Ups and Downs in 75 Years of Electrocochleography

Jos J Eggermont, Jos J Eggermont

Abstract

Before 1964, electrocochleography (ECochG) was a surgical procedure carried out in the operating theatre. Currently, the newest application is also an intra-operative one, often carried out in conjunction with cochlear implant surgery. Starting in 1967, the recording methods became either minimal- or not-invasive, i.e., trans-tympanic (TT) or extra tympanic (ET), and included extensive studies of the arguments pro and con. I will review several valuable applications of ECochG, from a historical point of view, but covering all 75 years if applicable. The main topics will be: (1) comparing human and animal cochlear electrophysiology; (2) the use in objective audiometry involving tone pip stimulation-currently mostly pre cochlear implantation but otherwise replaced by auditory brainstem response (ABR) recordings; (3) attempts to diagnose Ménière's disease and the role of the summating potential (SP); (4) early use in diagnosing vestibular schwannomas-now taken over by ABR screening and MRI confirmation; (5) relating human electrophysiology to the effects of genes as in auditory neuropathy; and (6) intracochlear recording using the cochlear implant electrodes. The last two applications are the most recently added ones. The "historical aspects" of this review article will highlight the founding years prior to 1980 when relevant. A survey of articles on Pubmed shows several ups and downs in the clinical interest as reflected in the publication counts over the last 75 years.

Keywords: Ménière’s disease; auditory nerve; auditory neuropathy; cochlear implants; cochlear microphonic; compound action potential; summating potential; vestibular schwannoma.

Figures

Figure 1
Figure 1
Ups and Downs in the number of publications on Electrocochleography (ECochG), overall and applied to Ménière’s disease. I tabulated all ECochG articles between 1941 and present that I could find in PubMed and added those from a 1976 conference proceeding (Ruben et al., 1976), amounting to 358 publications covering 75 years. I grouped them in periods of 6 years, because that bracketed the early minimum-intervention recording period from 1967–1972. The first 25 years before that I grouped together. The last period ending July 2016 covers 6.5 years.
Figure 2
Figure 2
Transition of a negative to a positive summating potential (SP+) with increase in tone burst frequency. In some ears, a quite sudden change in the sign of the SP may be observed. In this example, a change occurs between 4750 Hz and 5175 Hz. This type of transition from SP− to SP+ typically occurs between 4 kHz and 8 kHz. From Eggermont (1976c).
Figure 3
Figure 3
(A,B) SP and compound action potential (CAP) waveforms as a function of the interstimulus interval (ISI). The SP, being a pre-synaptic potential, does not show the phenomenon of adaptation as the CAP does. When the ISI value is lowered the CAP amplitude decreases but the SP amplitude remains constant. Panel (A) shows at an ISI of 4 ms, only the SP− remains and closely resembles the stimulus envelope. From Eggermont and Odenthal (1974a). Panel (B) shows a combination of SP+ and SP− in one recording. In ears showing a transition from SP− to SP+ as described in Figure 6, for high frequencies a quite peculiar phenomenon may be observed. It appears as an SP+ followed after some latency by a smaller SP− thus forming an early positive peak, which is persistent to low intensity levels. From Eggermont (1976c).
Figure 4
Figure 4
ECochG recordings obtained from three representative ears showing normal CAP threshold, elevated CAP threshold and the absence of neural response at maximum stimulation intensity (clicks, 120 dB p.e. SPL). CAP and cochlear microphonics (CM) traces were obtained by the classic procedure of averaging recordings to condensation and rarefaction clicks. Note the ringing of the click-evoked CM. From Santarelli et al. (2006).
Figure 5
Figure 5
Human cochlear APs as recorded in response to tone bursts (envelope shown near abscissa) between 95 dB HL and 15 dB HL. In these series of APs, the sudden jump in the latency-intensity curves is illustrated. Note the appearance of a double-peaked N1/N2 complex at 65 dB HL and the difference between the latencies of the first negative wave at 65 dB HL and 55 dB HL. The scaling changes with intensity as indicated. From Eggermont (1976c).
Figure 6
Figure 6
Waveforms of CAPs in recruiting ears. These waveforms may be either of the broad type (A) or of the biphasic type (B). The diphasic type in this case was recorded for a cochlea with hearing loss to asphyxia at birth. The absence of a bimodal N1 complex and the consistent short latencies along with an abrupt amplitude decrease draw a distinction between normal (see Figure 5) and recruiting ears. The broad type was recorded in a Ménière ear. There was an interval of about a year between the times (dates in A top right) when the two sets of waveforms were recorded for the Ménière ear; quite dramatic changes are noted in the about 1 year time difference. From Eggermont (1976c).
Figure 7
Figure 7
Input-output curves for recruiting ears in response to 2000 Hz tone burst stimulation. For six recruiting ears, the input-output curves are drawn. The data for the three series of CAPs shown in the former figure are indicated by triangles (the diphasic type) and open and filled circles (the Ménière ear). A common phenomenon for all curves is that the slope for amplitude values below, e.g., 1.5 μV is essentially the same and much larger than that found in normal ears. The median input-output curve is based upon data for 20 normal ears. From Eggermont (1977).
Figure 8
Figure 8
(A,B) Adaptation and forward masking of the CAP. (A) The amplitude of the CAP depends on the ISI. For six normal human cochleas, the relative decrease in amplitude is shown and compared to the mean for guinea pigs at a comparable stimulus level and shows a clear difference. The 50% relative amplitude point is found at a time about four times longer in humans than in the guinea pig. ISI, inter-stimulus interval. From Eggermont and Odenthal (1974a). (B) The relative CAP amplitude value in a forward-masking experiment as a function of the delay between the end of the white-noise masker and the tone-burst. In this experiment a 400 ms white-noise masker precedes a shore tone-burst. The CAP amplitude in response to this tone-burst depends on both the time (6t) after the masker and the intensity ratio between masker and tone-burst. In the human it takes about 1 s for full recovery from masking; in the guinea pig this value is about four times smaller. Δt, post-masker delay. From Eggermont and Odenthal (1974b).
