The Role of the Autonomic Nervous System in the Pathophysiology of Obesity

Daniela Guarino, Monica Nannipieri, Giorgio Iervasi, Stefano Taddei, Rosa Maria Bruno, Daniela Guarino, Monica Nannipieri, Giorgio Iervasi, Stefano Taddei, Rosa Maria Bruno

Abstract

Obesity is reaching epidemic proportions globally and represents a major cause of comorbidities, mostly related to cardiovascular disease. The autonomic nervous system (ANS) dysfunction has a two-way relationship with obesity. Indeed, alterations of the ANS might be involved in the pathogenesis of obesity, acting on different pathways. On the other hand, the excess weight induces ANS dysfunction, which may be involved in the haemodynamic and metabolic alterations that increase the cardiovascular risk of obese individuals, i.e., hypertension, insulin resistance and dyslipidemia. This article will review current evidence about the role of the ANS in short-term and long-term regulation of energy homeostasis. Furthermore, an increased sympathetic activity has been demonstrated in obese patients, particularly in the muscle vasculature and in the kidneys, possibily contributing to increased cardiovascular risk. Selective leptin resistance, obstructive sleep apnea syndrome, hyperinsulinemia and low ghrelin levels are possible mechanisms underlying sympathetic activation in obesity. Weight loss is able to reverse metabolic and autonomic alterations associated with obesity. Given the crucial role of autonomic dysfunction in the pathophysiology of obesity and its cardiovascular complications, vagal nerve modulation and sympathetic inhibition may serve as therapeutic targets in this condition.

Keywords: adipose tissue; autonomic nervous system; energy expenditure; gut hormones; obesity; vagal nerve blockade; vagal nerve stimulation; weight loss.

Figures

Figure 1
Figure 1
Peripheral signals of satiety and gastric emptying reach the nucleus of the solitary tract/area postrema complex (NST/AP) via afferent vagal nerves (red line). The NTS projects to the dorsal motor nucleus (DMN). This pathway modulates intestinal motility and secretion, glucose production and pancreatic secretion via efferent vagal nerves (blue line). The suggested site of action of vagal nerve stimulation (VNS) is indicated by the dotted green lines, while mechanism of weight loss hypothesized vagal nerve blockade includes decrease in gastric emptying, increase in gut hormones release and inhibition of pancreatic esocrine secretion (dotted orange lines).
Figure 2
Figure 2
Cold- or diet-stimulated sympathetic activation results in mobilization of free fatty acids (FFA) by white adipose tissue (WAT) and regulation of brown adipose tissue (BAT) thermogenesis. The principal substrate for BAT is constituted by fatty acids to increase energy expenditure inducing heat production. Chronic sympathetic nervous system (SNS) activation also induces the conversion of “beige” adipose tissue in WAT, which also contribute to adaptive thermogenesis.
Figure 3
Figure 3
Mechanisms responsible for the occurrence of sympathetic activation in obesity-related hypertension. Prolonged sympathetic nervous system (SNS) overactivity might induce weight gain, due to downregulation of beta-adrenoceptors, thus reducing the capacity to dissipate excessive calories.

References

    1. Abbott C. R., Monteiro M., Small C. J., Sajedi A., Smith K. L., Parkinson J. R., et al. . (2005). The inhibitory effects of peripheral administration of peptide YY(3-36) and glucagon-like peptide-1 on food intake are attenuated by ablation of the vagal-brainstem-hypothalamic pathway. Brain Res. 1044, 127–131. 10.1016/j.brainres.2005.03.011
    1. Adrian T. E., Ferri G. L., Bacarese-Hamilton A. J., Fuessl H. S., Polak J. M., Bloom S. R. (1985). Human distribution and release of a putative new gut hormone, peptide YY. Gastroenterology 89, 1070–1077. 10.1016/0016-5085(85)90211-2
    1. Alvarez G. E., Ballard T. P., Beske S. D., Davy K. P. (2004). Subcutaneous obesity is not associated with sympathetic neural activation. Am. J. Physiol. Heart Circ. Physiol. 287, H414–H418. 10.1152/ajpheart.01046.2003
    1. Anderson E. A., Balon T. W., Hoffman R. P., Sinkey C. A., Mark A. L. (1992). Insulin increases sympathetic activity but not blood pressure in borderline hypertensive humans. Hypertension 19(6 Pt 2), 621–627. 10.1161/01.HYP.19.6.621
    1. Anderson E. A., Hoffman R. P., Balon T. W., Sinkey C. A., Mark A. L. (1991). Hyperinsulinemia produces both sympathetic neural activation and vasodilation in normal humans. J. Clin. Invest. 87, 2246–2252. 10.1172/JCI115260
    1. Antelmi I., de Paula R. S., Shinzato A. R., Peres C. A., Mansur A. J., Grupi C. J. (2004). Influence of age, gender, body mass index, and functional capacity on heart rate variability in a cohort of subjects without heart disease. Am. J. Cardiol. 93, 381–385. 10.1016/j.amjcard.2003.09.065
    1. Arosio M., Ronchi C. L., Beck-Peccoz P., Gebbia C., Giavoli C., Cappiello V., et al. . (2004). Effects of modified sham feeding on ghrelin levels in healthy human subjects. J. Clin. Endocrinol. Metab. 89, 5101–5104. 10.1210/jc.2003-032222
    1. Asferg C., Mogelvang R., Flyvbjerg A., Frystyk J., Jensen J. S., Marott J. L., et al. (2010). Leptin, not adiponectin, predicts hypertension in the Copenhagen City Heart Study. Am. J. Hypertens. 23, 327–333. 10.1038/ajh.2009.244
    1. Asirvatham-Jeyaraj N., Fiege J. K., Han R., Foss J., Banek C. T., Burbach B. J., et al. . (2016). Renal denervation normalizes arterial pressure with no effect on glucose metabolism or renal inflammation in obese hypertensive mice. Hypertension 68, 929–936. 10.1161/HYPERTENSIONAHA.116.07993
    1. Ballsmider L. A., Vaughn A. C., David M., Hajnal A., Di Lorenzo P. M., Czaja K. (2015). Sleeve gastrectomy and Roux-en-Y gastric bypass alter the gut-brain communication. Neural Plast. 2015:601985. 10.1155/2015/601985
    1. Bartness T. J. (2002). Dual innervation of white adipose tissue: some evidence for parasympathetic nervous system involvement. J. Clin. Invest. 110, 1235–1237. 10.1172/JCI0217047
    1. Baskin D. G., Figlewicz Lattemann D., Seeley R. J., Woods S. C., Porte D., Jr., Schwartz M. W. (1999). Insulin and leptin: dual adiposity signals to the brain for the regulation of food intake and body weight. Brain Res. 848, 114–123. 10.1016/S0006-8993(99)01974-5
    1. Batterham R. L., Cohen M. A., Ellis S. M., Le Roux C. W., Withers D. J., Frost G. S., et al. . (2003). Inhibition of food intake in obese subjects by peptide YY3-36. N. Engl. J. Med. 349, 941–948. 10.1056/NEJMoa030204
    1. Berthoud H. R. (2008a). Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterol. Motil. 20(Suppl. 1), 64–72. 10.1111/j.1365-2982.2008.01104.x
    1. Berthoud H. R. (2008b). The vagus nerve, food intake and obesity. Regul. Pept. 149, 15–25. 10.1016/j.regpep.2007.08.024
    1. Blessing W. W. (1997). Inadequate frameworks for understanding bodily homeostasis. Trends Neurosci. 20, 235–239. 10.1016/S0166-2236(96)01029-6
