Reversing Type 2 Diabetes: A Narrative Review of the Evidence

Sarah J Hallberg, Victoria M Gershuni, Tamara L Hazbun, Shaminie J Athinarayanan, Sarah J Hallberg, Victoria M Gershuni, Tamara L Hazbun, Shaminie J Athinarayanan

Abstract

Background: Type 2 diabetes (T2D) has long been identified as an incurable chronic disease based on traditional means of treatment. Research now exists that suggests reversal is possible through other means that have only recently been embraced in the guidelines. This narrative review examines the evidence for T2D reversal using each of the three methods, including advantages and limitations for each.

Methods: A literature search was performed, and a total of 99 original articles containing information pertaining to diabetes reversal or remission were included.

Results: Evidence exists that T2D reversal is achievable using bariatric surgery, low-calorie diets (LCD), or carbohydrate restriction (LC). Bariatric surgery has been recommended for the treatment of T2D since 2016 by an international diabetes consensus group. Both the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) now recommend a LC eating pattern and support the short-term use of LCD for weight loss. However, only T2D treatment, not reversal, is discussed in their guidelines.

Conclusion: Given the state of evidence for T2D reversal, healthcare providers need to be educated on reversal options so they can actively engage in counseling patients who may desire this approach to their disease.

Keywords: bariatric surgery; diabetes; diabetes reversal; low-carbohydrate; very-low-calorie.

Conflict of interest statement

S.J.H. is an employee and shareholder of Virta Health, a for-profit company that provides remote diabetes care using a low-carbohydrate nutrition intervention, and serves as an advisor for Atkins Corp. V.M.G. has no conflicts of interest to declare. T.L.H. is an employee of Virta Health. S.J.A. is an employee and shareholder of Virta Health.

Figures

Figure 1
Figure 1
(A) Mean changes of hemoglobin A1c (HbA1c) from baseline to last published date for each study retrieved to represent the three methods of reversal; (B) mean changes of weight from baseline to last published date for each studies retrieved to represent the three methods of reversal. Note: We chose these three studies to represent the three methods of reversal based on publication date and relevance to diabetes reversal. Note that baseline characteristics differ. Surgery trial examined by sleeve gastrectomy and Roux-en-Y gastric bypass separately and were represented as sleeve and bypass in the graph. Surgery: STAMPEDE [34,35]. Low-calorie diets (LCD): DIRECT [65,66]; carbohydrate restriction (LC): IUH [99,107].