Figure 9
Figure 9
High-pass noise masking and the derivation of narrow band APs (NAPs) in humans. The upper two traces show the whole nerve CAP for a normal ear in response to a 90 dB p.e. SPL click and reflect the situation where just complete masking by wide-band noise occurs. On the left hand side the effect of high-passing the noise at successively higher cut-off frequencies can be seen. Subtraction of two subsequent CAP’s results in the set of narrow-band CAP’s in the right-hand side. From Eggermont (1979c).
Figure 10
Figure 10
Narrow band response parameters as a function of central frequency (CF). For clicks of 70, 80, and 90 dB p.e. SPL, narrow band amplitudes are shown as a function of distance from the stapes; it is observed that for the highest intensity the amplitudes decrease by about 3 dB/octave. Lowering the click intensity results in a decrease for contributions from both the apical and basal part of the cochlea, while the central part still contributes the same. The latency data show an exponential dependency on the distance from the stapes, and a definite effect of stimulus intensity thereupon is noted. From Eggermont (1976c).
Figure 11
Figure 11
CAP and NAP waveforms for a normal ear, a Ménière’s ear and a neuroma ear. As has been observed consistently in many cases there is a typical Ménière’s and acoustic neuroma type of AP waveform which is very distinct from normal. The distinction between both pathologies on basis of the CAP-waveform, however, in general presents some difficulties. A narrow-band analysis shows that the individual NAP-waveforms are different for all three hearing states, which may be of help in further diagnosis but also provides an insight in the location of the disturbance. From Eggermont (1976a).
Figure 12
Figure 12
Relationship between objective and subjective hearing thresholds. Peripheral and central (subjective) measurements are similar except for a few ears. This similarity indicates that 8th nerve tumors usually produce a peripheral hearing loss (Eggermont et al., 1980).
Figure 13
Figure 13
(A) CAP waveforms in response to 2 kHz tone burst stimulation in three ears with acoustic neurinoma. Depending on the individual case as well as on stimulus intensity, broad characteristic waveforms or nearly normal CAPs can be found. It appears that the CAP waveform is not consistently abnormal in acoustic neurinoma ears. (B) Narrow band AP waveforms in acoustic neurinoma ears. From dominantly monophasic NAPs in the left series to strictly biphasic narrow band responses in the right series, reminding us of a sensorineural hearing loss, the relationship to the CAP waveforrn is clear. From Eggermont et al. (1980).
Figure 14
Figure 14
(A) CAP width-latency data for 2 kHz tone burst stimulation for the tumor ears. About 20% of the points are well outside the normal range. (B) SP amplitudes for 85 dB HL tone bursts as a function of the CAP threshold. Up to 50 dB HL thresholds, the SP amplitude appears stable; for higher hearing losses, the SP amplitude decreases and often the SP is absent. This trend is also observed in a large group of ears with Ménière’s disease whose median value is indicated. Moreover, the median values of tumor ears are smaller by a factor of at least 2. From Eggermont et al. (1980).
Figure 15
Figure 15
(A) Comparison between the SP–CAP potentials recorded from one subject with OTOF mutations and one control. The curves for the OTOF subject are superimposed on the recordings obtained from one control at intensities up to 120 dB p.e. SPL to highlight the similarities of the SP component between controls and patients with OTOF mutations. Open circles and triangles refer to the CAP and SP peaks, respectively. From Santarelli et al. (2009). (B) ECochG waveforms obtained after CM cancellation from two representative OPA1 patients are superimposed on the corresponding responses recorded from one normal hearing control and from one hearing-impaired child with cochlear hearing loss (Cochlear HL) at decreasing stimulus intensity. From Santarelli et al. (2015).

References

    1. Adunka O. F., Giardina C. K., Formeister E. J., Choudhury B., Buchman C. A., Fitzpatrick D. C. (2016). Round window electrocochleography before and after cochlear implant electrode insertion. Laryngoscope 126, 1193–1200. 10.1002/lary.25602
    1. Al-momani M. O., Ferraro J. A., Gajewski B. J., Ator G. (2009). Improved sensitivity of electrocochleography in the diagnosis of Ménière’s disease. Int. J. Audiol 48, 811–819. 10.3109/14992020903019338
    1. Aran J. M. (1971). The electrocochleogram. Recent results in children and in some pathological cases. Arch. Klin. Exp. Ohr.-, Nas.- U. Kehlk. Heilk. 198, 128–141. 10.1007/BF00419529
    1. Aran J. M., Le Bert G. (1968). Les reponses nerveuses cochleaires chez l’homme: image du fonctionnement de l’oreille et nouveau test d’audiometrie objective. Rev. Laryngol. Otol. Rhinol. 89, 361–378.
    1. Arslan E., Turrini M., Lupi G., Genovese E., Orzan E. (1997). Hearing threshold assessment with auditory brainstem response (ABR) and Electrocochleography (ECochG) in uncooperative children. Scand. Audiol. Suppl. 46, 32–37.