    1. Bray G. A. (1991). Obesity, a disorder of nutrient partitioning: the MONA LISA hypothesis. J. Nutr. 121, 1146–1162.
    1. Brooks D., Horner R. L., Kozar L. F., Render-Teixeira C. L., Phillipson E. A. (1997). Obstructive sleep apnea as a cause of systemic hypertension. Evidence from a canine model. J. Clin. Invest. 99, 106–109. 10.1172/JCI119120
    1. Brown L. M., Clegg D. J., Benoit S. C., Woods S. C. (2006). Intraventricular insulin and leptin reduce food intake and body weight in C57BL/6J mice. Physiol. Behav. 89, 687–691. 10.1016/j.physbeh.2006.08.008
    1. Bruno R. M., Rossi L., Fabbrini M., Duranti E., Di Coscio E., Maestri M., et al. . (2013). Renal vasodilating capacity and endothelial function are impaired in patients with obstructive sleep apnea syndrome and no traditional cardiovascular risk factors. J. Hypertens 31, 1456–1464. discussion: 1464. 10.1097/HJH.0b013e328360f773
    1. Buchwald H., Avidor Y., Braunwald E., Jensen M. D., Pories W., Fahrbach K., et al. . (2004). Bariatric surgery: a systematic review and meta-analysis. JAMA 292, 1724–1737. 10.1001/jama.292.14.1724
    1. Buffa R., Solcia E., Go V. L. (1976). Immunohistochemical identification of the cholecystokinin cell in the intestinal mucosa. Gastroenterology 70, 528–532.
    1. Bugajski A. J., Gil K., Ziomber A., Zurowski D., Zaraska W., Thor P. J. (2007). Effect of long-term vagal stimulation on food intake and body weight during diet induced obesity in rats. J. Physiol. Pharmacol. 58(Suppl.1), 5–12.
    1. Bullock B. P., Heller R. S., Habener J. F. (1996). Tissue distribution of messenger ribonucleic acid encoding the rat glucagon-like peptide-1 receptor. Endocrinology 137, 2968–2978. 10.1210/endo.137.7.8770921
    1. Burdyga G., Lal S., Spiller D., Jiang W., Thompson D., Attwood S., et al. . (2003). Localization of orexin-1 receptors to vagal afferent neurons in the rat and humans. Gastroenterology 124, 129–139. 10.1053/gast.2003.50020
    1. Burton-Freeman B., Davis P. A., Schneeman B. O. (2002). Plasma cholecystokinin is associated with subjective measures of satiety in women. Am. J. Clin. Nutr. 76, 659–667.
    1. Camilleri M., Toouli J., Herrera M. F., Kulseng B., Kow L., Pantoja J. P., et al. . (2008). Intra-abdominal vagal blocking (VBLOC therapy): clinical results with a new implantable medical device. Surgery 143, 723–731. 10.1016/j.surg.2008.03.015
    1. Campfield L. A., Smith F. J., Guisez Y., Devos R., Burn P. (1995). Recombinant mouse OB protein: evidence for a peripheral signal linking adiposity and central neural networks. Science 269, 546–549. 10.1126/science.7624778
    1. Cannon B., Nedergaard J. (2004). Brown adipose tissue: function and physiological significance. Physiol. Rev. 84, 277–359. 10.1152/physrev.00015.2003
    1. Capasso R., Izzo A. A. (2008). Gastrointestinal regulation of food intake: general aspects and focus on anandamide and oleoylethanolamide. J. Neuroendocrinol. 20(Suppl. 1), 39–46. 10.1111/j.1365-2826.2008.01686.x
    1. Carey A. L., Formosa M. F., Van Every B., Bertovic D., Eikelis N., Lambert G. W., et al. (2013). Ephedrine activates brown adipose tissue in lean but not obese humans. Diabetologia 56, 147–155. 10.1007/s00125-012-2748-1
    1. Chazova I., Schlaich M. P. (2013). Improved hypertension control with the imidazoline agonist moxonidine in a multinational metabolic syndrome population: principal results of the MERSY study. Int. J. Hypertens. 2013:541689. 10.1155/2013/541689
    1. Cheng W., Zhu Z., Jin X., Chen L., Zhuang H., Li F. (2012). Intense FDG activity in the brown adipose tissue in omental and mesenteric regions in a patient with malignant pheochromocytoma. Clin. Nucl. Med. 37, 514–515. 10.1097/RLU.0b013e31824d2121
    1. Clancy J. A., Mary D. A., Witte K. K., Greenwood J. P., Deuchars S. A., Deuchars J. (2014). Non-invasive vagus nerve stimulation in healthy humans reduces sympathetic nerve activity. Brain Stimul. 7, 871–877. 10.1016/j.brs.2014.07.031
    1. Considine R. V., Considine E. L., Williams C. J., Hyde T. M., Caro J. F. (1996). The hypothalamic leptin receptor in humans: identification of incidental sequence polymorphisms and absence of the db/db mouse and fa/fa rat mutations. Diabetes 45, 992–994. 10.2337/diab.45.7.992
    1. Corp E. S., McQuade J., Moran T. H., Smith G. P. (1993). Characterization of type A and type B CCK receptor binding sites in rat vagus nerve. Brain Res. 623, 161–166. 10.1016/0006-8993(93)90024-H
    1. Correia M. L., Haynes W. G., Rahmouni K., Morgan D. A., Sivitz W. I., Mark A. L. (2002). The concept of selective leptin resistance: evidence from agouti yellow obese mice. Diabetes 51, 439–442. 10.2337/diabetes.51.2.439
    1. Cousin B., Cinti S., Morroni M., Raimbault S., Ricquier D., Penicaud L., et al. . (1992). Occurrence of brown adipocytes in rat white adipose tissue: molecular and morphological characterization. J. Cell Sci. 103(Pt 4), 931–942.