References

    1. IDF Diabetes Atlas. 8th ed. International Diabetes Federation; Brussels, Belgium: 2017. International Diabetes Federation.
    1. Centers for Disease Control and Prevention National Diabetes Statistics Report, 2017. [(accessed on 1 February 2019)]; Available online: .
    1. Home P., Riddle M., Cefalu W.T., Bailey C.J., Del Prato S., Leroith D., Schemthaner G., van Gaal L., Raz I. Insulin therapy in people with Type 2 diabetes: Opportunities and challenges. Diabetes Care. 2014;37:1499–1508. doi: 10.2337/dc13-2743.
    1. World Health Organization Global Report on Diabetes. [(accessed on 1 February 2019)];2016 Available online:
    1. Davies M.J., D’Alessio D.A., Fradkin J., Kernan W.N., Mathieu C., Mingrone G., Rossing P., Tsapas A., Wexler D.J., Buse J.B. Management of hyperglycemia in Type 2 diabetes, 2018. A consensus report by the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD) Diabetes Care. 2018;41:2669–2701. doi: 10.2337/dci18-0033.
    1. Ramos-Levi A.M., Cabrerizo L., Matia P., Sanchez-Pernaute A., Torres A.J., Rubio M.A. Which criteria should be used to define type 2 diabetes remission after bariatric surgery. BMC Surgery. 2013;13:8. doi: 10.1186/1471-2482-13-8.
    1. Xiang A.H., Trigo E., Martinez M., Katkhouda N., Beale E., Wang X., Wu J., Chow T., Montgomery C., Nayak K.S., et al. Impact of gastric banding versus metformin on β-cell function in adults with impaired glucose tolerance or mild type 2 diabetes. Diabetes Care. 2018;41:2544–2551. doi: 10.2337/dc18-1662.
    1. Diabetes Prevention Program Research Group Long-term effects of metformin on diabetes prevention: Identification of subgroups that benefited most in the diabetes prevention program and diabetes prevention outcomes study. Diabetes Care. 2019:dc181970. doi: 10.2337/dc18-1970.
    1. Buse J.B., Caprio S., Cefalu W.T., Ceriello A., Del Prato S., Inzucchi S.E., McLaughlin S., Phillips G.L., II, Robertson R.P., Rubino F., et al. How do we define cure of diabetes? Diabetes Care. 2009;32:2133–2135. doi: 10.2337/dc09-9036.
    1. Karter A.J., Nundy S., Parker M.M., Moffet H.H., Huang E.S. Incidence of remission in adults with Type 2 diabetes: The Diabetes & Aging Study. Diabetes Care. 2014;37:3188–3195.
    1. Steven S., Carey P.E., Small P.K., Taylor R. Reversal of Type 2 diabetes after bariatric surgery is determined by the degree of achieved weight loss in both short- and long-duration diabetes. Diabet Med. 2015;32:47–53. doi: 10.1111/dme.12567.
    1. Rubino F., Nathan D., Eckel R.H., Schauer P.R., Alberti K.G., Zimmet P.Z., Del Prato S., Ji L., Sadikot S.M., Herman W.H., et al. Delegates of the 2nd Diabetes Surgery Summit. Metabolic surgery in the treatment algorithm for type 2 diabetes: A joint statement by International Diabetes Organizations. Diabetes Care. 2016;39:861–877. doi: 10.2337/dc16-0236.
    1. Anhe F.F., Varin T.V., Schertzer J.D., Marette A. The Gut Microbiota as a Mediator of Metabolic Benefits after Bariatric Surgery. Can. J. Diabetes. 2017;41:439–447. doi: 10.1016/j.jcjd.2017.02.002.
    1. Medina D.A., Pedreros J.P., Turiel D., Quezada N., Pimentel F., Escalona A., Garrido D. Distinct patterns in the gut microbiota after surgical or medical therapy in obese patients. PeerJ. 2017;5:e3443. doi: 10.7717/peerj.3443.
    1. Magouliotis D.E., Tasiopoulou V.S., Sioka E., Chatedaki C., Zacharoulis D. Impact of Bariatric Surgery on Metabolic and Gut Microbiota Profile: A Systematic Review and Meta-analysis. Obes. Surg. 2017;27:1345–1357. doi: 10.1007/s11695-017-2595-8.
    1. Murphy R., Tsai P., Jullig M., Liu A., Plank L., Booth M. Differential Changes in Gut Microbiota After Gastric Bypass and Sleeve Gastrectomy Bariatric Surgery Vary According to Diabetes Remission. Obes. Surg. 2017;27:917–925. doi: 10.1007/s11695-016-2399-2.
    1. Kaska L., Sledzinski T., Chomiczewska A., Dettlaff-Pokora A., Swierczynski J. Improved glucose metabolism following bariatric surgery is associated with increased circulating bile acid concentrations and remodeling of the gut microbiome. World J. Gastroenterol. 2016;22:8698–8719. doi: 10.3748/wjg.v22.i39.8698.
    1. Penney N.C., Kinross J., Newton R.C., Purkayastha S. The role of bile acids in reducing the metabolic complications of obesity after bariatric surgery: a systematic review. Int. J. Obes. (Lond). 2015;39:1565–1574. doi: 10.1038/ijo.2015.115.