    1. Asai H., Mori N. (1989). Change in the summating potential and action potential during the fluctuation of hearing in Ménière’s disease. Scand. Audiol. 18, 13–17. 10.3109/01050398909070716
    1. Aso S., Watanabe Y. (1994). Electrocochleography in the diagnosis of delayed endolymphatic hydrops. Acta Otolaryngol. Suppl. 511, 87–90. 10.3109/00016489409128307
    1. Baba A., Takasaki K., Tanaka F., Tsukasaki N., Kumagami H., Takahashi H. (2009). Amplitude and area ratios of summating potential/action potential (SP/AP) in Ménière’s disease. Acta Otolaryngol. 129, 25–29. 10.1080/00016480701724888
    1. Beagley H. A., Legouix J. P., Teas D. C., Remond M. C. (1977). Electrocochleographic changes in acoustic neuroma: some experimental findings. Clin. Otolaryngol. Allied Sci. 2, 213–219. 10.1111/j.1365-2273.1977.tb01360.x
    1. von Békésy G. (1963). Hearing theories and complex sounds. J. Acoust. Soc. Am. 35, 588–601. 10.1121/1.1918543
    1. de Boer E. (1969). Encoding of frequency information in the discharge pattern of auditory nerve fibres. Int. Audiol. 8, 547–556. 10.3109/05384916909070224
    1. de Boer E. (1975). Synthetic whole-nerve action potentials for the cat. J. Acoust. Soc. Am. 58, 1030–1045. 10.1121/1.380762
    1. Bordley J. E., Ruben R. J., Lieberman A. T. (1964). Human cochlear potentials. Laryngoscope 74, 463–479. 10.1288/00005537-196404000-00001
    1. Bourien J., Tang Y., Batrel C., Huet A., Lenoir M., Ladrech S., et al. . (2014). Contribution of auditory nerve fibers to compound action potential of the auditory nerve. J. Neurophysiol. 112, 1025–1039. 10.1152/jn.00738.2013
    1. Briaire J. J., Frijns J. H. M. (2005). Unraveling the electrically evoked compound action potential. Hear. Res. 205, 143–156. 10.1016/j.heares.2005.03.020
    1. Briaire J. J., Frijns J. H. M. (2006). The consequences of neural degeneration regarding optimal cochlear implant position in scala tympani: a model approach. Hear. Res. 214, 17–27. 10.1016/j.heares.2006.01.015
    1. Calloway N. H., Fitzpatrick D. C., Campbell A. P., Iseli C., Pulver S., Buchman C. A., et al. . (2014). Intracochlear electrocochleography during cochlear implantation. Otol. Neurotol. 35, 1451–1457. 10.1097/MAO.0000000000000451
    1. Campbell L., Kaicer A., Briggs R., O’Leary S. (2015). Cochlear response telemetry: intracochlear electrocochleography via cochlear implant neural response telemetry pilot study results. Otol. Neurotol. 36, 399–405. 10.1097/MAO.0000000000000678
    1. Chertoff M. E., Earl B. R., Diaz F. J., Sorensen J. L. (2012). Analysis of the cochlear microphonic to a low-frequency tone embedded in filtered noise. J. Acoust. Soc. Am. 132, 3351–3362. 10.1121/1.4757746
    1. Chertoff M. E., Earl B. R., Diaz F. J., Sorensen J. L., Thomas M. L., Kamerer A. M., et al. . (2014). Predicting the location of missing outer hair cells using the electrical signal recorded at the round window. J. Acoust. Soc. Am. 136, 1212–1224. 10.1121/1.4890641
    1. Chertoff M., Lichtenhan J., Willis M. (2010). Click- and chirp-evoked human compound action potentials. J. Acoust. Soc. Am. 127, 2992–2996. 10.1121/1.3372756
    1. Coats A. C. (1981). The summating potential and Meniere’s disease. I. Summating potential amplitude in meniere and non-Meniere ears. Arch. Otolaryngol. 107, 199–208. 10.1001/archotol.1981.00790400001001
    1. Coats A. C., Alford B. R. (1981). Ménière’s disease and the summating potential. III. Effect of glycerol administration. Arch. Otolaryngol. 107, 469–473.
    1. Coats A. C., Dickey J. R. (1972). Postmasking recovery of human c!ick action potencials and click loudness. J. Acoust. Soc. Am. 52, 1607–1612. 10.1121/1.1913293
    1. Dalbert A., Pfiffner F., Rüüsli C., Thoele K., Sim J. H., Gerig R., et al. . (2015a). Extra- and intracochlear electrocochleography in cochlear implant recipients. Audiol. Neurootol. 20, 339–348. 10.1159/000438742
    1. Dalbert A., Sim J. H., Gerig R., Pfiffner F., Roosli C., Huber A. (2015b). Correlation of electrophysiological properties and hearing preservation in cochlear implant patients. Otol. Neurotol. 36, 1172–1180. 10.1097/MAO.0000000000000768
    1. Dallos P. (1972). Cochlear potentials. A status report. Audiology 11, 29–41. 10.3109/00206097209072579
    1. Dallos P., Santos-Sacchi J., Flock A. (1982). Intracellular recordings from cochlear outer hair cells. Science 218, 582–584. 10.1126/science.7123260
    1. Dallos P., Wang C. Y. (1974). Bioelectric correlates of kanamycin intoxication. Audiology 13, 277–289. 10.3109/00206097409071685
    1. Dauman R., Aran J. M., Charlet de Sauvage R., Portmann M. (1988). Clinical significance of the summating potential in Ménière’s disease. Am. J. Otol. 9, 31–38.
    1. Dauman R., Aran J. M., Portmann M. (1986). Summating potential and water balance in Ménière’s disease. Ann. Otol. Rhinol. Laryngol. 95, 389–395. 10.1177/000348948609500413
    1. Devaiah A. K., Dawson K. L., Ferraro J. A., Ator G. A. (2003). Utility of area curve ratio electrocochleography in early Ménière’s disease. Arch. Otolaryngol. Head Neck Surg. 129, 547–551. 10.1001/archotol.129.5.547
    1. Earl B. R., Chertoff M. E. (2010). Predicting auditory nerve survival using the compound action potential. Ear Hear. 31, 7–21. 10.1097/AUD.0b013e3181ba748c
    1. Eggermont J. J. (1976a). Electrophysiological study of the normal and pathological human cochlea. II. Neural responses. Rev. Laryngol. Otol. Rhinol. 97, 497–506.
