Dynamical Properties of Postural Control in Obese Community-Dwelling Older Adults †

Christopher W Frames, Rahul Soangra, Thurmon E Lockhart, John Lach, Dong Sam Ha, Karen A Roberto, Abraham Lieberman, Christopher W Frames, Rahul Soangra, Thurmon E Lockhart, John Lach, Dong Sam Ha, Karen A Roberto, Abraham Lieberman

Abstract

Postural control is a key aspect in preventing falls. The aim of this study was to determine if obesity affected balance in community-dwelling older adults and serve as an indicator of fall risk. The participants were randomly assigned to receive a comprehensive geriatric assessment followed by a longitudinal assessment of their fall history. The standing postural balance was measured for 98 participants with a Body Mass Index (BMI) ranging from 18 to 63 kg/m², using a force plate and an inertial measurement unit affixed at the sternum. Participants' fall history was recorded over 2 years and participants with at least one fall in the prior year were classified as fallers. The results suggest that body weight/BMI is an additional risk factor for falling in elderly persons and may be an important marker for fall risk. The linear variables of postural analysis suggest that the obese fallers have significantly higher sway area and sway ranges, along with higher root mean square and standard deviation of time series. Additionally, it was found that obese fallers have lower complexity of anterior-posterior center of pressure time series. Future studies should examine more closely the combined effect of aging and obesity on dynamic balance.

Keywords: nonlinear; obesity; postural control.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
(a) Median over all the center of pressure (COP) AP time series; (b) The lowest curve is obtained for m = 3 as it shows a minimum that is lower than 0.05. This minimum is reached for r = 0.25 for both AP and ML directions.
Figure 2
Figure 2
Linear measures of postural stability (a) Mean Velocity; (b) Mean Radius; (c) Circular area; (d) Elliptical area; (e) COP Path length.
Figure 3
Figure 3
Forceplate signal based non-linear analysis showing (a) approximate entropy; the graph highlights (dashed red line) obese fallers have significantly lower complexity in anterior posterior direction with eyes open condition; (b) scaling exponent α and; the graph highlights (dashed red line) that obese fallers have significantly higher scaling exponents in anterior posterior direction during eyes open condition (c) sample entropy is significantly lower for AP time series derived from forceplate for fallers with obesity in eyes open condition (red dashed lines).
Figure 4
Figure 4
Inertial measurement units (IMU) based nonlinear analysis showing (a) approximate entropy; The graph highlights (dashed red-line) approximate entropy is significantly lower in obese fallers in anterior posterior direction during eyes open double limb stance; (b) scaling exponent α and; The graph highlights (dashed red-line) that the scaling exponent is significantly higher for obese fallers in anterior posterior direction during eyes open double limb stance; (c) sample entropy; The graph highlights (red dashed line) that fallers who were non-obese showed significantly lower complexity (measured by sample entropy)for AP time series derived from IMU.
Figure 5
Figure 5
Ensemble patterns of postural stability of fallers and non-fallers exhibiting fallers with larger area of sway with lower sample entropy.
Figure 6
Figure 6
Radar plot of significant discriminative parameters.