    1. Sweeney T.E., Morton J.M. The human gut microbiome: A review of the effect of obesity and surgically induced weight loss. JAMA Surg. 2013;148:563–569. doi: 10.1001/jamasurg.2013.5.
    1. Rubino F., Gagner M. Potential of surgery for curing type 2 diabetes mellitus. Ann. Surg. 2002;236:554–559. doi: 10.1097/00000658-200211000-00003.
    1. Cohen R., Caravatto P.P., Correa J.L., Noujaim P., Petry T.Z., Salles J.E., Schiavon C.A. Glycemic control after stomach-sparing duodenal-jejunal bypass surgery in diabetic patients with low body mass index. Surg. Obes. Relat. Dis. 2012;8:375–380. doi: 10.1016/j.soard.2012.01.017.
    1. Federico A., Dallio M., Tolone S., Gravina A.G., Patrone V., Romano M., Tuccillo C., Mozzillo A.L., Amoroso V., Misso G., et al. Gastrointestinal Hormones, Intestinal Microbiota and Metabolic Homeostasis in Obese Patients: Effect of Bariatric Surgery. In Vivo. 2016;30:321–330.
    1. Peat C.M., Kleiman S.C., Bulik C.M., Carroll I.M. The Intestinal Microbiome in Bariatric Surgery Patients. Eur. Eat. Disord. Rev. 2015;23:496–503. doi: 10.1002/erv.2400.
    1. Sweeney T.E., Morton J.M. Metabolic surgery: Action via hormonal milieu changes, changes in bile acids or gut microbiota? A summary of the literature. Best Pract. Res. Clin. Gastroenterol. 2014;28:727–740. doi: 10.1016/j.bpg.2014.07.016.
    1. Ma I.T., Madura J.A. Gastrointestinal Complications after Bariatric Surgery. Gastroenterol. Hepatol. (N Y). 2015;11:526–535.
    1. Rubino F., Schauer P.R., Kaplan L.M., Cummings D.E. Metabolic surgery to treat type 2 diabetes: Clinical outcome and mechanisms of action. Annu. Rev. Med. 2010;61:393–411. doi: 10.1146/annurev.med.051308.105148.
    1. Abraham A., Ikramuddin S., Jahansouz C., Arafat F., Hevelone N., Leslie D. Trends in bariatric surgery: Procedure selection, revisional surgeries, and readmissions. Obes. Surg. 2016;26:1371–1377. doi: 10.1007/s11695-015-1974-2.
    1. Tack J., Deloose E. Complications of bariatric surgery: Dumping syndrome, reflux and vitamin deficiencies. Best Prac. Res. Clin. Gastroenterol. 2014;28:741–749. doi: 10.1016/j.bpg.2014.07.010.
    1. Eisenbarg D., Azagury D.E., Ghiassi S., Grover B.T., Ki J.J. ASMBS position statement on postprandial hyperinsulinemic hypoglycemia after bariatric surgery. Surg. Obes. Relat. Dis. 2017;13:371–378. doi: 10.1016/j.soard.2016.12.005.
    1. Pories W.J., Mehaffey J.H., Staton K.M. The surgical treatment of type two diabetes mellitus. Surg Clin. N. Am. 2011;91:821–836. doi: 10.1016/j.suc.2011.04.008.
    1. Purnell J.Q., Selzer F., Wahed A.S., Pender J., Pories W., Pomp A., Dakin G., Mitchell J., Garcia L., Staten M.A., et al. Type 2 Diabetes Remission Rates After Laparoscopic Gastric Bypass and Gastric Banding: Results of the Longitudinal Assessment of Bariatric Surgery Study. Diabetes Care. 2016;39:1101–1107. doi: 10.2337/dc15-2138.
    1. Salminen P., Helmio M., Ovaska J., Juuti A., Leivonen M., Peromaa-Haavista P., Hurme S., Soinio M., Nuutila P., Victorzon M. Effect of laparoscopic sleeve gastrectomy vs. laparoscopic Roux-en-Y gastric bypass on weight loss at 5 years among patients with morbid obesity: The SLEEVEPASS randomized clinical trial. JAMA. 2018;319:241–254. doi: 10.1001/jama.2017.20313.
    1. Schauer P.R., Kashyap S.R., Wolski K., Brethauer S.A., Kirwan J.P., Pothier C.E., Thomas S., Abood B., Nissen S.E., Bhatt D.L. Bariatric surgery versus medical therapy in obese patients with diabetes. N. Engl. J. Med. 2012;366:1567–1576. doi: 10.1056/NEJMoa1200225.
    1. Kashyap S.R., Bhatt D.L., Wolski K., Watanabe R.M., Abdul-Ghani M., Abood B., Pothier C.E., Brethauer S., Nissen S., Gupta M., et al. Metabolic effects of bariatric surgery in patients with moderate obesity and type 2 diabetes: Analysis of a randomized control trial comparing surgery with intensive medical treatment. Diabetes Care. 2013;36:2175–2182. doi: 10.2337/dc12-1596.
    1. Schauer P.R., Bhatt D.L., Kirwan J.P., Wolski K., Aminian A., Brethauer S.A., Navaneethan S.D., Singh R.P., Pothier C.E., Nissen S.E., et al. Bariatric surgery versus intensive medical therapy for diabetes: 5-year outcomes. N. Engl. J. Med. 2017;376:641–651. doi: 10.1056/NEJMoa1600869.
    1. Doble B., Wordsworth S., Rogers C.A., Welbourn R., Byrne J., Blazeby J.M., By-Band-Sleeve Trial Management Group What are the real procedural costs of bariatric surgery? A systematic literature review of published cost analyses. Obes. Surg. 2017;27:2179–2192. doi: 10.1007/s11695-017-2749-8.