    1. Eggermont J. J. (1976b). “Summating potentials in electrocochleography. Relation to hearing pathology,” in Electrocochleography, eds Ruben R. J., Elberling C., Salomon G. (Baltimore: University Park Press; ), 67–87.
    1. Eggermont J. J. (1976c). “Electrocochleography,” in Handbook of Sensory Physiology, (Vol. 5, part 3) eds Keidel W. D., Neff W. D. (New York, NY: Springer-Verlag; ), 626–705.
    1. Eggermont J. J. (1976d). Analysis of compound action potential responses to tone bursts in the human and guinea pig cochlea. J. Acoust. Soc. Am. 60, 1132–1139. 10.1121/1.381214
    1. Eggermont J. J. (1977). Electrocochleography and recruitment. Ann. Otol. Rhinol. Laryngol. 86, 138–149. 10.1177/000348947708600202
    1. Eggermont J. J. (1979a). Summating potentials in Ménière’s disease. Arch. Otorhinolaryngol. 222, 63–74. 10.1007/bf00456340
    1. Eggermont J. J. (1979b). Narrow-band AP latencies in normal and recruiting human ears. J. Acoust. Soc. Am. 65, 463–470. 10.1121/1.382345
    1. Eggermont J. J. (1979c). Compound action potentials: tuning curves and delay times. Scand. Audiol. 9, (Suppl), 129–139.
    1. Eggermont J. J., Don M., Brackmann D. E. (1980). Electrocochleography and auditory brainstem electric response in patients with pontine angle tumors. Ann. Otol. Rhinol. Laryngol. Suppl. 89, 1–19. 10.1177/00034894800890s601
    1. Eggermont J. J., Odenthal D. W. (1974a). Electrophysiological investigation of the human cochlea: recruitment, masking and adaptation. Audiology 13, 1–22. 10.3109/00206097409089333
    1. Eggermont J. J., Odenthal D. W. (1974b). Frequency selective masking in electrocochleography. Rev. Laryngol. Otol. Rhinol. 95, 489–496.
    1. Eggermont J. J., Odenthal D. W., Schmidt P. R., Spoor A. (1974). Electrocochleography Basic principles and clinical application. Acta Otolaryngol. Suppl. 316, 1–84.
    1. Eggermont J. J., Spoor A. (1973). Cochlear adaptation in guinea pigs. A quantitative description. Audiology 12, 193–220. 10.1080/00206097309089320
    1. Elberling C. (1973). Transitions in cochlear action potentials recorded from the ear canal in man. Scand. Audiol. 2, 151–159. 10.3109/01050397309044948
    1. Elberling C. (1974). Action potentials along the cochlear partition recorded from the ear canal in man. Scand. Audiol. 3, 13–19. 10.3109/01050397409044959
    1. Elberling C. (1976a). “Simulation of cochlear action potentials recorded from the ear canal in man,” in Electrocochleography, eds Ruben R. J., Elberling C., Salomon G. (Baltimore: University Park Press; ), 151–168.
    1. Elberling C. (1976b). Modeling action potentials. Rev. Laryngol. Otol. Rhinol. 97, 527–537.
    1. Evans E. F., Elberling C. (1982). Location-specific components of the gross cochlear action potential: an assessment of the validity of the high-pass masking technique by cochlear nerve fibre recording in the cat. Audiology 21, 204–227. 10.3109/00206098209072740
    1. Ferraro J. A., Arenberg I. K., Hassanein R. S. (1985). Electrocochleography and symptoms of inner ear dysfunction. Arch. Otolaryngol. 111, 71–74. 10.1001/archotol.1985.00800040035001
    1. Ferraro J. A., Tibbils R. P. (1999). SP/AP area ratio in the diagnosis of Ménière’s disease. Am. J. Audiol. 8, 21–28. 10.1044/1059-0889(1999/001)
    1. Formeister E. J., McClellan J. H., Merwin W. H., III, Iseli C. E., Calloway N. H., Teagle H. F., et al. . (2015). Intraoperative round window electrocochleography and speech perception outcomes in pediatric cochlear implant recipients. Ear Hear. 36, 249–260. 10.1097/AUD.0000000000000106
    1. Frijns J. H., Briaire J. J., de Laat J. A., Grote J. J. (2002). Initial evaluation of the clarion cii cochlear implant: speech perception and neural response imaging. Ear Hear. 23, 184–197. 10.1097/00003446-200206000-00003
    1. Fromm B., Nylen C. O., Zotterman Y. (1935). Studies in the mechanism of the Wever and Bray effect. Acta Otolaryngol. (Stockh) 22, 477–486. 10.3109/00016483509118125
    1. Fukuoka H., Takumi Y., Tsukada K., Miyagawa M., Oguchi T., Ueda H., et al. . (2012). Comparison of the diagnostic value of 3 T MRI after intratympanic injection of GBCA, electrocochleography and the glycerol test in patients with Meniere’s disease. Acta Otolaryngol. 132, 141–145. 10.3109/00016489.2011.635383
    1. Gamble B. A., Meyerhoff W. L., Shoup A. G., Schwade N. D. (1999). Salt-load electrocochleography. Am. J. Otol. 20, 325–330.
    1. Gasser H. S., Grundfest H. (1939). Axon diameters in relation to the spike dimensions and the conduction velocity in mammalian a fibers. Am. J. Physiol. 127, 393–414.