References

    1. Mokdad A.H., Bowman B.A., Ford E.S., Vinicor F., Marks J.S., Koplan J.P. The continuing epidemics of obesity and diabetes in the United States. JAMA. 2001;286:1195–1200. doi: 10.1001/jama.286.10.1195.
    1. Wang Y., Beydoun M.A. The Obesity Epidemic in the United States Gender, Age, Socioeconomic, Racial/Ethnic, and Geographic Characteristics: A Systematic Review and Meta-Regression Analysis. Epidemiol. Rev. 2007;29:6–28. doi: 10.1093/epirev/mxm007.
    1. Lockhart T., Frame C., Soangra R., Lach J. Fall Risk Prediction Using Wearable Wireless Sensors. SPIE Newsroom; Bellingham, WA, USA: 2014.
    1. Ogden C.L., Carroll M.D., Curtin L.R., McDowell M.A., Tabak C.J., Flegal K.M. Prevalence of overweight and obesity in the United States, 1999–2004. JAMA. 2006;295:1549–1555. doi: 10.1001/jama.295.13.1549.
    1. Wilson P.W., D’Agostino R.B., Sullivan L., Parise H., Kannel W.B. Overweight and obesity as determinants of cardiovascular risk: The Framingham experience. Arch. Intern. Med. 2002;162:1867–1872. doi: 10.1001/archinte.162.16.1867.
    1. Wang T.J., Parise H., Levy D., D’Agostino R.B., Sr., Wolf P.A., Vasan R.S., Benjamin E.J. Obesity and the risk of new-onset atrial fibrillation. JAMA. 2004;292:2471–2477. doi: 10.1001/jama.292.20.2471.
    1. Luppino F.S., de Wit L.M., Bouvy P.F., Stijnen T., Cuijpers P., Penninx B.W., Zitman F.G. Overweight, obesity, and depression: A systematic review and meta-analysis of longitudinal studies. Arch. Gen. Psychiatry. 2010;67:220–229. doi: 10.1001/archgenpsychiatry.2010.2.
    1. Strazzullo P., D’Elia L., Cairella G., Garbagnati F., Cappuccio F.P., Scalfi L. Excess body weight and incidence of stroke: Meta-analysis of prospective studies with 2 million participants. Stroke. 2010;41:e418–e426. doi: 10.1161/STROKEAHA.109.576967.
    1. Kopelman P.G. Obesity as a medical problem. Nature. 2000;404:635–643. doi: 10.1038/35007508.
    1. Bray G.A. Medical consequences of obesity. J. Clin. Endocrinol. Metab. 2004;89:2583–2589. doi: 10.1210/jc.2004-0535.
    1. Ferraro K.F., Su Y.P., Gretebeck R.J., Black D.R., Badylak S.F. Body mass index and disability in adulthood: A 20-year panel study. Am. J. Public Health. 2002;92:834–840. doi: 10.2105/AJPH.92.5.834.
    1. Peeters A., Bonneux L., Nusselder W.J., de Laet C., Barendregt J.J. Adult obesity and the burden of disability throughout life. Obes. Res. 2004;12:1145–1151. doi: 10.1038/oby.2004.143.
    1. Metzger J.S., Catellier D.J., Evenson K.R., Treuth M.S., Rosamond W.D., Siega-Riz A.M. Patterns of objectively measured physical activity in the United States. Med. Sci. Sports Exerc. 2008;40:630–638. doi: 10.1249/MSS.0b013e3181620ebc.
    1. Reynolds S.L., Saito Y., Crimmins E.M. The impact of obesity on active life expectancy in older American men and women. Gerontologist. 2005;45:438–444. doi: 10.1093/geront/45.4.438.
    1. Jenkins K.R. Obesity’s effects on the onset of functional impairment among older adults. Gerontologist. 2004;44:206–216. doi: 10.1093/geront/44.2.206.
    1. Fontaine K.R., Barofsky I. Obesity and health-related quality of life. Obes. Rev. 2001;2:173–182. doi: 10.1046/j.1467-789x.2001.00032.x.
    1. Corbeil P., Simoneau M., Rancourt D., Tremblay A., Teasdale N. Increased risk for falling associated with obesity: Mathematical modeling of postural control. IEEE Trans. Neural Syst. Rehabil. Eng. 2001;9:126–136. doi: 10.1109/7333.928572.
    1. Fjeldstad C., Fjeldstad A.S., Acree L.S., Nickel K.J., Gardner A.W. The influence of obesity on falls and quality of life. Dyn. Med. 2008;7:4. doi: 10.1186/1476-5918-7-4.
    1. Hasselkus B.R., Shambes G.M. Aging and postural sway in women. J. Gerontol. 1975;30:661–667. doi: 10.1093/geronj/30.6.661.
    1. Era P., Heikkinen E. Postural sway during standing and unexpected disturbance of balance in random samples of men of different ages. J. Gerontol. 1985;40:287–295. doi: 10.1093/geronj/40.3.287.
    1. Baloh R.W., Fife T.D., Zwerling L., Socotch T., Jacobson K., Bell T., Beykirch K. Comparison of static and dynamic posturography in young and older normal people. J. Am. Geriatr. Soc. 1994;42:405–412. doi: 10.1111/j.1532-5415.1994.tb07489.x.
