Bridging therapy is associated with improved cognitive function after large vessel occlusion stroke - an analysis of the German Stroke Registry

Philipp Ettelt, Ilko L Maier, Marlena Schnieder, Mathias Bähr, Daniel Behme, Marios-Nikos Psychogios, Jan Liman, GSR-ET Collaborators, Philipp Ettelt, Ilko L Maier, Marlena Schnieder, Mathias Bähr, Daniel Behme, Marios-Nikos Psychogios, Jan Liman, GSR-ET Collaborators

Abstract

Background: The targeted use of endovascular therapy (EVT), with or without intravenous thrombolysis (IVT) in acute large cerebral vessel occlusion stroke (LVOS) has been proven to be superior compared to IVT alone. Despite favorable functional outcome, many patients complain about cognitive decline after EVT. If IVT in addition to EVT has positive effects on cognitive function is unclear.

Methods: We analyzed data from the German Stroke Registry (GSR, an open, multicenter and prospective observational study) and compared cognitive function 90 days after index ischemic stroke using MoCA in patients with independent (mRS ≤ 2 pts) and excellent (mRS = 0 pts) functional outcome receiving combined EVT and IVT (EVT + IVT) vs. EVT alone (EVT-IVT).

Results: Of the 2636 GSR patients, we included 166 patients with mRS ≤ 2 at 90 days in our analysis. Of these, 103 patients (62%) received EVT + IVT, 63 patients (38%) were treated with EVT alone. There was no difference in reperfusion status between groups (mTICI ≥ 2b in both groups at 95%, p = 0.65). Median MoCA score in the EVT + IVT group was 20 pts. (18-25 IQR) vs. 18 pts. (16-21 IQR) in the EVT-IVT group (p = 0.014). There were more patients with cognitive impairment (defined as MoCA < 26 pts) in the EVT-IVT group (54 patients (86%)) compared to the EVT + IVT group (78 patients (76%)). EVT + IVT was associated with a higher MoCA score at 90 days (mRS ≤ 2: p = 0.033, B = 2.39; mRS = 0: p = 0.021, B = 4.38).

Conclusions: In Patients with good functional outcome after LVOS, rates of cognitive impairment are lower with combined EVT and IVT compared to EVT alone.

Trial registration: ClinicalTrials.gov Identifier: NCT03356392.

Keywords: Cognitive function; Intravenous thrombolysis; Ischemic stroke; LVOS; Mechanical thrombectomy.

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

© The Author(s) 2020.