    1. Ge X., Shea J. J., Jr. (2002). Transtympanic electrocochleography: a 10-year experience. Otol. Neurotol. 23, 799–805. 10.1097/00129492-200209000-00032
    1. Gibbin K. P., Mason S. M., Kent S. E. (1983). Prolongation of the cochlear microphonic in man. Cochlear microphonic ringing. Acta Otolaryngol. 95, 13–18. 10.3109/00016488309130910
    1. Gibson W. P. (2009). A comparison of two methods of using transtympanic electrocochleography for the diagnosis of Meniere’s disease: click summating potential/action potential ratio measurements and tone burst summating potential measurements. Acta Otolaryngol. Suppl. 560, 38–42. 10.1080/00016480902729843
    1. Gibson W. P., Morrison A. W. (1983). Electrocochleography and the glycerol dehydration test: A case study. Br. J. Audiol. 17, 95–99. 10.3109/03005368309078915
    1. Gibson W. P., Prasher D. K., Kilkenny G. P. (1983). Diagnostic significance of transtympanic electrocochleography in Ménière’s disease. Ann. Otol. Rhinol. Laryngol. 92, 155–159. 10.1177/000348948309200212
    1. Gibson W. P. R., Ramsden R. T., Moffat D. A. (1977). Clinical electrocochleography in the diagnosis and management of Ménière’s disease. Audiology 16, 389–401. 10.3109/00206097709071852
    1. Gibson W. P. R., Sanli H. (2007). Auditory neuropathy: an update. Ear Hear. 28, 102S–106S. 10.1097/aud.0b013e3180315392
    1. Goin D. W., Staller S. J., Asher D. L., Mischke R. E. (1982). Summating potential in Ménière’s disease. Laryngoscope 92, 1383–1389. 10.1288/00005537-198212000-00008
    1. Goldstein M., Kiang N. Y. S. (1958). Synchrony of neural activity in electric responses evoked by transient acoustic stimuli. J. Acoust. Soc. Am. 30, 107–114. 10.1121/1.1909497
    1. Greenwood D. D. (1961). Critical bandwidth and the frequency coordinates of the basilar membrane. J. Acoust. Soc. Am. 33, 1344–1356. 10.1121/1.1908437
    1. Hall J. G. (1967). Hearing and primary auditory centres of whales. Acta Otolaryngol. 63, 244–250. 10.3109/00016486709123587
    1. Harrison R. V. (1998). An animal model of auditory neuropathy. Ear Hear. 19, 355–361. 10.1097/00003446-199810000-00002
    1. Hossain W. A., Antic S. D., Yang Y., Rasband M. N., Morest D. K. (2005). Where is the spike generator of the cochlear nerve? Voltage-gated sodium channels in the mouse cochlea. J. Neurosci. 25, 6857–6868. 10.1523/JNEUROSCI.0123-05.2005
    1. Huang T., Santarelli R., Starr A. (2012). Mutation of OPA1 gene causes deafness by affecting function of auditory nerve terminals. Brain Res. 1300, 97–104. 10.1016/j.brainres.2009.08.083
    1. Johnstone J. R., Johnstone B. M. (1966). Origin of the summating potential. J. Acoust. Soc. Am. 40, 1405–1413. 10.1121/1.1910240
    1. Kamerer A. M., Diaz F. J., Peppi M., Chertoff M. E. (2016). The potential use of low-frequency tones to locate regions of outer hair cell loss. Hear. Res. 342, 39–47. 10.1016/j.heares.2016.09.006
    1. Kanzaki J., Ouchi T., Yokobori H., Inoh T. (1982). Electrocochleographic study of summating potentials in Menière’s disease. Audiology 21, 409–424. 10.3109/00206098209072755
    1. Khimich D., Nouvian R., Pujol R., Tom Dieck S., Egner A., Gundelfinger E. D., et al. . (2005). Hair cell synaptic ribbons are essential for synchronous auditory signalling. Nature 434, 889–894. 10.1038/nature03418
    1. Kiang N. Y. S., Moxon E. C., Kahn A. R. (1976). “The relationship of gross potentials recorded from the cochlea to single unit activity in the auditory nerve,” in Electrocochleography, eds Ruben R. J., Elberling C., Salomon G. (Baltimore: University Park Press; ), 95–115.
    1. Kiang N. Y. S., Watanabe T., Thomas E. C., Clark L. F. (1965). Discharge Patterns of Single Fibres in The Cats Auditory Nerve. Cambridge, MA: MIT Press.
