    1. Deeks JJ, Altman DG. Diagnostic tests 4: likelihood ratios. Bmj. 2004;329(7458):168–9. doi: 10.1136/bmj.329.7458.168.
    1. Prabhakaran S, Zarahn E, Riley C, Speizer A, Chong JY, Lazar RM, et al. Inter-individual variability in the capacity for motor recovery after ischemic stroke. Neurorehabil Neural Repair. 2008;22(1):64–71. doi: 10.1177/1545968307305302.
    1. Nakayama H, Jorgensen HS, Raaschou HO, Olsen TS. Recovery of upper extremity function in stroke patients: the Copenhagen Stroke Study. Arch Phys Med Rehabil. 1994;75(4):394–8. doi: 10.1016/0003-9993(94)90161-9.
    1. Stinear C. Prediction of recovery of motor function after stroke. Lancet Neurol. 2010;9(12):1228-32. doi:10.1016/S1474-4422(10)70247-7.
    1. Prager EM, Lang CE. Predictive ability of 2-day measurement of active range of motion on 3-mo upper-extremity motor function in people with poststroke hemiparesis. The American journal of occupational therapy: official publication of the American Occupational Therapy Association. 2012;66(1):35–41. doi: 10.5014/ajot.2012.002683.
    1. Veerbeek JM, Kwakkel G, van Wegen EE, Ket JC, Heymans MW. Early prediction of outcome of activities of daily living after stroke: a systematic review. Stroke. 2011;42(5):1482–8. doi: 10.1161/STROKEAHA.110.604090.
    1. Stinear CM, Byblow WD. Predicting and accelerating motor recovery after stroke. Current opinion in neurology. 2014;27(6):624–30.
    1. Van der Lee JH, De Groot V, Beckerman H, Wagenaar RC, Lankhorst GJ, Bouter LM. The intra- and interrater reliability of the action research arm test: a practical test of upper extremity function in patients with stroke. Arch Phys Med Rehabil. 2001;82(1):14–9. doi: 10.1053/apmr.2001.19021.
    1. van der Lee JH, Snels IA, Beckerman H, Lankhorst GJ, Wagenaar RC, Bouter LM. Exercise therapy for arm function in stroke patients: a systematic review of randomized controlled trials. Clin Rehabil. 2001;15(1):20–31. doi: 10.1191/026921501677557755.
    1. Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the Proportional Recovery Model for the Upper Extremity After an Ischemic Stroke. Neurorehabil Neural Repair. 2014

Source: PubMed

3
Se inscrever