Estimated oxygen extraction versus dynamic parameters of fluid-responsiveness for perioperative hemodynamic optimization of patients undergoing non-cardiac surgery: a non-inferiority randomized controlled trial

Andrea Carsetti, Mirco Amici, Tonino Bernacconi, Paolo Brancaleoni, Elisabetta Cerutti, Marco Chiarello, Diego Cingolani, Luisanna Cola, Daniela Corsi, Giorgio Forlini, Marina Giampieri, Salvatore Iuorio, Tiziana Principi, Giuseppe Tappatà, Michele Tempesta, Erica Adrario, Abele Donati, Andrea Carsetti, Mirco Amici, Tonino Bernacconi, Paolo Brancaleoni, Elisabetta Cerutti, Marco Chiarello, Diego Cingolani, Luisanna Cola, Daniela Corsi, Giorgio Forlini, Marina Giampieri, Salvatore Iuorio, Tiziana Principi, Giuseppe Tappatà, Michele Tempesta, Erica Adrario, Abele Donati

Abstract

Background: Goal directed therapy (GDT) is able to improve mortality and reduce complications in selected high-risk patients undergoing major surgery. The aim of this study is to compare two different strategies of perioperative hemodynamic optimization: one based on optimization of preload using dynamic parameters of fluid-responsiveness and the other one based on estimated oxygen extraction rate (O2ER) as target of hemodynamic manipulation.

Methods: This is a multicenter randomized controlled trial. Adult patients undergoing elective major open abdominal surgery will be allocated to receive a protocol based on dynamic parameters of fluid-responsiveness or a protocol based on estimated O2ER. The hemodynamic optimization will be continued for 6 h postoperatively. The primary outcome is difference in overall postoperative complications rate between the two protocol groups. Fluids administered, fluid balance, utilization of vasoactive drugs, hospital length of stay and mortality at 28 day will also be assessed.

Discussion: As a predefined target of cardiac output (CO) or oxygen delivery (DO2) seems to be not adequate for every patient, a personalized therapy is likely more appropriate. Following this concept, dynamic parameters of fluid-responsiveness allow to titrate fluid administration aiming CO increase but avoiding fluid overload. This approach has the advantage of personalized fluid therapy, but it does not consider if CO is adequate or not. A protocol based on O2ER considers this second important aspect. Although positive effects of perioperative GDT have been clearly demonstrated, currently studies comparing different strategies of hemodynamic optimization are lacking.

Trial registration: ClinicalTrials.gov, NCT04053595. Registered on 12/08/2019.

Keywords: Complications; Fluid-responsiveness; Oxygen extraction rate; Perioperative goal directed therapy.

Conflict of interest statement

The authors declare that they have no competing interests. The study has not received funding/assistance from any commercial organization.

Figures

Fig. 1
Fig. 1
Protocol A: Hemodynamic optimization protocol based on dynamic parameters of fluid responsiveness. PPV: pulse pressure variation; SVV: stroke volume variation
Fig. 2
Fig. 2
Protocol B: Hemodynamic optimization protocol based on estimated oxygen extraction rate. CVP: central venous pressure; O2ERe: oxygen extraction rate estimate; PPV: pulse pressure variation; SVV: stroke volume variation
Fig. 3
Fig. 3
Flow diagram
Fig. 4
Fig. 4
Study timeline