    1. Warren J.A., Ewing J.A., Hale A.L., Blackhurst D.W., Bour E.S., Scott J.D. Cost-effectiveness of bariatric surgery: Increasing the economic viability of the most effective treatment for type II diabetes mellitus. Am. Surgeon. 2015;81:807–811.
    1. Klein S., Ghosh A., Cremieux P.Y., Eapen S., McGavock T.J. Economic impact of the clinical benefits of bariatric surgery in diabetes patients with BMI ≥ 35kg/m2. Obesity. 2011;19:581–587. doi: 10.1038/oby.2010.199.
    1. Picot J., Jones J., Colquitt J.L., Gospodarevskaya E., Loveman E., Baxter L., Clegg A.J. The clinical effectiveness and cost-effectiveness of bariatric (weight loss) surgery for obesity: A systematic review and economic evaluation. Health Technol. Assess. 2009;13:1–190. doi: 10.3310/hta13410.
    1. Schiavo L., Pilone V., Rossetti G., Barbarisi A., Cesaretti M., Iannelli A. A 4-Week Preoperative Ketogenic Micronutrient-Enriched Diet Is Effective in Reducing Body Weight, Left Hepatic Lobe Volume, and Micronutrient Deficiencies in Patients Undergoing Bariatric Surgery: A Prospective Pilot Study. Obes. Surg. 2018;28:2215–2224. doi: 10.1007/s11695-018-3145-8.
    1. Leonetti F., Campanile F.C., Coccia F., Capoccia D., Alessandroni L., Puzziello A., Coluzzi I., Silecchia G. Very low-carbohydrate ketogenic diet before bariatric surgery: Prospective evaluation of a sequential diet. Obes. Surg. 2015;25:64–71. doi: 10.1007/s11695-014-1348-1.
    1. Gumbs A.A., Pomp A., Gagner M. Revisional bariatric surgery for inadequate weight loss. Obes. Surg. 2007;17:1137–1145. doi: 10.1007/s11695-007-9209-9.
    1. Velapati S.R., Shah M., Kuchkuntla A.R., Abu-Dayyeh B., Grothe K., Hurt R.T., Mundi M.S. Weight Regain After Bariatric Surgery: Prevalence, Etiology, and Treatment. Curr. Nutr. Rep. 2018;7:329–334. doi: 10.1007/s13668-018-0243-0.
    1. Shoar S., Nguyen T., Ona M.A., Reddy M., Anand S., Alkuwari M.J., Saber A.A. Roux-end-Y gastric bypass reversal: A systematic review. Surg. Obes. Relat. Dis. 2016;12:1366–1372. doi: 10.1016/j.soard.2016.02.023.
    1. Bojsen-Moller K.N. Mechanisms of improved glycemic control after Roux-en-Y gastric bypass. Dan. Med. J. 2015;62:B5057.
    1. Pories W.J., Swanson M.S., MacDonald K.G., Long S.B., Morris P.G., Brown B.M., Barakat H.A., de Ramon R.A., Israel G., Dolezal J.M. Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Ann. Surg. 1995;222:339–350. doi: 10.1097/00000658-199509000-00011.
    1. Sjostrom L., Lindroos A.K., Peltonen M., Torgerson J., Bouchard C., Carlsson B., Dahlgren S., Larsson B., Narbro K., Sjostrom D., et al. Lifestyle, diabetes and cardiovascular risk factors 10 years after bariatric surgery. N. Engl. J. Med. 2004;351:2683–2693. doi: 10.1056/NEJMoa035622.
    1. Bistrian B.R., Blackburn G.L., Flatt J.P., Sizer J., Scrimshaw N.S., Sherman M. Nitrogen metabolism and insulin requirements in obese diabetic adults on a protein-sparing modified fast. Diabetes. 1976;25:494–504. doi: 10.2337/diab.25.6.494.
    1. Bauman W.A., Schwartz E., Rose H.G., Eisenstein H.N., Johnson D.W. Early and long term effects of acute caloric deprivation in obese diabetic patients. Am. J. Med. 1988;85:38–46. doi: 10.1016/0002-9343(88)90500-1.
    1. Hughes T.A., Gwynne J.T., Switzer B.R., Herbst C., White G. Effects of caloric restriction and weight loss on glycemic control, insulin release and resistance, and atherosclerotic risk in obese patients with type II diabetes mellitus. Am. J. Med. 1984;77:7–17. doi: 10.1016/0002-9343(84)90429-7.
    1. Hammer S., Snel M., Lamb H.J., Jazet I.M., van der Meer R.W., Pijl H., Meinders E.A., Romijn J.A., de Roos A., Smit J.W. Prolonged caloric restriction in obese patients with type 2 diabetes mellitus decreases myocardial triglyceride content and improves myocardial function. J. Am. Coll. Cardiol. 2008;52:1006–1012. doi: 10.1016/j.jacc.2008.04.068.
    1. Snel M., Jonker J.T., Hammer S., Kerpershoek G., Lamb H.J., Meinders A.E., Pijl H., de Roos A., Romijn J.A., Smit J.W.A. Long-term beneficial effect of a 16-week very low calorie diet on pericardial fat in obese type 2 diabetes mellitus patients. Obesity. 2012;20:1572–1576. doi: 10.1038/oby.2011.390.