    1. Cox H. M. (2007a). Neuropeptide Y receptors; antisecretory control of intestinal epithelial function. Auton. Neurosci. 133, 76–85. 10.1016/j.autneu.2006.10.005
    1. Cox H. M. (2007b). Peptide YY: a neuroendocrine neighbor of note. Peptides 28, 345–351. 10.1016/j.peptides.2006.07.023
    1. Cruickshank J. M. (2017). The role of beta-blockers in the treatment of hypertension. Adv. Exp. Med. Biol. 956, 149–166. 10.1007/5584_2016_36
    1. Cummings D. E. (2006). Ghrelin and the short- and long-term regulation of appetite and body weight. Physiol. Behav. 89, 71–84. 10.1016/j.physbeh.2006.05.022
    1. Cummings D. E., Purnell J. Q., Frayo R. S., Schmidova K., Wisse B. E., Weigle D. S. (2001). A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes 50, 1714–1719. 10.2337/diabetes.50.8.1714
    1. Cummings D. E., Schwartz M. W. (2003). Genetics and pathophysiology of human obesity. Annu. Rev. Med. 54, 453–471. 10.1146/annurev.med.54.101601.152403
    1. Cummings D. E., Weigle D. S., Frayo R. S., Breen P. A., Ma M. K., Dellinger E. P., et al. (2002). Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. N. Engl. J. Med. 346, 1623–1630. 10.1056/NEJMoa012908
    1. Curry T. B., Somaraju M., Hines C. N., Groenewald C. B., Miles J. M., Joyner M. J., et al. . (2013). Sympathetic support of energy expenditure and sympathetic nervous system activity after gastric bypass surgery. Obesity 21, 480–485. 10.1002/oby.20106
    1. Date Y., Murakami N., Toshinai K., Matsukura S., Niijima A., Matsuo H., et al. . (2002). The role of the gastric afferent vagal nerve in ghrelin-induced feeding and growth hormone secretion in rats. Gastroenterology 123, 1120–1128. 10.1053/gast.2002.35954
    1. Dempsey J. A., Veasey S. C., Morgan B. J., O'Donnell C. P. (2010). Pathophysiology of sleep apnea. Physiol. Rev. 90, 47–112. 10.1152/physrev.00043.2008
    1. DiBona G. F. (1992). Sympathetic neural control of the kidney in hypertension. Hypertension 19, I28–I35. 10.1161/01.HYP.19.1_Suppl.I28
    1. Dockray G. J. (2014). Gastrointestinal hormones and the dialogue between gut and brain. J. Physiol. 592, 2927–2941. 10.1113/jphysiol.2014.270850
    1. Dumont Y., Fournier A., St-Pierre S., Quirion R. (1995). Characterization of neuropeptide Y binding sites in rat brain membrane preparations using [125I][Leu31,Pro34]peptide YY and [125I]peptide YY3-36 as selective Y1 and Y2 radioligands. J. Pharmacol. Exp. Ther. 272, 673–680.
    1. Dumoulin V., Dakka T., Plaisancie P., Chayvialle J. A., Cuber J. C. (1995). Regulation of glucagon-like peptide-1-(7-36) amide, peptide YY, and neurotensin secretion by neurotransmitters and gut hormones in the isolated vascularly perfused rat ileum. Endocrinology 136, 5182–5188. 10.1210/endo.136.11.7588257
    1. Dunbar J. C., Hu Y., Lu H. (1997). Intracerebroventricular leptin increases lumbar and renal sympathetic nerve activity and blood pressure in normal rats. Diabetes 46, 2040–2043. 10.2337/diab.46.12.2040
    1. Edvell A., Lindstrom P. (1999). Initiation of increased pancreatic islet growth in young normoglycemic mice (Umea +/?). Endocrinology 140, 778–783. 10.1210/endo.140.2.6514
    1. Ekblad E., Sundler F. (2002). Distribution of pancreatic polypeptide and peptide YY. Peptides 23, 251–261. 10.1016/S0196-9781(01)00601-5
    1. Elias C. F., Kelly J. F., Lee C. E., Ahima R. S., Drucker D. J., Saper C. B., et al. . (2000). Chemical characterization of leptin-activated neurons in the rat brain. J. Comp. Neurol. 423, 261–281. 10.1002/1096-9861(20000724)423:2<261::AID-CNE6>;2-6
    1. Elmquist J. K., Ahima R. S., Maratos-Flier E., Flier J. S., Saper C. B. (1997). Leptin activates neurons in ventrobasal hypothalamus and brainstem. Endocrinology 138, 839–842. 10.1210/endo.138.2.5033
    1. Elmquist J. K., Maratos-Flier E., Saper C. B., Flier J. S. (1998). Unraveling the central nervous system pathways underlying responses to leptin. Nat. Neurosci. 1, 445–450. 10.1038/2164
    1. Emdin M., Gastaldelli A., Muscelli E., Macerata A., Natali A., Camastra S., et al. . (2001). Hyperinsulinemia and autonomic nervous system dysfunction in obesity: effects of weight loss. Circulation 103, 513–519. 10.1161/01.CIR.103.4.513
    1. English P. J., Ghatei M. A., Malik I. A., Bloom S. R., Wilding J. P. (2002). Food fails to suppress ghrelin levels in obese humans. J. Clin. Endocrinol. Metab. 87:2984. 10.1210/jcem.87.6.8738
    1. Esler M., Straznicky N., Eikelis N., Masuo K., Lambert G., Lambert E. (2006). Mechanisms of sympathetic activation in obesity-related hypertension. Hypertension 48, 787–796. 10.1161/01.HYP.0000242642.42177.49
    1. Feldstein C., Julius S. (2009). The complex interaction between overweight, hypertension, and sympathetic overactivity. J. Am. Soc. Hypertens. 3, 353–365. 10.1016/j.jash.2009.10.001
    1. Ferrannini E. (1998). Insulin resistance versus insulin deficiency in non-insulin-dependent diabetes mellitus: problems and prospects. Endocr. Rev. 19, 477–490. 10.1210/edrv.19.4.0336
    1. Fetissov S. O., Kopp J., Hokfelt T. (2004). Distribution of NPY receptors in the hypothalamus. Neuropeptides 38, 175–188. 10.1016/j.npep.2004.05.009
    1. Fink H., Rex A., Voits M., Voigt J. P. (1998). Major biological actions of CCK–a critical evaluation of research findings. Exp. Brain Res. 123, 77–83. 10.1007/s002210050546
    1. Fischer A. W., Hoefig C. S., Abreu-Vieira G., de Jong J. M., Petrovic N., Mittag J., et al. . (2016). Leptin raises defended body temperature without activating thermogenesis. Cell Rep. 14, 1621–1631. 10.1016/j.celrep.2016.01.041
    1. Flier J. S. (2001). Diabetes. The missing link with obesity? Nature 409, 292–293. 10.1038/35053251
    1. Forster E. R., Green T., Elliot M., Bremner A., Dockray G. J. (1990). Gastric emptying in rats: role of afferent neurons and cholecystokinin. Am. J. Physiol. 258(4 Pt 1), G552–G556.