References

    1. Shoemaker WC, Appel PL, Kram HB. Role of oxygen debt in the development of organ failure sepsis, and death in high-risk surgical patients. Chest. 1992;102:208–215. doi: 10.1378/chest.102.1.208.
    1. Cecconi M, Corredor C, Arulkumaran N, Abuella G, Ball J, Grounds RM, et al. Clinical review: goal-directed therapy-what is the evidence in surgical patients? The effect on different risk groups. Crit Care. 2013;17:209. doi: 10.1186/cc11823.
    1. Scheeren TWL, Wiesenack C, Gerlach H, Marx G. Goal-directed intraoperative fluid therapy guided by stroke volume and its variation in high-risk surgical patients: a prospective randomized multicentre study. J Clin Monit Comput. 2013;27:225–233. doi: 10.1007/s10877-013-9461-6.
    1. Dalfino L, Giglio MT, Puntillo F, Marucci M, Brienza N. Haemodynamic goal-directed therapy and postoperative infections: earlier is better. A systematic review and meta-analysis. Crit Care. 2011;15:R154. doi: 10.1186/cc10284.
    1. Salzwedel C, Puig J, Carstens A, Bein B, Molnar Z, Kiss K, et al. Perioperative goal-directed hemodynamic therapy based on radial arterial pulse pressure variation and continuous cardiac index trending reduces postoperative complications after major abdominal surgery: a multi-center, prospective, randomized study. Crit Care. 2013;17:R191. doi: 10.1186/cc12885.
    1. Pearse R, Dawson D, Fawcett J, Rhodes A, Grounds RM, Bennett ED. Early goal-directed therapy after major surgery reduces complications and duration of hospital stay. A randomised, controlled trial. Crit Care. 2005;9:R687–R693. doi: 10.1186/cc3887.
    1. Grocott MPW, Dushianthan A, Hamilton MA, Mythen MG, Harrison D, Rowan K. Perioperative increase in global blood flow to explicit defined goals and outcomes following surgery. Cochrane Database Syst Rev. 2012;11:CD004082.
    1. Donati A, Loggi S, Preiser J-C, Orsetti G, Munch C, Gabbanelli V, et al. Goal-directed intraoperative therapy reduces morbidity and length of hospital stay in high-risk surgical patients. Chest. 2007;132:1817–1824. doi: 10.1378/chest.07-0621.
    1. Carsetti A, Cecconi M, Rhodes A. Fluid bolus therapy: monitoring and predicting fluid responsiveness. Curr Opin Crit Care. 2015;21:388–394. doi: 10.1097/MCC.0000000000000240.
    1. McGee WT, Raghunathan K. Physiologic goal-directed therapy in the perioperative period: the volume prescription for high-risk patients. J Cardiothorac Vasc Anesth. 2013;27:1079–1086. doi: 10.1053/j.jvca.2013.04.019.
    1. Chan A-W, Tetzlaff JM, Gøtzsche PC, Altman DG, Mann H, Berlin JA, et al. SPIRIT 2013 explanation and elaboration: guidance for protocols of clinical trials. BMJ. 2013;346:e7586. doi: 10.1136/bmj.e7586.
    1. Lopes MR, Oliveira MA, Pereira VOS, Lemos IPB, Auler JOCJ, Michard F. Goal-directed fluid management based on pulse pressure variation monitoring during high-risk surgery: a pilot randomized controlled trial. Crit Care. 2007;11:R100. doi: 10.1186/cc6117.
    1. Dindo D, Demartines N, Clavien P-A. Classification of surgical complications: a new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann Surg. 2004;240:205–213. doi: 10.1097/.
    1. Schulz KF, Altman DG, Moher D. CONSORT 2010 statement: updated guidelines for reporting parallel group randomised trials. BMJ. 2010;340:c332. doi: 10.1136/bmj.c332.
    1. Pearse RM, Harrison DA, MacDonald N, Gillies MA, Blunt M, Ackland G, et al. Effect of a perioperative, cardiac output-guided hemodynamic therapy algorithm on outcomes following major gastrointestinal surgery: a randomized clinical trial and systematic review. JAMA. 2014;311:2181–2190. doi: 10.1001/jama.2014.5305.
    1. Blackwelder WC. “Proving the null hypothesis” in clinical trials. Control Clin Trials. 1982;3:345–353. doi: 10.1016/0197-2456(82)90024-1.
    1. Sun Y, Chai F, Pan C, Romeiser JL, Gan TJ. Effect of perioperative goal-directed hemodynamic therapy on postoperative recovery following major abdominal surgery-a systematic review and meta-analysis of randomized controlled trials. Crit Care. 2017;21:141. doi: 10.1186/s13054-017-1728-8.
    1. Anderson JR, High R. Alternatives to the standard Fleming, Harrington, and O’Brien futility boundary. Clin Trials. 2011;8:270–276. doi: 10.1177/1740774511401636.
    1. Korn EL, Freidlin B. Interim monitoring for non-inferiority trials: minimizing patient exposure to inferior therapies. Ann Oncol Off J Eur Soc Med Oncol. 2018;29:573–577. doi: 10.1093/annonc/mdx788.
    1. D’Agostino RB, Massaro JM, Sullivan LM. Non-inferiority trials: design concepts and issues - the encounters of academic consultants in statistics. Stat Med. 2003;22:169–186. doi: 10.1002/sim.1425.

Source: PubMed

3
Se inscrever