    1. Paisey R.B., Harvey P., Rice S., Belka I., Bower L., Dunn M., Taylor P., Paisey R.M. An intensive weight loss programme in established type 2 diabetes and controls: Effect on weight and atherosclerosis risk factors at 1 year. Diabet. Med. 1998;15:73–79. doi: 10.1002/(SICI)1096-9136(199801)15:1<73::AID-DIA516>;2-F.
    1. Wing R.R., Blair E., Marcus M., Epstein L.H., Harvey J. Year-long weight loss treatment for obese patients with type II diabetes: Does including an intermittent very-low-calorie diet improve outcome? Am. J. Med. 1994;97:354–362. doi: 10.1016/0002-9343(94)90302-6.
    1. Damms-Machado A., Weser G., Bischoff SC. Micronutrient deficiency in obese subjects undergoing low calorie diet. Nutr. J. 2012:11. doi: 10.1186/1475-2891-11-34.
    1. Gardner C.D., Kim S., Bersamin A., Dopler-Nelson M., Otten J., Oelrich B., Cherin R. Micronutrient quality of weight-loss diets that focus on macronutrients: Results from the A to Z study. Am. J. Clin. Nutr. 2010;92:304–312. doi: 10.3945/ajcn.2010.29468.
    1. Ryan D.H., Espeland M.A., Foster G.D., Haffner S.M., Hubbard V.S., Johnson K.C., Kahn S.E., Knowler W.C., Yanovski S.Z., Look AHEAD Research Group Look AHEAD (Action for Health in Diabetes): Design and methods for a clinical trial of weight loss for the prevention of cardiovascular disease in type 2 diabetes. Control Clin Trials. 2003;24:610–628.
    1. Gregg E.W., Chen H., Wagenknecht L.E., Clark J.M., Delahanty L.M., Bantle J., Pownall H.J., Johnson K.C., Safford M.M., Kitabchi A.E., et al. Association of an intensive lifestyle intervention with remission of type 2 diabetes. JAMA. 2012;308:2489–2496. doi: 10.1001/jama.2012.67929.
    1. Mottalib A., Sakr M., Shehabeldin M., Hamdy O. Diabetes remission after nonsurgical intensive lifestyle intervention in obese patients with Type 2 diabetes. J. Diabetes Res. 2015:468704. doi: 10.1155/2015/468704.
    1. Ades P.A., Savage P.D., Marney A.M., Harvey J., Evans K.A. Remission of recently diagnosed type 2 diabetes mellitus with weight loss and exercise. J. Cardiopulm. Rehabil. Prev. 2015;35:193–197. doi: 10.1097/HCR.0000000000000106.
    1. Bhatt A.A., Choudhari P.K., Mahajan R.R., Sayyad M.G., Pratyush D.D., Hasan I., Javherani R.S., Bothale M.M., Purandare V.B., Unnikrishnan A.G. Effect of a low-calorie diet on restoration of normoglycemia in obese subjects with Type 2 diabetes. Indian J. Endocrinol. Metab. 2017;21:776–780.
    1. Lim E.L., Hollingsworth K.G., Aribisala B.S., Chen M.J., Mathers J.C., Taylor R. Reversal of type 2 diabetes: Normalisation of beta cell function in association with decreased pancreas and liver triacylglycerol. Diabetol. 2011;54:2506–2514. doi: 10.1007/s00125-011-2204-7.
    1. Steven S., Hollingsworth K.G., Al-Mrabeh A., Avery L., Aribisala B., Caslake M., Taylor R. Very low-calorie diet and 6 months of weight stability in type 2 diabetes: Pathophysiological changes in responders and nonresponders. Diabetes Care. 2016;39:808–815. doi: 10.2337/dc15-1942.
    1. Lean M.J., Leslie W.S., Barnes A.C., Brosnahan N., Thom G., McCombie L., Peters C., Zhyzhneuskaya S., Al-Mrabeh A., Hollingsworth K.G., et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): An open-label, cluster-randomised trial. Lancet. 2018;391:541–551. doi: 10.1016/S0140-6736(17)33102-1.
    1. Lean M.E.J., Leslie W.S., Barnes A.C., Brosnahan N., Thom G., McCombie L., Peters C., Zhyzhneuskaya S., Al-Mrabeh A., Hollingsworth K.G., et al. Durability of a primary care-led weight-management intervention for remission of type 2 diabetes: 2-year results of the DiRECT open-label, cluster-randomised trial. Lancet Diabetes Endocrinol. :2019. doi: 10.1016/S2213-8587(19)30068-3.
    1. McInnes N., Smith A., Otto R., Vandermey J., Punthakee Z., Sherifali D., Balasubramaniam K., Hall S., Gerstein HC. Piloting a remission strategy in type 2 diabetes: Results of a randomized controlled trial. J. Clin. Endocrinol. Metab. 2017;102:1596–1605. doi: 10.1210/jc.2016-3373.
    1. Fothergill E., Guo J., Howard L., Kerns J.C., Knuth N.D., Brychta R., Chen K.Y., Skarulis M.C., Walter M., Walter P.J., et al. Persistent metabolic adaptation 6 years after “The Biggest Loser” competition. Obesity. 2016;24:1612–1619. doi: 10.1002/oby.21538.
    1. Greenway F.L. Physiological adaptations to weight loss and factors favouring weight regain. Int. J. Obes. 2015;39:1188–1196. doi: 10.1038/ijo.2015.59.
    1. Campbell W.R. Dietetic treatment in diabetes mellitus. Can. Med. Assoc. J. 1923;13:487–492.