    1. Frangos E., Ellrich J., Komisaruk B. R. (2015). Non-invasive access to the vagus nerve central projections via electrical stimulation of the external ear: fMRI evidence in humans. Brain Stimul. 8, 624–636. 10.1016/j.brs.2014.11.018
    1. Frost G. S., Brynes A. E., Dhillo W. S., Bloom S. R., McBurney M. I. (2003). The effects of fiber enrichment of pasta and fat content on gastric emptying, GLP-1, glucose, and insulin responses to a meal. Eur. J. Clin. Nutr. 57, 293–298. 10.1038/sj.ejcn.1601520
    1. Fu-Cheng X., Anini Y., Chariot J., Castex N., Galmiche J. P., Roze C. (1997). Mechanisms of peptide YY release induced by an intraduodenal meal in rats: neural regulation by proximal gut. Pflugers Arch. 433, 571–579. 10.1007/s004240050316
    1. Gamboa A., Figueroa R., Paranjape S. Y., Farley G., Diedrich A., Biaggioni I. (2016). Autonomic blockade reverses endothelial dysfunction in obesity-associated hypertension. Hypertension 68, 1004–1010. 10.1161/HYPERTENSIONAHA.116.07681
    1. Gamboa A., Okamoto L. E., Arnold A. C., Figueroa R. A., Diedrich A., Raj S. R., et al. . (2014). Autonomic blockade improves insulin sensitivity in obese subjects. Hypertension 64, 867–874. 10.1161/HYPERTENSIONAHA.114.03738
    1. Gilgen A., Maickel R. P., Nikodijevic O., Brodie B. B. (1962). Essential role of catecholamines in the mobilization of free fatty acids and glucose after exposure to cold. Life Sci. 1, 709–715. 10.1016/0024-3205(62)90138-8
    1. Giordano A., Song C. K., Bowers R. R., Ehlen J. C., Frontini A., Cinti S., et al. . (2006). White adipose tissue lacks significant vagal innervation and immunohistochemical evidence of parasympathetic innervation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1243–R1255. 10.1152/ajpregu.00679.2005
    1. Glaser B., Zoghlin G., Pienta K., Vinik A. I. (1988). Pancreatic polypeptide response to secretin in obesity: effects of glucose intolerance. Horm. Metab. Res. 20, 288–292. 10.1055/s-2007-1010817
    1. Golan E., Tal B., Dror Y., Korzets Z., Vered Y., Weiss E., et al. . (2002). Reduction in resting metabolic rate and ratio of plasma leptin to urinary nitric oxide: influence on obesity-related hypertension. Isr. Med. Assoc. J. 4, 426–430.
    1. Goodridge A. G., Ball E. G. (1965). Studies on the metabolism of adipose tissue. 18. In vitro effects of insulin, epinephrine and glucagon on lipolysis and glycolysis in pigeon adipose tissue. Comp. Biochem. Physiol. 16, 367–381. 10.1016/0010-406X(65)90303-8
    1. Goran M. I. (2000). Energy metabolism and obesity. Med. Clin. North Am. 84, 347–362. 10.1016/S0025-7125(05)70225-X
    1. Granger D. N., Richardson P. D., Kvietys P. R., Mortillaro N. A. (1980). Intestinal blood flow. Gastroenterology 78, 837–863.