References

    1. Feigin VL, et al. Update on the global burden of ischemic and hemorrhagic stroke in 1990-2013: The GBD 2013 study. Neuroepidemiology. 2015;45(3):161–176. doi: 10.1159/000441085.
    1. Pendlebury ST, Rothwell PM. Incidence and prevalence of dementia associated with transient ischaemic attack and stroke: Analysis of the population-based Oxford vascular study. Lancet Neurology. 2019;18(3):248–258. doi: 10.1016/S1474-4422(18)30442-3.
    1. Sexton E, et al. Systematic review and meta-analysis of the prevalence of cognitive impairment no dementia in the first year post-stroke. European Stroke Journal. 2019;4(2):160–171. doi: 10.1177/2396987318825484.
    1. Mellon L, et al. Cognitive impairment six months after ischaemic stroke: a profile from the ASPIRE-S study. BMC Neurology. 2015;15(1):31. doi: 10.1186/s12883-015-0288-2.
    1. Abdel D, Rudd AG, Wolfe Charles DA. Prevalence of Poststroke cognitive impairment. Stroke. 2013;44(1):138–145. doi: 10.1161/STROKEAHA.112.670844.
    1. Jokinen H, et al. Post-stroke cognitive impairment is common even after successful clinical recovery. European Journal of Neurology. 2015;22(9):1288–1294. doi: 10.1111/ene.12743.
    1. Tatemichi TK, Desmond DW, Stern Y, Paik M, Sano M, Bagiella E. Cognitive impairment after stroke: Frequency, patterns, and relationship to functional abilities. Journal of Neurology, Neurosurgery, and Psychiatry. 1994;57(2):202–207. doi: 10.1136/jnnp.57.2.202.
    1. del Ser T, et al. Evolution of cognitive impairment after stroke and risk factors for delayed progression. Stroke. 2005;36(12):2670–2675. doi: 10.1161/01.STR.0000189626.71033.35.
    1. Dichgans M. Dementia risk after transient ischaemic attack and stroke. The Lancet Neurology. 2019;18(3):223–225. doi: 10.1016/S1474-4422(18)30497-6.
    1. Ivan CS, et al. Dementia After Stroke. Stroke. 2004;35(6):1264–1268. doi: 10.1161/01.STR.0000127810.92616.78.
    1. Narasimhalu K, et al. Severity of CIND and MCI predict incidence of dementia in an ischemic stroke cohort. Neurology. 2009;73(22):1866–1872. doi: 10.1212/WNL.0b013e3181c3fcb7.
    1. Mijajlović, M. D., et al. (2017). Post-stroke dementia – a comprehensive review. BMC Medicine, 15. 10.1186/s12916-017-0779-7.
    1. Patel MD, Coshall C, Rudd AG, Wolfe CDA. Cognitive impairment after stroke: Clinical determinants and its associations with long-term stroke outcomes. Journal of the American Geriatrics Society. 2002;50(4):700–706. doi: 10.1046/j.1532-5415.2002.50165.x.
    1. Pendlebury ST, Rothwell PM. Prevalence, incidence, and factors associated with pre-stroke and post-stroke dementia: A systematic review and meta-analysis. The Lancet Neurology. 2009;8(11):1006–1018. doi: 10.1016/S1474-4422(09)70236-4.
    1. Weinstein G, et al. Cognitive Performance after Stroke – The Framingham Heart Study. International Journal of Stroke. 2014;9(0 0):48–54. doi: 10.1111/ijs.12275.
    1. Levine DA, et al. Risk factors for post-stroke cognitive decline: The REGARDS study. Stroke. 2018;49(4):987–994. doi: 10.1161/STROKEAHA.117.018529.
    1. Li, J., Zhao, Y., & Mao, J. (2017). Association between the extent of white matter damage and early cognitive impairment following acute ischemic stroke. Experimental and Therapeutic Medicine, 13. 10.3892/etm.2017.4035.
    1. Sachdev PS, Chen X, Brodaty H, Thompson C, Altendorf A, Wen W. The determinants and longitudinal course of post-stroke mild cognitive impairment. Journal of the International Neuropsychological Society. 2009;15(6):915–923. doi: 10.1017/S1355617709990579.
    1. Mok VCT, Lam BYK, Wong A, Ko H, Markus HS, Wong LKS. Early-onset and delayed-onset poststroke dementia - revisiting the mechanisms. Nature Reviews. Neurology. 2017;13(3):148–159. doi: 10.1038/nrneurol.2017.16.
    1. Goyal M, et al. Randomized assessment of rapid endovascular treatment of ischemic stroke. The New England Journal of Medicine. 2015;372(11):1019–1030. doi: 10.1056/NEJMoa1414905.
    1. Saver JL, et al. Stent-retriever thrombectomy after intravenous t-PA vs. t-PA alone in stroke. The New England Journal of Medicine. 2015;372(24):2285–2295. doi: 10.1056/NEJMoa1415061.
    1. Jovin TG, et al. Thrombectomy within 8 hours after symptom onset in ischemic stroke. The New England Journal of Medicine. 2015;372(24):2296–2306. doi: 10.1056/NEJMoa1503780.
    1. Berkhemer OA, et al. A Randomized Trial of Intraarterial Treatment for Acute Ischemic Stroke. 2014.
    1. Campbell BCV, et al. Endovascular therapy for ischemic stroke with perfusion-imaging selection. 2015.
    1. López-Cancio E, et al. Endovascular treatment improves cognition after stroke. Neurology. 2017;88(3):245–251. doi: 10.1212/WNL.0000000000003517.
    1. Choi JH, Im SH, Lee KJ, Koo JS, Kim BS, Shin YS. Comparison of outcomes after mechanical thrombectomy alone or combined with intravenous thrombolysis and mechanical thrombectomy for patients with acute ischemic stroke due to large vessel occlusion. World Neurosurgery. 2018;114:e165–e172. doi: 10.1016/j.wneu.2018.02.126.