    1. Westman E.C., Yancy W.S., Humphreys M. Dietary treatment of diabetes mellitus in the pre-insulin era (1914–1922) Perspect. Biol. Med. 2006;49:77–83. doi: 10.1353/pbm.2006.0017.
    1. Arky R., Wylie-Rosett J., El-Beheri B. Examination of current dietary recommendations for individuals with diabetes mellitus. Diabetes Care. 1982;5:59–63. doi: 10.2337/diacare.5.1.59.
    1. Anderson J.W., Geil P.B. New perspectives in nutrition management of diabetes mellitus. Am. J. Med. 1988;85:159–165. doi: 10.1016/0002-9343(88)90410-X.
    1. American Diabetes Association Summary of Revisions: Standards of Medical Care in Diabetes-2019. Diabetes Care. 2019;42:S4–S6.
    1. Department of Veteran Affairs and Department of Defense VA/DoD Clinical Practice Guideline for the Management of Type 2 Diabetes Mellitus in Primary Care. Version 5.0. [(accessed on 20 January 2019)]; Available online:
    1. Westman E.C., Feinman R.D., Mavropoulos J.C., Vernon M.C., Volek J.S., Wortman J.A., Yancy W.S., Phinney S.D. Low carbohydrate nutrition and metabolism. Am. J. Clin. Nutr. 2007;86:276–284. doi: 10.1093/ajcn/86.2.276.
    1. Stern L., Iqbal N., Seshadri P., Chicano K.L., Daily D.A., McGrory J., Williams M., Gracely E.J., Samaha F.F. The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: One-year follow-up of a randomized trial. Ann. Intern. Med. 2004;140:778–785. doi: 10.7326/0003-4819-140-10-200405180-00007.
    1. Miyashita Y., Koide N., Ohtsuka M., Ozaki H., Itoh Y., Oyama T., Uetake T., Ariga K., Shirai K. Beneficial effect of low carbohydrate in low calorie diets on visceral fat reduction in type 2 diabetic patients with obesity. Diabetes Res. Clin. Pract. 2004;65:235–241. doi: 10.1016/j.diabres.2004.01.008.
    1. Jönsson T., Granfeldt Y., Ahren B., Branell U.C., Pålsson G., Hansson A., Söderström M., Lindeberg S. Beneficial effects of a Paleolithic diet on cardiovascular risk factors in type 2 diabetes: A randomized cross-over pilot study. Cardiovasc. Diabetol. 2009;8:3. doi: 10.1186/1475-2840-8-35.
    1. Davis N.J., Tomuta N., Schechter C., Isasi C.R., Segal-Isaacson C.J., Stein D., Zonszein J., Wylie-Rosett J. Comparative study of the effects of a 1-year dietary intervention of a low- carbohydrate diet versus a low-fat diet on weight and glycemic control in type 2 diabetes. Diabetes Care. 2009;32:1147–1152. doi: 10.2337/dc08-2108.
    1. Daly M.E., Paisey R., Paisey R., Millward B.A., Eccles C., Williams K., Hammersley S., MacLeod K.M., Gale T.J. Short-term effects of severe dietary carbohydrate-restriction advice in type 2 diabetes: A randomized controlled trial. Diabet. Med. 2006;23:15–20. doi: 10.1111/j.1464-5491.2005.01760.x.
    1. Dyson P.A., Beatty S., Matthews D.R. A low-carbohydrate diet is more effective in reducing body weight than healthy eating in both diabetic and non-diabetic subjects. Diabet. Med. 2007;24:1430–1435. doi: 10.1111/j.1464-5491.2007.02290.x.
    1. Wolever T.M., Gibbs A.L., Mehling C., Chiasson J.L., Connelly P.W., Josse R.G., Leiter L.A., Maheux P., Rabasa-Lhoret R., Rodger N.W., et al. The Canadian trial of carbohydrates in diabetes (CCD), a 1-yr controlled of low-glycemic index dietary carbohydrate in type 2 diabetes: No effect on glycated hemoglobin but reduction in C-reactive protein. Am. J. Clin. Nutr. 2008;87:114–125. doi: 10.1093/ajcn/87.1.114.
    1. Iqbal N., Vetter M.L., Moore R.H., Chittams J.L., Dalton-Bakes C.V., Dowd M., Williams-Smith C., Cardillo S., Wadden T.A. Effects of a low-intensity intervention that prescribed a low-carbohydrate vs. a low-fat diet in obese, diabetic participants. Obesity (Silver Spring) 2010;18:1733–1738. doi: 10.1038/oby.2009.460.
    1. Goday A., Bellido D., Sajoux I., Crujeiras A.B., Burguera B., García-Luna P.P., Casanueva F.F. Short-term safety, tolerability and efficacy of a very low-calorie ketogenic diet interventional weight loss program versus hypocaloric diet in patients with type 2 diabetes mellitus. Nutr. Diabetes. 2016;6:e230. doi: 10.1038/nutd.2016.36.
    1. Saslow L.R., Mason A.E., Kim S., Goldman V., Ploutz-Snyder R., Bayandorian H., Daubenmier J., Hecht F.M., Moskowitz J.T. An online intervention comparing a very low-carbohydrate ketogenic diet and lifestyle recommendations versus a plate method diet in overweight individuals with type 2 diabetes: A randomized controlled trial. J. Med. Int. Res. 2017;19:e36. doi: 10.2196/jmir.5806.