    1. Grassi G., Dell'Oro R., Facchini A., Quarti Trevano F., Bolla G. B., Mancia G. (2004). Effect of central and peripheral body fat distribution on sympathetic and baroreflex function in obese normotensives. J. Hypertens. 22, 2363–2369. 10.1097/00004872-200412000-00019
    1. Grassi G., Facchini A., Trevano F. Q., Dell'Oro R., Arenare F., Tana F., et al. . (2005). Obstructive sleep apnea-dependent and -independent adrenergic activation in obesity. Hypertension 46, 321–325. 10.1161/01.HYP.0000174243.39897.6c
    1. Grassi G., Mark A., Esler M. (2015). The sympathetic nervous system alterations in human hypertension. Circ. Res. 116, 976–990. 10.1161/CIRCRESAHA.116.303604
    1. Grassi G., Seravalle G., Cattaneo B. M., Bolla G. B., Lanfranchi A., Colombo M., et al. . (1995). Sympathetic activation in obese normotensive subjects. Hypertension 25(4 Pt 1), 560–563. 10.1161/01.HYP.25.4.560
    1. Greenfield J. R., Miller J. W., Keogh J. M., Henning E., Satterwhite J. H., Cameron G. S., et al. . (2009). Modulation of blood pressure by central melanocortinergic pathways. N. Engl. J. Med. 360, 44–52. 10.1056/NEJMoa0803085
    1. Hall J. E., Granger J. P., do Carmo J. M., da Silva A. A., Dubinion J., George E., et al. . (2012). Hypertension: physiology and pathophysiology. Compr. Physiol. 2, 2393–2442. 10.1002/cphy.c110058
    1. Hall J. E., Hildebrandt D. A., Kuo J. (2001). Obesity hypertension: role of leptin and sympathetic nervous system. Am. J. Hypertens. 14(6 Pt 2), 103S–115S. 10.1016/S0895-7061(01)02077-5
    1. Hausberg M., Hoffman R. P., Somers V. K., Sinkey C. A., Mark A. L., Anderson E. A. (1997). Contrasting autonomic and hemodynamic effects of insulin in healthy elderly versus young subjects. Hypertension 29, 700–705. 10.1161/01.HYP.29.3.700
    1. Haynes W. G. (2000). Interaction between leptin and sympathetic nervous system in hypertension. Curr. Hypertens. Rep. 2, 311–318. 10.1007/s11906-000-0015-1
    1. Haynes W. G., Morgan D. A., Djalali A., Sivitz W. I., Mark A. L. (1999). Interactions between the melanocortin system and leptin in control of sympathetic nerve traffic. Hypertension 33(1 Pt 2), 542–547. 10.1161/01.HYP.33.1.542
    1. Haynes W. G., Sivitz W. I., Morgan D. A., Walsh S. A., Mark A. L. (1997). Sympathetic and cardiorenal actions of leptin. Hypertension 30(3 Pt 2), 619–623. 10.1161/01.HYP.30.3.619
    1. Heath R. B., Jones R., Frayn K. N., Robertson M. D. (2004). Vagal stimulation exaggerates the inhibitory ghrelin response to oral fat in humans. J. Endocrinol. 180, 273–281. 10.1677/joe.0.1800273
    1. Henry T. R. (2002). Therapeutic mechanisms of vagus nerve stimulation. Neurology 59(6 Suppl. 4), S3–S14. 10.1212/WNL.59.6_suppl_4.S3
    1. Heymsfield S. B., Greenberg A. S., Fujioka K., Dixon R. M., Kushner R., Hunt T., et al. . (1999). Recombinant leptin for weight loss in obese and lean adults: a randomized, controlled, dose-escalation trial. JAMA 282, 1568–1575. 10.1001/jama.282.16.1568
    1. Hirsch J., Leibel R. L., Mackintosh R., Aguirre A. (1991). Heart rate variability as a measure of autonomic function during weight change in humans. Am. J. Physiol. 261(6 Pt 2), R1418–R1423.
    1. Holst J. J., Orskov C., Nielsen O. V., Schwartz T. W. (1987). Truncated glucagon-like peptide I, an insulin-releasing hormone from the distal gut. FEBS Lett. 211, 169–174. 10.1016/0014-5793(87)81430-8
    1. Huang F., Dong J., Kong J., Wang H., Meng H., Spaeth R. B., et al. . (2014). Effect of transcutaneous auricular vagus nerve stimulation on impaired glucose tolerance: a pilot randomized study. BMC Complement. Altern. Med. 14:203. 10.1186/1472-6882-14-203
    1. Id D., Bertog S. C., Ziegler A. K., Hornung M., Hofmann I., Vaskelyte L., et al. . (2016). Predictors of blood pressure response: obesity is associated with a less pronounced treatment response after renal denervation. Catheter. Cardiovasc. Interv. 87, E30–E38. 10.1002/ccd.26068
    1. Ikramuddin S., Blackstone R. P., Brancatisano A., Toouli J., Shah S. N., Wolfe B. M., et al. . (2014). Effect of reversible intermittent intra-abdominal vagal nerve blockade on morbid obesity: the ReCharge randomized clinical trial. JAMA 312, 915–922. 10.1001/jama.2014.10540
    1. Imeryuz N., Yegen B. C., Bozkurt A., Coskun T., Villanueva-Penacarrillo M. L., Ulusoy N. B. (1997). Glucagon-like peptide-1 inhibits gastric emptying via vagal afferent-mediated central mechanisms. Am. J. Physiol. 273(4 Pt 1), G920–G927.
    1. Inokuma K., Okamatsu-Ogura Y., Omachi A., Matsushita Y., Kimura K., Yamashita H., et al. . (2006). Indispensable role of mitochondrial UCP1 for antiobesity effect of beta3-adrenergic stimulation. Am. J. Physiol. Endocrinol. Metab. 290, E1014–E1021. 10.1152/ajpendo.00105.2005
    1. Iwasaki Y., Shimomura K., Kohno D., Dezaki K., Ayush E. A., Nakabayashi H., et al. . (2013). Insulin activates vagal afferent neurons including those innervating pancreas via insulin cascade and Ca(2+)influx: its dysfunction in IRS2-KO mice with hyperphagic obesity. PLoS ONE 8:e67198. 10.1371/journal.pone.0067198
    1. Iyer M. S., Bergman R. N., Korman J. E., Woolcott O. O., Kabir M., Victor R. G., et al. . (2016). Renal denervation reverses hepatic insulin resistance induced by high-fat diet. Diabetes 65, 3453–3463. 10.2337/db16-0698
    1. Jorde R., Burhol P. G. (1984). Fasting and postprandial plasma pancreatic polypeptide (PP) levels in obesity. Int. J. Obes. 8, 393–397.