    1. Fernie G.R., Gryfe C.I., Holliday P.J., Llewellyn A. The relationship of postural sway in standing to the incidence of falls in geriatric subjects. Age Ageing. 1982;11:11–16. doi: 10.1093/ageing/11.1.11.
    1. Maki B.E., Holliday P.J., Topper A.K. A prospective study of postural balance and risk of falling in an ambulatory and independent elderly population. J. Gerontol. 1994;49:M72–M84. doi: 10.1093/geronj/49.2.M72.
    1. Flegal K.M., Williamson D.F., Pamuk E.R., Rosenberg H.M. Estimating deaths attributable to obesity in the United States. Am. J. Public Health. 2004;94:1486–1489. doi: 10.2105/AJPH.94.9.1486.
    1. Owusu W., Willett W., Ascherio A., Spiegelman D., Rimm E., Feskanich D., Colditz G. Body anthropometry and the risk of hip and wrist fractures in men: Results from a prospective study. Obes. Res. 1998;6:12–19. doi: 10.1002/j.1550-8528.1998.tb00309.x.
    1. Compston J.E., Watts N.B., Chapurlat R., Cooper C., Boonen S., Greenspan S., Pfeilschifter J., Silverman S., Díez-Pérez A., Lindsay R., et al. Obesity is not protective against fracture in postmenopausal women: GLOW. Am. J. Med. 2011;124:1043–1050. doi: 10.1016/j.amjmed.2011.06.013.
    1. Handrigan G.A., Corbeil P., Simoneau M., Teasdale N. Balance control is altered in obese individuals. J. Biomech. 2010;43:383–384. doi: 10.1016/j.jbiomech.2009.08.041.
    1. Hue O., Simoneau M., Marcotte J., Berrigan F., Dore J., Marceau P., Marceau S., Tremblay A., Teasdale N. Body weight is a strong predictor of postural stability. Gait Posture. 2007;26:32–38. doi: 10.1016/j.gaitpost.2006.07.005.
    1. Blaszczyk J.W., Cieslinska-Swider J., Plewa M., Zahorska-Markiewicz B., Markiewicz A. Effects of excessive body weight on postural control. J. Biomech. 2009;42:1295–1300. doi: 10.1016/j.jbiomech.2009.03.006.
    1. Teasdale N., Hue O., Marcotte J., Berrigan F., Simoneau M., Dore J., Marceau P., Marceau S., Tremblay A. Reducing weight increases postural stability in obese and morbid obese men. Int. J. Obes. 2007;31:153–160. doi: 10.1038/sj.ijo.0803360.
    1. Cavanaugh J.T., Guskiewicz K.M., Giuliani C., Marshall S., Mercer V., Stergiou N. Detecting altered postural control after cerebral concussion in athletes with normal postural stability. Br. J. Sports Med. 2005;39:805–811. doi: 10.1136/bjsm.2004.015909.
    1. Cavanaugh J.T., Guskiewicz K.M., Giuliani C., Marshall S., Mercer V.S., Stergiou N. Recovery of postural control after cerebral concussion: New insights using approximate entropy. J. Athl. Train. 2006;41:305–313.
    1. Pincus S. Approximate entropy (ApEn) as a complexity measure. Chaos. 1995;5:110–117. doi: 10.1063/1.166092.
    1. Pincus S.M. Approximate entropy as a measure of irregularity for psychiatric serial metrics. Bipolar Disord. 2006;8:430–440. doi: 10.1111/j.1399-5618.2006.00375.x.
    1. Khandoker A.H., Palaniswami M., Begg R.K. A comparative study on approximate entropy measure and poincare plot indexes of minimum foot clearance variability in the elderly during walking. J. Neuroeng. Rehabil. 2008;5:4. doi: 10.1186/1743-0003-5-4.
    1. Bartlett S.A., Maki B.E., Fernie G.R., Holliday P.J., Gryfe C.I. On the classification of a geriatric subject as a faller or nonfaller. Med. Biol. Eng. Comput. 1986;24:219–222. doi: 10.1007/BF02443942.
    1. Pincus S.M. Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA. 1991;88:2297–2301. doi: 10.1073/pnas.88.6.2297.
    1. Harbourne R.T., Stergiou N. Nonlinear analysis of the development of sitting postural control. Dev. Psychobiol. 2003;42:368–377. doi: 10.1002/dev.10110.
    1. Pincus S.M., Goldberger A.L. Physiological time-series analysis: What does regularity quantify? Am. J. Physiol. 1994;266:H1643–H1656. doi: 10.1152/ajpheart.1994.266.4.H1643.
    1. Vaillancourt D.E., Newell K.M. The dynamics of resting and postural tremor in Parkinson’s disease. Clin. Neurophysiol. 2000;111:2046–2056. doi: 10.1016/S1388-2457(00)00467-3.
    1. Pincus S.M. quantifying complexity and regularity of neurobiological systems. In: Michael L.J., Johannes D.V., editors. Methods in Neurosciences. Volume 28. Academic Press; Cambridge, MA, USA: 1995. pp. 336–363.