    1. Saslow L.R., Daubenmier J.J., Moskowitz J.T., Kim S., Murphy E.J., Phinney S.D., Ploutz-Snyder R., Goldman V., Cox R.M., Mason A.E., et al. Twelve-month outcomes of a randomized trial of a moderate-carbohydrate versus very low-carbohydrate diet in overweight adults with type 2 diabetes mellitus or prediabetes. Nutr. Diabetes. 2017;7:304. doi: 10.1038/s41387-017-0006-9.
    1. Yamada Y., Uchida J., Izumi H., Tsukamoto Y., Inoue G., Watanabe Y., Irie J., Yamada S. A non-calorie-restricted low-carbohydrate diet is effective as an alternative therapy for patients with type 2 diabetes. Int. Med. 2014;53:13–19. doi: 10.2169/internalmedicine.53.0861.
    1. Guldbrand H., Dizdar B., Bunjaku B., Lindström T., Bachrach-Lindström M., Fredrikson M., Östgren C.J., Nystrom F.H. In type 2 diabetes, randomisation to advice to follow a low-carbohydrate diet transiently improves glycaemic control compared with advice to follow a low-fat diet producing a similar weight loss. Diabetologi. 2012;55:2118–2127. doi: 10.1007/s00125-012-2567-4.
    1. Westman E.C., Yancy W.S., Mavropoulos J.C., Marquart M., McDuffie J.R. The effect of a low-carbohydrate, ketogenic diet versus a low-glycemic index diet on glycemic control in type 2 diabetes mellitus. Nutr. Metab. 2008;19:36. doi: 10.1186/1743-7075-5-36.
    1. Haimoto H., Iwata M., Wakai K., Umegaki H. Long-term effects of a diet loosely restricting carbohydrates on HbA1c levels, BMI and tapering of sulfonylureas in type 2 diabetes: A 2-year follow-up study. Diabetes Res. Clin. Pract. 2008;79:350–356. doi: 10.1016/j.diabres.2007.09.009.
    1. Tay J., Thompson C.H., Luscombe-Marsh N.D., Wycherley T.P., Noakes M., Buckley J.D., Wittert G.A., Yancy W.S., Jr., Brinkworth G.D. Effects of an energy-restricted low-carbohydrate, high unsaturated fat/low saturated fat diet versus a high-carbohydrate, low-fat diet in type 2 diabetes: A 2-year randomized clinical trial. Diabetes Obes. Metab. 2018;20:858–871. doi: 10.1111/dom.13164.
    1. Wang L.L., Wang Q., Hong Y., Ojo O., Jiang Q., Hou Y.Y., Huang Y.-H., Wang X.H. The effect of low-carbohydrate diet on glycemic control in patients with type 2 diabetes mellitus. Nutrients. 2018;10:661. doi: 10.3390/nu10060661.
    1. Larsen R.N., Mann N.J., Maclean E., Shaw J.E. The effect of high-protein, low-carbohydrate diets in the treatment of type 2 diabetes: A 12 month randomised controlled trial. Diabetologia. 2011;54:731–740. doi: 10.1007/s00125-010-2027-y.
    1. Sato J., Kanazawa A., Makita S., Hatae C., Komiya K., Shimizu T., Ikeda F., Tamura Y., Ogihara T., Mita T., et al. A randomized controlled trial of 130g/day low-carbohydrate diet in type 2 diabetes with poor glycemic control. Clin. Nutr. 2017;36:992–1000. doi: 10.1016/j.clnu.2016.07.003.
    1. Sanada M., Kabe C., Hata H., Uchida J., Inoue G., Tsukamoto Y., Yamada Y., Irie J., Tabata S., Tabata M., et al. Efficacy of a moderately low carbohydrate diet in a 36-month observational study of Japanese patients with Type 2 diabetes. Nutrients. 2018;10:528. doi: 10.3390/nu10050528.
    1. Boden G., Sargrad K., Homko C., Mozzoli M., Stein T.P. Effect of a low carbohydrate diet on appetite, blood glucose levels, and insulin resistance in obese patients with type 2 diabetes. Ann. Intern. Med. 2005;142:403–411. doi: 10.7326/0003-4819-142-6-200503150-00006.
    1. Gannon M.C., Nuttall F.Q. Effect of a high-protein, low-carbohydrate diet on blood glucose control in people with type 2 diabetes. Diabetes. 2004;53:2375–2382. doi: 10.2337/diabetes.53.9.2375.
    1. Hallberg S.J., McKenzie A.L., Williams P.T., Bhanpuri N.H., Peters A.L., Campbell W.W., Hazbun T.L., Volk B.M., McCarter J.P., Phinney S.D., et al. Effectiveness and safety of a novel care model for the management of type 2 diabetes at 1 year: An open-label, non-randomized, controlled study. Diabetes Ther. 2018;9:583–612. doi: 10.1007/s13300-018-0373-9.
    1. Krebs J.D., Bell D., Hall R., Parry-Strong A., Docherty P.D., Clarke K., Chase J.G. Improvements in glucose metabolism and insulin sensitivity with a low-carbohydrate diet in obese patients with type 2 diabetes. J. Am. Coll. Nutr. 2013;32:11–17. doi: 10.1080/07315724.2013.767630.
    1. Hussain T.A., Matthew T.C., Dashti A.A., Asfar S., Al-Zaid N., Dashti H.M. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012;28:1016–1021. doi: 10.1016/j.nut.2012.01.016.