    1. Julius S., Valentini M., Palatini P. (2000). Overweight and hypertension: a 2-way street? Hypertension 35, 807–813. 10.1161/01.HYP.35.3.807
    1. Kassab S., Kato T., Wilkins F. C., Chen R., Hall J. E., Granger J. P. (1995). Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension 25(4 Pt 2), 893–897. 10.1161/01.HYP.25.4.893
    1. Kastin A. J., Akerstrom V., Pan W. (2002). Interactions of glucagon-like peptide-1 (GLP-1) with the blood-brain barrier. J. Mol. Neurosci. 18, 7–14. 10.1385/JMN:18:1-2:07
    1. Kissileff H. R., Carretta J. C., Geliebter A., Pi-Sunyer F. X. (2003). Cholecystokinin and stomach distension combine to reduce food intake in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 285, R992–R998. 10.1152/ajpregu.00272.2003
    1. Koda S., Date Y., Murakami N., Shimbara T., Hanada T., Toshinai K., et al. . (2005). The role of the vagal nerve in peripheral PYY3-36-induced feeding reduction in rats. Endocrinology 146, 2369–2375. 10.1210/en.2004-1266
    1. Kojima M., Hosoda H., Date Y., Nakazato M., Matsuo H., Kangawa K. (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656–660. 10.1038/45230
    1. Kral J. G. (1978). Vagotomy for treatment of severe obesity. Lancet 1, 307–308. 10.1016/S0140-6736(78)90074-0
    1. Kreier F., Fliers E., Voshol P. J., Van Eden C. G., Havekes L. M., Kalsbeek A., et al. . (2002). Selective parasympathetic innervation of subcutaneous and intra-abdominal fat–functional implications. J. Clin. Invest. 110, 1243–1250. 10.1172/JCI0215736
    1. Kreymann B., Williams G., Ghatei M. A., Bloom S. R. (1987). Glucagon-like peptide-1 7-36: a physiological incretin in man. Lancet 2, 1300–1304. 10.1016/S0140-6736(87)91194-9
    1. Kuniyoshi F. H., Trombetta I. C., Batalha L. T., Rondon M. U., Laterza M. C., Gowdak M. M., et al. . (2003). Abnormal neurovascular control during sympathoexcitation in obesity. Obes. Res. 11, 1411–1419. 10.1038/oby.2003.190
    1. Kunz I., Schorr U., Klaus S., Sharma A. M. (2000). Resting metabolic rate and substrate use in obesity hypertension. Hypertension 36, 26–32. 10.1161/01.HYP.36.1.26
    1. Lambert E. A., Rice T., Eikelis N., Straznicky N. E., Lambert G. W., Head G. A., et al. . (2014). Sympathetic activity and markers of cardiovascular risk in nondiabetic severely obese patients: the effect of the initial 10% weight loss. Am. J. Hypertens. 27, 1308–1315. 10.1093/ajh/hpu050
    1. Lambert E. A., Straznicky N. E., Dixon J. B., Lambert G. W. (2015). Should the sympathetic nervous system be a target to improve cardiometabolic risk in obesity? Am. J. Physiol. Heart Circ. Physiol. 309, H244–H258. 10.1152/ajpheart.00096.2015
    1. Lambert E., Lambert G., Ika-Sari C., Dawood T., Lee K., Chopra R., et al. . (2011). Ghrelin modulates sympathetic nervous system activity and stress response in lean and overweight men. Hypertension 58, 43–50. 10.1161/HYPERTENSIONAHA.111.171025
    1. Lambert E., Sari C. I., Dawood T., Nguyen J., McGrane M., Eikelis N., et al. . (2010). Sympathetic nervous system activity is associated with obesity-induced subclinical organ damage in young adults. Hypertension 56, 351–358. 10.1161/HYPERTENSIONAHA.110.155663
    1. Lambert E., Straznicky N., Schlaich M., Esler M., Dawood T., Hotchkin E., et al. . (2007). Differing pattern of sympathoexcitation in normal-weight and obesity-related hypertension. Hypertension 50, 862–868. 10.1161/HYPERTENSIONAHA.107.094649
    1. Landsberg L. (1986). Diet, obesity and hypertension: an hypothesis involving insulin, the sympathetic nervous system, and adaptive thermogenesis. Q. J. Med. 61, 1081–1090.
    1. Landsberg L. (2001). Insulin-mediated sympathetic stimulation: role in the pathogenesis of obesity-related hypertension (or, how insulin affects blood pressure, and why). J. Hypertens 19(3 Pt 2), 523–528. 10.1097/00004872-200103001-00001
    1. Lassmann V., Vague P., Vialettes B., Simon M. C. (1980). Low plasma levels of pancreatic polypeptide in obesity. Diabetes 29, 428–430. 10.2337/diab.29.6.428
    1. Lavin J. H., Wittert G. A., Andrews J., Yeap B., Wishart J. M., Morris H. A., et al. . (1998). Interaction of insulin, glucagon-like peptide 1, gastric inhibitory polypeptide, and appetite in response to intraduodenal carbohydrate. Am. J. Clin. Nutr. 68, 591–598.
    1. Lebron L., Chou A. J., Carrasquillo J. A. (2010). Interesting image. Unilateral F-18 FDG uptake in the neck, in patients with sympathetic denervation. Clin. Nucl. Med. 35, 899–901. 10.1097/RLU.0b013e3181f49ff8
    1. Lee H. M., Wang G., Englander E. W., Kojima M., Greeley G. H., Jr. (2002). Ghrelin, a new gastrointestinal endocrine peptide that stimulates insulin secretion: enteric distribution, ontogeny, influence of endocrine, and dietary manipulations. Endocrinology 143, 185–190. 10.1210/endo.143.1.8602
    1. le Roux C. W., Batterham R. L., Aylwin S. J., Patterson M., Borg C. M., Wynne K. J., et al. . (2006). Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology 147, 3–8. 10.1210/en.2005-0972
    1. Li Y., Owyang C. (1994). Endogenous cholecystokinin stimulates pancreatic enzyme secretion via vagal afferent pathway in rats. Gastroenterology 107, 525–531. 10.1016/0016-5085(94)90180-5
    1. Lim K., Burke S. L., Head G. A. (2013). Obesity-related hypertension and the role of insulin and leptin in high-fat-fed rabbits. Hypertension 61, 628–634. 10.1161/HYPERTENSIONAHA.111.00705
    1. Lin H. C., Taylor I. L. (2004). Release of peptide YY by fat in the proximal but not distal gut depends on an atropine-sensitive cholinergic pathway. Regul. Pept. 117, 73–76. 10.1016/j.regpep.2003.10.008
    1. Lips M. A., de Groot G. H., De Kam M., Berends F. J., Wiezer R., Van Wagensveld B. A., et al. . (2013). Autonomic nervous system activity in diabetic and healthy obese female subjects and the effect of distinct weight loss strategies. Eur. J. Endocrinol. 169, 383–390. 10.1530/EJE-13-0506