    1. Richman J.S., Moorman J.R. Physiological time-series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 2000;278:H2039–H2049. doi: 10.1152/ajpheart.2000.278.6.H2039.
    1. Peng C.K., Buldyrev S.V., Havlin S., Simons M., Stanley H.E., Goldberger A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top. 1994;49:1685–1689. doi: 10.1103/PhysRevE.49.1685.
    1. Carroll J.P., Freedman W. Nonstationary properties of postural sway. J. Biomech. 1993;26:409–416. doi: 10.1016/0021-9290(93)90004-X.
    1. Loughlin P.J., Redfern M.S., Furman J.M. Nonstationarities of postural sway. IEEE Eng. Med. Biol. Mag. 2003;22:69–75. doi: 10.1109/MEMB.2003.1195699.
    1. Peng C.K., Havlin S., Hausdorff J.M., Mietus J.E., Stanley H.E., Goldberger A.L. Fractal mechanisms and heart rate dynamics. Long-range correlations and their breakdown with disease. J. Electrocardiol. 1995;28:59–65. doi: 10.1016/S0022-0736(95)80017-4.
    1. Lipsitz L.A., Goldberger A.L. Loss of ‘complexity’ and aging. Potential applications of fractals and chaos theory to senescence. JAMA. 1992;267:1806–1809. doi: 10.1001/jama.1992.03480130122036.
    1. Manor B., Costa M.D., Hu K., Newton E., Starobinets O., Kang H.G., Peng C.K., Novak V., Lipsitz L.A. Physiological complexity and system adaptability: Evidence from postural control dynamics of older adults. J. Appl. Physiol. (1985) 2010;109:1786–1791. doi: 10.1152/japplphysiol.00390.2010.
    1. Melzer I., Oddsson L.I. Altered characteristics of balance control in obese older adults. Obes. Res. Clin. Pract. 2016;10:151–158. doi: 10.1016/j.orcp.2015.05.016.
    1. Dutil M., Handrigan G.A., Corbeil P., Cantin V., Simoneau M., Teasdale N., Hue O. The impact of obesity on balance control in community-dwelling older women. Age. 2013;35:883–890. doi: 10.1007/s11357-012-9386-x.
    1. Wu X., Madigan M.L. Impaired plantar sensitivity among the obese is associated with increased postural sway. Neurosci. Lett. 2014;583:49–54. doi: 10.1016/j.neulet.2014.09.029.
    1. Murray M.P., Gardner G.M., Mollinger L.A., Sepic S.B. Strength of isometric and isokinetic contractions: Knee muscles of men aged 20 to 86. Phys. Ther. 1980;60:412–419. doi: 10.1093/ptj/60.4.412.
    1. Hurley M.V., Rees J., Newham D.J. Quadriceps function, proprioceptive acuity and functional performance in healthy young, middle-aged and elderly subjects. Age Ageing. 1998;27:55–62. doi: 10.1093/ageing/27.1.55.
    1. Duvigneaud N., Matton L., Wijndaele K., Deriemaeker P., Lefevre J., Philippaerts R., Thomis M., Delecluse C., Duquet W. Relationship of obesity with physical activity, aerobic fitness and muscle strength in Flemish adults. J. Sports Med. Phys. Fit. 2008;48:201–210.
    1. Naugle K.M., Higgins T.J., Manini T.M. Obesity and use of compensatory strategies to perform common daily activities in pre-clinically disabled older adults. Arch. Gerontol. Geriatr. 2012;54:e134–e138. doi: 10.1016/j.archger.2011.10.017.
    1. Ko S., Stenholm S., Ferrucci L. Characteristic gait patterns in older adults with obesity—Results from the Baltimore Longitudinal Study of Aging. J. Biomech. 2010;43:1104–1110. doi: 10.1016/j.jbiomech.2009.12.004.
    1. Messier S.P., Legault C., Loeser R.F., van Arsdale S.J., Davis C., Ettinger W.H., DeVita P. Does high weight loss in older adults with knee osteoarthritis affect bone-on-bone joint loads and muscle forces during walking? Osteoarthr. Cartil. 2011;19:272–280. doi: 10.1016/j.joca.2010.11.010.
    1. Delmonico M.J., Harris T.B., Visser M., Park S.W., Conroy M.B., Velasquez-Mieyer P., Boudreau R., Manini T.M., Nevitt M., Newman A.B., et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am. J. Clin. Nutr. 2009;90:1579–1585.
    1. Rossi-Izquierdo M., Santos-Pérez S., Faraldo-García A., Vaamonde-Sánchez-Andrade I., Gayoso-Diz P., Del-Río-Valeiras M., Lirola-Delgado A., Soto-Varela A. Impact of obesity in elderly patients with postural instability. Aging Clin. Exp. Res. 2016;28:423–428. doi: 10.1007/s40520-015-0414-4.

Source: PubMed

Подписаться