    1. Bellwald S, et al. Direct mechanical intervention versus bridging therapy in stroke patients eligible for intravenous thrombolysis: A pooled analysis of 2 registries. Stroke. 2017;48(12):3282–3288. doi: 10.1161/STROKEAHA.117.018459.
    1. Broeg-Morvay A, et al. Direct mechanical intervention versus combined intravenous and mechanical intervention in large artery anterior circulation stroke: A matched-pairs analysis. Stroke. 2016;47(4):1037–1044. doi: 10.1161/STROKEAHA.115.011134.
    1. Kaesmacher J, et al. Direct mechanical thrombectomy in tPA-ineligible and -eligible patients versus the bridging approach: A meta-analysis. Journal of Neurointerventional Surgery. 2019;11(1):20–27. doi: 10.1136/neurintsurg-2018-013834.
    1. Katsanos AH, Tsivgoulis G. Is intravenous thrombolysis still necessary in patients who undergo mechanical thrombectomy? Current Opinion in Neurology. 2019;32(1):3–12. doi: 10.1097/WCO.0000000000000633.
    1. Pan X, Liu G, Wu B, Liu X, Fang Y. Comparative efficacy and safety of bridging strategies with direct mechanical thrombectomy in large vessel occlusion: A systematic review and meta-analysis. Medicine (Baltimore) 2019;98(14):e14956. doi: 10.1097/MD.0000000000014956.
    1. Arba F, et al. Determinants of post-stroke cognitive impairment: Analysis from VISTA. Acta Neurologica Scandinavica. 2017;135(6):603–607. doi: 10.1111/ane.12637.
    1. MoCA Montreal - Cognitive Assessment. [Online]. Available: . [Accessed: 04 Dec 2019].
    1. Little RJA, Rubin DB. The analysis of social science data with missing values. Sociological Methods & Research. 1989;18(2–3):292–326. doi: 10.1177/0049124189018002004.
    1. Cohen J. Statistical power analysis for the behavioral sciences. 2. Hillsdale: L. Erlbaum Associates; 1988.
    1. Little RJA, Rubin DB. Statistical analysis with missing data. 2002.
    1. Schafer JL. Multiple imputation: a primer. Statistical Methods in Medical Research. 1999;8(1):3–15. doi: 10.1177/096228029900800102.
    1. Broome LJ, Battle CE, Lawrence M, Evans PA, Dennis MS. Cognitive outcomes following thrombolysis in acute ischemic stroke: A systematic review. Journal of Stroke and Cerebrovascular Diseases. 2016;25(12):2868–2875. doi: 10.1016/j.jstrokecerebrovasdis.2016.07.048.
    1. Laihosalo M, Kettunen JE, Koivisto A-M, Dastidar P, Ollikainen J, Jehkonen M. Thrombolytic therapy and visuoperceptual functions in right hemisphere infarct patients. Journal of Neurology. 2011;258(6):1021–1025. doi: 10.1007/s00415-010-5873-0.
    1. Pendlebury ST, Wadling S, Silver LE, Mehta Z, Rothwell PM. Transient cognitive impairment in TIA and minor stroke. Stroke. 2011;42(11):3116–3121. doi: 10.1161/STROKEAHA.111.621490.
    1. van Rooij FG, Kessels RPC, Richard E, De Leeuw F-E, van Dijk EJ. Cognitive impairment in transient ischemic attack patients: A systematic review. Cerebrovascular Diseases. 2016;42(1–2):1–9. doi: 10.1159/000444282.
    1. Tang, E. Y., et al. (2018). Longitudinal Effect of Stroke on Cognition: A Systematic Review. Journal of the American Heart Association, 7(2). 10.1161/JAHA.117.006443.
    1. Liu J, et al. Association between current smoking and cognitive impairment depends on age: A cross-sectional study in Xi’an, China. Medicina Clínica (Barcelona) 2017;149(5):203–208. doi: 10.1016/j.medcli.2017.02.033.
    1. Baumgart M, Snyder HM, Carrillo MC, Fazio S, Kim H, Johns H. Summary of the evidence on modifiable risk factors for cognitive decline and dementia: A population-based perspective. Alzheimers Dement. 2015;11(6):718–726. doi: 10.1016/j.jalz.2015.05.016.
    1. Graham JE, et al. Prevalence and severity of cognitive impairment with and without dementia in an elderly population. Lancet. 1997;349(9068):1793–1796. doi: 10.1016/S0140-6736(97)01007-6.
    1. Morley JE. An overview of cognitive impairment. Clinics in Geriatric Medicine. 2018;34(4):505–513. doi: 10.1016/j.cger.2018.06.003.
    1. Harrison, J. K., Stott, D. J., McShane, R., Noel-Storr, A. H., Swann-Price, R. S., & Quinn, T. J. (2016, 2016). Informant Questionnaire on Cognitive Decline in the Elderly (IQCODE) for the early diagnosis of dementia across a variety of healthcare settings. Cochrane Database of Systematic Reviews, (11). 10.1002/14651858.CD011333.pub2.
    1. Pendlebury S, Welch S, Cuthbertson F, Mariz J, Mehta Z, Rothwell P. Telephone assessment of cognition after TIA and stroke: TICSm and telephone MoCA vs face-to-face MoCA and neuropsychological battery. Stroke. 2013;44(1):227–229. doi: 10.1161/STROKEAHA.112.673384.
    1. Cohen RA, Alexander GE. Using TICS and T-MoCA for telephone assessments of vascular cognitive impairment: Promising call or put on hold? Stroke. 2017;48(11):2919–2921. doi: 10.1161/STROKEAHA.117.018828.

Source: PubMed

Подписаться