    1. Little T. J., Horowitz M., Feinle-Bisset C. (2005). Role of cholecystokinin in appetite control and body weight regulation. Obes. Rev. 6, 297–306. 10.1111/j.1467-789X.2005.00212.x
    1. Mahfoud F., Schlaich M., Kindermann I., Ukena C., Cremers B., Brandt M. C., et al. . (2011). Effect of renal sympathetic denervation on glucose metabolism in patients with resistant hypertension: a pilot study. Circulation 123, 1940–1946. 10.1161/CIRCULATIONAHA.110.991869
    1. Mano-Otagiri A., Ohata H., Iwasaki-Sekino A., Nemoto T., Shibasaki T. (2009). Ghrelin suppresses noradrenaline release in the brown adipose tissue of rats. J. Endocrinol. 201, 341–349. 10.1677/JOE-08-0374
    1. Mark A. L. (2013). Selective leptin resistance revisited. Am. J. Physiol. Regul. Integr. Comp. Physiol. 305, R566–R581. 10.1152/ajpregu.00180.2013
    1. Mark A. L., Correia M. L., Rahmouni K., Haynes W. G. (2002). Selective leptin resistance: a new concept in leptin physiology with cardiovascular implications. J. Hypertens. 20, 1245–1250. 10.1097/00004872-200207000-00001
    1. Mark A. L., Shaffer R. A., Correia M. L., Morgan D. A., Sigmund C. D., Haynes W. G. (1999). Contrasting blood pressure effects of obesity in leptin-deficient ob/ob mice and agouti yellow obese mice. J. Hypertens 17(12 Pt 2), 1949–1953. 10.1097/00004872-199917121-00026
    1. Marsh A. J., Fontes M. A., Killinger S., Pawlak D. B., Polson J. W., Dampney R. A. (2003). Cardiovascular responses evoked by leptin acting on neurons in the ventromedial and dorsomedial hypothalamus. Hypertension 42, 488–493. 10.1161/01.HYP.0000090097.22678.0A
    1. Martin-Rodriguez E., Guillen-Grima F., Marti A., Brugos-Larumbe A. (2015). Comorbidity associated with obesity in a large population: the APNA study. Obes. Res. Clin. Pract. 9, 435–447. 10.1016/j.orcp.2015.04.003
    1. Masajtis-Zagajewska A., Majer J., Nowicki M. (2010). Effect of moxonidine and amlodipine on serum YKL-40, plasma lipids and insulin sensitivity in insulin-resistant hypertensive patients-a randomized, crossover trial. Hypertens. Res. 33, 348–353. 10.1038/hr.2010.6
    1. Matsumoto T., Miyawaki T., Ue H., Kanda T., Zenji C., Moritani T. (1999). Autonomic responsiveness to acute cold exposure in obese and non-obese young women. Int. J. Obes. Relat. Metab. Disord. 23, 793–800. 10.1038/sj.ijo.0800928
    1. Matsumura K., Tsuchihashi T., Fujii K., Abe I., Iida M. (2002). Central ghrelin modulates sympathetic activity in conscious rabbits. Hypertension 40, 694–699. 10.1161/01.HYP.0000035395.51441.10
    1. Meguro T., Shimosegawa T., Kikuchi Y., Koizumi M., Toyota T. (1995). Effects of cisapride on gallbladder emptying and pancreatic polypeptide and cholecystokinin release in humans. J. Gastroenterol. 30, 237–243. 10.1007/BF02348671
    1. Messerli F. H., Sundgaard-Riise K., Reisin E., Dreslinski G., Dunn F. G., Frohlich E. (1983). Disparate cardiovascular effects of obesity and arterial hypertension. Am. J. Med. 74, 808–812. 10.1016/0002-9343(83)91071-9
    1. Miro J., Jaraba S., Mora J., Puig O., Castaner S., Rodriguez-Bel L., et al. . (2015). Vagus nerve stimulation therapy is effective and safe for startle-induced seizures. J. Neurol. Sci. 354, 124–126. 10.1016/j.jns.2015.04.048
    1. Mojsov S., Weir G. C., Habener J. F. (1987). Insulinotropin: glucagon-like peptide I (7-37) co-encoded in the glucagon gene is a potent stimulator of insulin release in the perfused rat pancreas. J. Clin. Invest. 79, 616–619. 10.1172/JCI112855
    1. Monroe M. B., Seals D. R., Shapiro L. F., Bell C., Johnson D., Parker Jones P. (2001). Direct evidence for tonic sympathetic support of resting metabolic rate in healthy adult humans. Am. J. Physiol. Endocrinol. Metab. 280, E740–E744.
    1. Moran T. H., Kinzig K. P. (2004). Gastrointestinal satiety signals II. Cholecystokinin. Am. J. Physiol. Gastrointest. Liver Physiol. 286, G183–G188. 10.1152/ajpgi.00434.2003
    1. Muscelli E., Emdin M., Natali A., Pratali L., Camastra S., Gastaldelli A., et al. . (1998). Autonomic and hemodynamic responses to insulin in lean and obese humans. J. Clin. Endocrinol. Metab. 83, 2084–2090. 10.1210/jc.83.6.2084
    1. Nakabayashi H., Nishizawa M., Nakagawa A., Takeda R., Niijima A. (1996). Vagal hepatopancreatic reflex effect evoked by intraportal appearance of tGLP-1. Am. J. Physiol. 271(5 Pt 1), E808–E813.
    1. Nannipieri M., Mari A., Anselmino M., Baldi S., Barsotti E., Guarino D., et al. . (2011). The role of beta-cell function and insulin sensitivity in the remission of type 2 diabetes after gastric bypass surgery. J. Clin. Endocrinol. Metab. 96, E1372–E1379. 10.1210/jc.2011-0446
    1. Narkiewicz K., Kato M., Pesek C. A., Somers V. K. (1999a). Human obesity is characterized by a selective potentiation of central chemoreflex sensitivity. Hypertension 33, 1153–1158. 10.1161/01.HYP.33.5.1153
    1. Narkiewicz K., Kato M., Phillips B. G., Pesek C. A., Davison D. E., Somers V. K. (1999b). Nocturnal continuous positive airway pressure decreases daytime sympathetic traffic in obstructive sleep apnea. Circulation 100, 2332–2335. 10.1161/01.CIR.100.23.2332
    1. Narkiewicz K., van de Borne P. J., Cooley R. L., Dyken M. E., Somers V. K. (1998). Sympathetic activity in obese subjects with and without obstructive sleep apnea. Circulation 98, 772–776. 10.1161/01.CIR.98.8.772
    1. Nault I., Nadreau E., Paquet C., Brassard P., Marceau P., Marceau S., et al. . (2007). Impact of bariatric surgery–induced weight loss on heart rate variability. Metab. Clin. Exp. 56, 1425–1430. 10.1016/j.metabol.2007.06.006
    1. Neary N. M., Small C. J., Bloom S. R. (2003). Gut and mind. Gut 52, 918–921. 10.1136/gut.52.7.918
    1. Negrao C. E., Trombetta I. C., Batalha L. T., Ribeiro M. M., Rondon M. U., Tinucci T., et al. . (2001). Muscle metaboreflex control is diminished in normotensive obese women. Am. J. Physiol. Heart Circ. Physiol. 281, H469–H475.