    1. Kim H. H., Kumar A., Battista R. A., Wiet R. J. (2005). Electrocochleography in patients with Ménière’s disease. Am. J. Otolaryngol. 26, 128–131. 10.1016/j.amjoto.2004.11.005
    1. Klis S. F., Smoorenburg G. F. (1994). Osmotically induced pressure difference in the cochlea and its effect on cochlear potentials. Hear. Res. 75, 114–120. 10.1016/0378-5955(94)90062-0
    1. Klockhoff I., Lindblom U. (1966). Endolymphatic hydrops revealed by glycerol test. Preliminary report. Acta Otolaryngol. 61, 459–462. 10.3109/00016486609127084
    1. Koyuncu M., Mason S. M., Saunders M. W. (1994). Electrocochleography in endolymphatic hydrops using tone-pip and click stimuli. Clin. Otolaryngol. Allied Sci. 19, 73–78. 10.1111/j.1365-2273.1994.tb01152.x
    1. Kujawa S. G., Liberman M. C. (2009). Adding insult to injury: cochlear nerve degeneration after “temporary” noise-induced hearing loss. J. Neurosci. 29, 14077–14085. 10.1523/JNEUROSCI.2845-09.2009
    1. Kumaragamage C., Lithgow B., Moussavi Z. (2015). A new low-noise signal acquisition protocol and electrode placement for electrocochleography (ECOG) recordings. Med. Biol. Eng. Comput. 53, 499–509. 10.1007/s11517-015-1251-5
    1. Lempert J., Meltzer P. E., Wever E. G., Lawrence M. (1950). The cochleogram and its clinical application. Arch. Otolaryngol. 51, 307–311.10.1001/archotol.1950.00700020329001
    1. Lempert J., Wever E. G., Lawrence M. (1947). The cochleogram and its clinical application. Arch. Otolaryngol. 45, 61–67. 10.1001/archotol.1947.00690010068005
    1. Levine S., Margolis R. H., Daly K. A. (1998). Use of electrocochleography in the diagnosis of Ménière’s disease. Laryngoscope 108, 993–1000. 10.1097/00005537-199807000-00008
    1. Liberman M. C., Gao J., He D. Z., Wu X., Jia S., Zuo J. (2002). Prestin is required for electromotility of the outer hair cell and for the cochlear amplifier. Nature 419, 300–304. 10.1038/nature01059
    1. Lichtenhan J. T., Chertoff M. E. (2008). Temporary hearing loss influences post-stimulus time histogram and single neuron action potential estimates from human compound action potentials. J. Acoust. Soc. Am. 123, 2200–2212. 10.1121/1.2885748
    1. Lichtenhan J. T., Cooper N. P., Guinan J. J., Jr. (2013). A new auditory threshold estimation technique for low frequencies: proof of concept. Ear Hear. 34, 42–51. 10.1097/AUD.0b013e31825f9bd3
    1. Lichtenhan J. T., Hartsock J. J., Gill R. M., Guinan J. J., Jr., Salt A. N. (2014). The auditory nerve overlapped waveform (ANOW) originates in the cochlear apex. J. Assoc. Res. Otolaryngol. 15, 395–411. 10.1007/s10162-014-0447-y
    1. Liu C., Chen X., Xu L. (1992). Cochlear microphonics and recruitment. Acta Otolaryngol. 112, 215–220. 10.1080/00016489.1992.11665407
    1. Mandalà M., Colletti L., Tonoli G., Colletti V. (2012). Electrocochleography during cochlear implantation for hearing preservation. Otolaryngol. Head Neck Surg. 146, 774–781. 10.1177/0194599811435895
    1. McClellan J. H., Formeister E. J., Merwin W. H., III, Dillon M. T., Calloway N., Iseli C., et al. . (2014). Round window electrocochleography and speech perception outcomes in adult cochlear implant subjects: comparison with audiometric and biographical information. Otol. Neurotol. 35, e245–e252. 10.1097/MAO.0000000000000557
    1. Miller C. A., Abbas P. J., Hay-McCutcheon M. J., Robinson B. K., Nourski K. V., Jeng F. C. (2004). Intracochlear and extracochlear eCAPs suggest antidromic action potentials. Hear. Res. 198, 75–86. 10.1016/j.heares.2004.07.005
    1. Moffat D. A., Gibson W. P., Ramsden R. T., Morrison A. W., Booth J. B. (1978). Transtympanic electrocochleography during glycerol dehydration. Acta Otolaryngol. 85, 158–166. 10.3109/00016487809111922
    1. Mori N., Asai H., Doi K., Matsunaga T. (1987a). Diagnostic value of extratympanic electrocochleography in Ménière’s disease. Audiology 26, 103–110. 10.3109/00206098709078411
    1. Mori N., Asai H., Sakagami M., Matsunaga T. (1987b). Comparison of summating potential in Ménière’s disease between trans- and extratympanic electrocochleography. Audiology 26, 348–355. 10.3109/00206098709081562
    1. Mori N., Asai H., Sakagami M. (1988). The relationship of SP and AP findings to hearing level in Ménière’s disease. Scand. Audiol. 17, 237–240. 10.3109/01050398809070711
    1. Mori N., Asai H., Sakagami M. (1993). The role of summating potential in the diagnosis and management of Ménière’s disease. Acta Otolaryngol. Suppl. 501, 51–53. 10.3109/00016489309126214
    1. Mori N., Saeki K., Matsunaga T., Asai H. (1982). Comparison between AP and SP parameters in trans- and extratympanic electrocochleography. Audiology 21, 228–241. 10.3109/00206098209072741
    1. Morrison A. W., Gibson W. P., Beagley H. A. (1976). Transtympanic electrocochleography in the diagnosis of retrocochlear tumours. Clin. Otolaryngol. Allied Sci. 1, 153–167. 10.1111/j.1365-2273.1976.tb00868.x
    1. Moser T., Predoehl F., Starr A. (2013). Review of hair cell synapse defects in sensorineural hearing impairment. Otol. Neurotol. 34, 995–1004. 10.1097/MAO.0b013e3182814d4a
    1. Nguyen L. T., Harris J. P., Nguyen Q. T. (2010). Clinical utility of electrocochleography in the diagnosis and management of Ménière’s disease: AOS and ANS membership survey data. Otol. Neurotol. 31, 455–459. 10.1097/MAO.0b013e3181d2779c
    1. Noguchi Y., Komatsuzaki A., Nishida H. (1999). Cochlear microphonics for hearing preservation in vestibular schwannoma surgery. Laryngoscope 109, 1982–1987. 10.1097/00005537-199912000-00016
    1. Odenthal D. W., Eggermont J. J. (1976). “Electrocochleographic study of Ménière’s disease and pontine angle neurinoma,” in Electrocochleography, eds Ruben R. J., Elberling C., Salomon G. (Baltimore: University Park Press; ), 331–352.
    1. Oh K. H., Kim K. W., Chang J., Jun H. S., Kwon E. H., Choi J. Y., et al. . (2014). Can we use electrocochleography as a clinical tool in the diagnosis of Ménière’s disease during the early symptomatic period? Acta Otolaryngol. 134, 771–775. 10.3109/00016489.2014.907500
    1. Orchik D. J., Ge N. N., Shea J. J., Jr. (1998). Action potential latency shift by rarefaction and condensation clicks in Ménière’s disease. J. Am. Acad. Audiol. 9, 121–126.