    1. Sasakabe T., Haimoto H., Umegaki H., Wakai K. Effects of a moderate low-carbohydrate diet on preferential abdominal fat loss and cardiovascular risk factors in patients with type 2 diabetes. Diabetes Metab. Syndr. Obes. 2011;4:167–174. doi: 10.2147/DMSO.S19635.
    1. Nielsen J.V., Joensson E.A. Low carbohydrate diet in type 2 diabetes: Stable improvement of bodyweight and glycemic control during 44 months follow-up. Nutr. Metab. 2008;5:14. doi: 10.1186/1743-7075-5-14.
    1. Dashti H.M., Mathew T.C., Khadada M., Al-Mousawi M., Talib H., Asfar S.K., Behbahani A.I., Al-Zaid N.S. Beneficial effects of ketogenic diet in obese diabetic subjects. Mol. Cell Biochem. 2007;302:249–256. doi: 10.1007/s11010-007-9448-z.
    1. Yancy W.S., Foy M., Chalecki A.M., Vernon A.C., Westman E.C. A low carbohydrate, ketogenic diet to treat type 2 diabetes. Nutr. Metab. 2005;2:34. doi: 10.1186/1743-7075-2-34.
    1. Dashti H.M., Mathew T.C., Hussein T., Asfar S.K., Behbahani A., Khoursheed M.A., Al-Sayer H.M., Bo-Abbas Y.Y., Al-Zaid N.S. Long-term effects of a ketogenic diet in obese patients. Exp. Clin. Cardiol. 2004;9:200–205.
    1. Shai I., Schwarzfuchs D., Henkin Y., Shahar D.R., Witkow S., Greenberg I., Golan R., Fraser D., Bolotin A., Vardi H., et al. Weight loss with a low-carbohydrate, Mediterranean, or low-fat diet. N. Engl. J. Med. 2008;359:229–241. doi: 10.1056/NEJMoa0708681.
    1. Elhayany A., Lustman A., Abel R., Attal-Singer J., Vinker S. A low carbohydrate Mediterranean diet improves cardiovascular risk factors and diabetes control among overweight patients with type 2 diabetes mellitus: A 1-year prospective randomized intervention study. Diabetes Obes. Metab. 2010;12:204–209. doi: 10.1111/j.1463-1326.2009.01151.x.
    1. Athinarayanan S.J., Adams R.N., Hallberg S.J., McKenzie A.L., Bhanpuri N.H., Campbell W.W., Volek J.S., Phinney S.D., McCarter J.P. Long-term effects of a novel continuous remote care intervention including nutritional ketosis for the management of type 2 diabetes: A 2-year non-randomized clinical trial. bioRxiv. 2018;476275 doi: 10.1101/476275.
    1. Snorgaard O., Poulsen G.M., Andersen H.K., Astrup A. Systematic review and meta-analysis of dietary carbohydrate restriction in patients with type 2 diabetes. BMJ Open Diabetes Res. Care. 2017;5:e000354. doi: 10.1136/bmjdrc-2016-000354.
    1. Bhanpuri N.H., Hallberg S.J., Williams P.T., McKenzie A.L., Ballard K.D., Campbell W.W., McCarter J.P., Phinney S.D., Volek J.S. Cardiovascular disease risk factor responses to a type 2 diabetes care model including nutritional ketosis induced by sustained carbohydrate restriction at one year: An open label, non-randomized, controlled study. Cardiovasc. Diabetol. 2018;17:56. doi: 10.1186/s12933-018-0698-8.
    1. Wang G.F., Yan Y.X., Yin D., Hui Y., Zhang J.P., Han G.J., Ma N., Wu Y., Xu J.Z., Yang T. Predictive factors of Type 2 diabetes mellitus remission following bariatric surgery: A Meta-analysis. Obes. Surg. 2015;25:199–208. doi: 10.1007/s11695-014-1391-y.
    1. Yan W., Bai R., Li Y., Xu J., Zhong Z., Xing Y., Yan M., Lin Y., Song M. Analysis of predictors of type 2 diabetes mellitus remission after roux-en-Y gastric bypass in 101 Chinese patients. Obes. Surg. 2019 doi: 10.1007/s11695-019-03783-x.
    1. Brehm B.J., Seeley R.J., Daniels S.R., D’Alessio D.A. A Randomized Trial Comparing a Very Low Carbohydrate Diet and a Calorie-Restricted Low Fat Diet on Body Weight and Cardiovascular Risk Factors in Healthy Women. J. Clin. Endocrinol. Metab. 2003;88:1617–1623. doi: 10.1210/jc.2002-021480.
    1. Nordmann A.J., Nordmann A., Briel M., Keller U., Yancy W.S., Brehm B.J., Bucher H.C. Effects of a low-carbohydrate vs. low-fat diets on weight loss and cardiovascular risk factors. Arch. Intern. Med. 2006;166:285–293. doi: 10.1001/archinte.166.3.285.
    1. Westman E.C., Yancy W.S., Edman J.S., Tomlin K.F., Perkins CE. Effect of 6-month adherence to a very low carbohydrate diet program. Am. J. Med. 2002;113:30–36. doi: 10.1016/S0002-9343(02)01129-4.
    1. Nuttall F.Q., Gannon M.C. The metabolic response to a high-protein, low-carbohydrate diet in men with type 2 diabetes mellitus. Metabolism. 2006;55:243–251. doi: 10.1016/j.metabol.2005.08.027.
    1. Min T., Barry J.D., Stephens J.W. Predicting the Resolution of Type 2 Diabetes after Bariatric Surgical Procedures: A Concise Review. J. Diabetes Metab. 2015;6:617.

Source: PubMed

3
Se inscrever