    1. Patuzzi R. B., Yates G. K., Johnstone B. M. (1989). Changes in cochlear microphonic and neural sensitivity produced by acoustic trauma. Hear. Res. 39, 189–202. 10.1016/0378-5955(89)90090-7
    1. Perlman M. B., Case T. J. (1941). Electrical phenomena of the cochlea in man. Arch. Otolaryngol. 34, 710–718. 10.1001/archotol.1941.00660040766003
    1. Portmann M., Aran J. M. (1971). Electro-cochleography. Laryngoscope 81, 899–910. 10.1288/00005537-197106000-00010
    1. Portmann M., Le Bert G., Aran J. M. (1967). Potenriels cochléaires obtenues chez l’homme en dehors de toute intervention chirurgicale. Rev. Laryngol. (Bordeaux) 88, 157–164.
    1. Pou A. M., Hirsch B. E., Durrant J. D., Gold S. R., Kamerer D. B. (1996). The efficacy of tympanic electrocochleography in the diagnosis of endolymphatic hydrops. Am. J. Otol. 17, 607–611. (Erratum in 1996)
    1. Prasher D. K., Gibson W. P. (1983). Brainstem auditory-evoked potentials and electrocochleography: comparison of different criteria for the detection of acoustic neuroma and other cerebello-pontine angle tumours. Br. J. Audiol. 17, 163–174. 10.3109/03005368309107881
    1. Prijs V. F. (1986). Single-unit response at the round window of the guinea pig. Hear. Res. 21, 127–133. 10.1016/0378-5955(86)90034-1
    1. Rance G., Starr A. (2015). Pathophysiological mechanisms and functional hearing consequences of auditory neuropathy. Brain 138, 3141–3158. 10.1093/brain/awv270
    1. Rasmussen A. T. (1940). Studies on the eight cranial nerve of man. Laryngoscope 50, 67–83. 10.1288/00005537-194001000-00008
    1. Rattay F., Lutter P., Felix H. (2001). A model of the electrically excited human cochlear neuron I. Contribution of neural substructures to the generation and propagation of spikes. Hear. Res. 153, 43–63. 10.1016/S0378-5955(00)00256-2
    1. Roland P. S., Yellin M. W., Meyerhoff W. L., Frank T. (1995). Simultaneous comparison between transtympanic and extratympanic electrocochleography. Am. J. Otol. 16, 444–450.
    1. Ronis B. J. (1966). Cochlear potentials in otosclerosis. Laryngoscope 76, 212–231. 10.1288/00005537-196602000-00003
    1. Ruben R. J. (1967). “Cochlear potentials as a diagnostic test in deafness,” in Sensorineural Hearing Processes and Disorders, (Boston: Little, Brown and Cie; ), 313–338.
    1. Ruben R. J., Bordley J. E., Lieberman A. T. (1961). Cochlear potentials in man. Laryngoscope 71, 1141–1164. 10.1288/00005537-196110000-00001
    1. Ruben R. J., Bordley J. E., Nager G. T., Sekula J., Knickerbocker G. G., Fisch U. (1960). Human cochlear responses to sound stimuli. Ann. Otol. Rhinol. Laryngol. 69, 459–479. 10.1177/000348946006900214
    1. Ruben R. J., Elberling C., Salomon G. (Eds.). (1976). Electrocochleography. Baltimore: University Park Press.
    1. Ruben R. J., Knickerbocker G. G., Sekula J., Nager G. T., Bordley J. E. (1959). Cochlear microphonics in man. Laryngoscope 69, 665–671. 10.1288/00005537-195906000-00004
    1. Ruben R. J., Lieberman A. T., Bordley J. E. (1962). Some observations on cochlear potentials and nerve action potentials in children. Laryngoscope 72, 545–554. 10.1288/00005537-196205000-00001
    1. Ruben R. J., Walker A. E. (1963). The eighth nerve action potential in Ménière’s disease. Laryngoscope 73, 1456–1464. 10.1288/00005537-196311000-00002
    1. Russell I. J. (2008). “Chapter 3.20-Cochlear receptor potentials,” in The Senses: A Comprehensive Reference, ed. P. Dallos (Amsterdam: Elsevier; ), 320–358.
    1. Russell I. J., Sellick P. M. (1978). Intracellular studies of hair cells in the mammalian cochlea. J. Physiol. 284, 261–290. 10.1113/jphysiol.1978.sp012540
    1. Rutherford M. A., Roberts W. M. (2008). “Chapter 3.22-Afferent synaptic mechanisms,” in The Senses. A Comprehensive Reference, ed. P. Dallos (Amsterdam: Elsevier; ), 366–395.
    1. Santarelli R., Del Castillo I., Rodríguez-Ballesteros M., Scimemi P., Cama E., Arslan E., et al. . (2009). Abnormal cochlear potentials from deaf patients with mutations in the otoferlin gene. J. Assoc. Res. Otolaryngol. 10, 545–556. 10.1007/s10162-009-0181-z
    1. Santarelli R., del Castillo I., Starr A. (2013). Auditory neuropathies and electrocochleography. Hearing Balance Commun. 11, 130–137. 10.3109/21695717.2013.815446
    1. Santarelli R., Rossi R., Scimemi P., Cama E., Valentino M. L., La Morgia C., et al. . (2015). OPA1-related auditory neuropathy: site of lesion and outcome of cochlear implantation. Brain 138, 563–576. 10.1093/brain/awu378
    1. Santarelli R., Scimemi P., Dal Monte E., Arslan E. (2006). Cochlear microphonic potential recorded by transtympanic electrocochleography in normally-hearing and hearing-impaired ears. Acta Otorhinolaryngol. Ital. 26, 78–95.
    1. Sass K. (1998). Sensitivity and specificity of transtympanic electrocochleography in Ménière’s disease. Acta Otolaryngol. 118, 150–156. 10.1080/00016489850154838
    1. Sass K., Densert B., Arlinger S. (1998). Recording techniques for transtympanic electrocochleography in clinical practice. Acta Otolaryngol. 118, 17–25. 10.1080/00016489850155071
    1. Schmidt P. H., Eggermont J. J., Odenthal D. W. (1974). Study of Menière’s disease by electrocochleography. Acta Otolaryngol. Suppl. 77, 75–84. 10.1080/16512251.1974.11675748
    1. Schmidt P. H., Odenthal D. W., Eggermont J. J., Spoor A. (1975). Electrocochleographic study of a case of lermoyez’s syndrome. Acta Otolaryngol. 79, 287–291. 10.3109/00016487509124687
    1. Schoonhoven R., Fabius M. A., Grote J. J. (1995). Input/output curves to tone bursts and clicks in extratympanic and transtympanic electrocochleography. Ear Hear. 16, 619–630. 10.1097/00003446-199512000-00008
    1. Schoonhoven R., Lamoré P. J., de Laat J. A., Grote J. J. (1999). The prognostic value of electrocochleography in severely hearing-impaired infants. Audiology 38, 141–154. 10.3109/00206099909073016
    1. Schoonhoven R., Prijs V. F., Grote J. J. (1996). Response thresholds in electrocochleography and their relation to the pure tone audiogram. Ear Hear. 17, 266–275. 10.1097/00003446-199606000-00009
    1. Shallop J. K., Facer G. W., Peterson A. (1999). Neural response telemetry with the nucleus CI24M cochlear implant. Laryngoscope 109, 1755–1759. 10.1097/00005537-199911000-00006
    1. Spoor A., Eggermont J. J. (1976). “Electrocochleography as a method for objective audiogram determination,” in Davis and Hearing: Essays Honouring Hallowell Davis, eds Hirsh S. K., Eldredge D. H., Hirsh I. J., Silverman S. R. (St. Louis, MO: Washington University Press; ), 411–418.
    1. Strahl S. B., Ramekers D., Nagelkerke M. M. B., Schwarz K. E., Spitzer P., Klis S. F. L., et al. (2016). “Assessing the firing properties of the electrically stimulated auditory nerve using a convolution model,” in Physiology, Psychoacoustics and Cognition in Normal and Impaired Hearing. Advances in Experimental Medicine and Biology, (Vol. 894) eds van Dijk P., Baskent D., Gaudrain E., de Kleine E., Wagner A., Lanting C. (Berlin: Springer; ), 143–153.
    1. Takeda T., Kakigi A. (2010). The clinical value of extratympanic electrocochleography in the diagnosis of Ménière’s disease. ORL J. Otorhinolaryngol. Relat. Spec. 72, 196–204. 10.1159/000315552
    1. Tasaki I., Davis H., Eldredge D. H. (1954). Exploration of cochlear potentials in guinea pig with a microelectrode. J. Acoust. Soc. Am. 26, 765–773. 10.1121/1.1907415
    1. Teas D. C., Eldredge D. H., Davis H. (1962). Cochlear responses to acoustic transients: an interpretation of whole nerve action potentials. J. Acoust. Soc. Am. 34, 1438–1459. 10.1121/1.1918366
    1. Versnel H., Prijs V. F., Schoonhoven R. (1992). Round-window recorded potential of single-fibre discharge (unit response) in normal and noise-damaged cochleas. Hear. Res. 59, 157–170. 10.1016/0378-5955(92)90112-z
    1. Westen A. A., Dekker D. M., Briaire J. J., Frijns J. H. (2011). Stimulus level effects on neural excitation and eCAP amplitude. Hear. Res. 280, 166–176. 10.1016/j.heares.2011.05.014
    1. Wever E. G., Bray C. W. (1930). Auditory nerve impulses. Science 71:215. 10.1126/science.71.1834.215
    1. Wichmann C. (2015). Molecularly and structurally distinct synapses mediate reliable encoding and processing of auditory information. Hear. Res. 330, 178–190. 10.1016/j.heares.2015.07.008
    1. Withnell R. H. (2001). Brief report: the cochlear microphonic as an indication of outer hair cell function. Ear Hear. 22, 75–77. 10.1097/00003446-200102000-00008
    1. Wuyts F. L., Van de Heyning P. H., Van Spaendonck M. P., Molenberghs G. (1997). A review of electrocochleography: instrumentation settings and meta-analysis of criteria for diagnosis of endolymphatic hydrops. Acta Otolaryngol. Suppl. 526, 14–20. 10.3109/00016489709124014
    1. Yoshie N. (1968). Auditory nerve action potential responses to clicks in man. Laryngoscope 78, 198–215. 10.1288/00005537-196802000-00002
    1. Yoshie N. (1973). Diagnostic significance of the electrocochleogram in clinical audiometry. Audiology 12, 504–539. 10.3109/00206097309071666
    1. Yoshie N. (1976). “Electrocochleographic classification of sensorineural defects: pathological pattern of the cochlear nerve compound action potential in man,” in Electrocochleography, eds Ruben R. J., Elberling C., Salomon G. (Baltimore, MD: University Park Press; ), 353–386.
    1. Yoshie N., Ohashi T. (1969). Clinical use of cochlear nerve action potential responses in man for differential diagnosis of hearing loss. Acta Otolaryngol. Suppl. 252, 71–87. 10.3109/00016486909120514
    1. Yoshie N., Ohashi T., Suzuki T. (1967). Non-surgical recording of auditory nerve action potentials in man. Laryngoscope 77, 76–85. 10.1288/00005537-196701000-00006

Source: PubMed

Подписаться