    1. Niebel W., Eysselein V. E., Singer M. V. (1987). Pancreatic polypeptide response to a meal before and after cutting the extrinsic nerves of the upper gastrointestinal tract and the pancreas in the dog. Dig. Dis. Sci. 32, 1004–1009. 10.1007/BF01297191
    1. Obici S., Rossetti L. (2003). Minireview: nutrient sensing and the regulation of insulin action and energy balance. Endocrinology 144, 5172–5178. 10.1210/en.2003-0999
    1. Obici S., Zhang B. B., Karkanias G., Rossetti L. (2002). Hypothalamic insulin signaling is required for inhibition of glucose production. Nat. Med. 8, 1376–1382. 10.1038/nm1202-798
    1. Onaga T., Zabielski R., Kato S. (2002). Multiple regulation of peptide YY secretion in the digestive tract. Peptides 23, 279–290. 10.1016/S0196-9781(01)00609-X
    1. Orskov C., Rabenhoj L., Wettergren A., Kofod H., Holst J. J. (1994). Tissue and plasma concentrations of amidated and glycine-extended glucagon-like peptide I in humans. Diabetes 43, 535–539. 10.2337/diab.43.4.535
    1. Ozata M., Ozdemir I. C., Licinio J. (1999). Human leptin deficiency caused by a missense mutation: multiple endocrine defects, decreased sympathetic tone, and immune system dysfunction indicate new targets for leptin action, greater central than peripheral resistance to the effects of leptin, and spontaneous correction of leptin-mediated defects. J. Clin. Endocrinol. Metab. 84, 3686–3695. 10.1210/jcem.84.10.5999
    1. Pandit R., Beerens S., Adan R. A. H. (2017). Role of leptin in energy expenditure: the hypothalamic perspective. Am. J. Physiol. Regul. Integr. Comp. Physiol. 312, R938–R947. 10.1152/ajpregu.00045.2016
    1. Pardo J. V., Sheikh S. A., Kuskowski M. A., Surerus-Johnson C., Hagen M. C., Lee J. T., et al. . (2007). Weight loss during chronic, cervical vagus nerve stimulation in depressed patients with obesity: an observation. Int. J. Obes. 31, 1756–1759. 10.1038/sj.ijo.0803666
    1. Parker R. M., Herzog H. (1999). Regional distribution of Y-receptor subtype mRNAs in rat brain. Eur. J. Neurosci. 11, 1431–1448. 10.1046/j.1460-9568.1999.00553.x
    1. Perugini R. A., Li Y., Rosenthal L., Gallagher-Dorval K., Kelly J. J., Czerniach D. R. (2010). Reduced heart rate variability correlates with insulin resistance but not with measures of obesity in population undergoing laparoscopic Roux-en-Y gastric bypass. Surg. Obes. Relat. Dis. 6, 237–241. 10.1016/j.soard.2009.09.012
    1. Peuker E. T., Filler T. J. (2002). The nerve supply of the human auricle. Clin. Anat. 15, 35–37. 10.1002/ca.1089
    1. Plamboeck A., Veedfald S., Deacon C. F., Hartmann B., Wettergren A., Svendsen L. B., et al. . (2013). The effect of exogenous GLP-1 on food intake is lost in male truncally vagotomized subjects with pyloroplasty. Am. J. Physiol. Gastrointest. Liver Physiol. 304, G1117–G1127. 10.1152/ajpgi.00035.2013
    1. Plum L., Schubert M., Bruning J. C. (2005). The role of insulin receptor signaling in the brain. Trends Endocrinol. Metab. 16, 59–65. 10.1016/j.tem.2005.01.008
    1. Pontiroli A. E., Merlotti C., Veronelli A., Lombardi F. (2013). Effect of weight loss on sympatho-vagal balance in subjects with grade-3 obesity: restrictive surgery versus hypocaloric diet. Acta Diabetol. 50, 843–850. 10.1007/s00592-013-0454-1
    1. Prigge W. F., Grande F. (1971). Effects of glucagon, epinephrine and insulin on in vitro lipolysis of adipose tissue from mammals and birds. Comp. Biochem. Physiol. B 39, 69–82. 10.1016/0305-0491(71)90254-9
    1. Prior L. J., Davern P. J., Burke S. L., Lim K., Armitage J. A., Head G. A. (2014). Exposure to a high-fat diet during development alters leptin and ghrelin sensitivity and elevates renal sympathetic nerve activity and arterial pressure in rabbits. Hypertension 63, 338–345. 10.1161/HYPERTENSIONAHA.113.02498
    1. Rahmouni K., Morgan D. A., Morgan G. M., Mark A. L., Haynes W. G. (2005). Role of selective leptin resistance in diet-induced obesity hypertension. Diabetes 54, 2012–2018. 10.2337/diabetes.54.7.2012
    1. Rebuffe-Scrive M. (1991). Neuroregulation of adipose tissue: molecular and hormonal mechanisms. Int. J. Obes. 15(Suppl. 2), 83–86.
    1. Rong P., Liu J., Wang L., Liu R., Fang J., Zhao J., et al. . (2016). Effect of transcutaneous auricular vagus nerve stimulation on major depressive disorder: a nonrandomized controlled pilot study. J. Affect. Disord. 195, 172–179. 10.1016/j.jad.2016.02.031
    1. Ronveaux C. C., Tome D., Raybould H. E. (2015). Glucagon-like peptide 1 interacts with ghrelin and leptin to regulate glucose metabolism and food intake through vagal afferent neuron signaling. J. Nutr. 145, 672–680. 10.3945/jn.114.206029
    1. Rosell S. (1966). Release of free fatty acids from subcutaneous adipose tissue in dogs following sympathetic nerve stimulation. Acta Physiol. Scand. 67, 343–351. 10.1111/j.1748-1716.1966.tb03320.x
    1. Rowe J. W., Young J. B., Minaker K. L., Stevens A. L., Pallotta J., Landsberg L. (1981). Effect of insulin and glucose infusions on sympathetic nervous system activity in normal man. Diabetes 30, 219–225. 10.2337/diab.30.3.219
    1. Saito M. (2013). Brown adipose tissue as a regulator of energy expenditure and body fat in humans. Diabetes Metab. J. 37, 22–29. 10.4093/dmj.2013.37.1.22
    1. Saito M., Okamatsu-Ogura Y., Matsushita M., Watanabe K., Yoneshiro T., Nio-Kobayashi J., et al. . (2009). High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58, 1526–1531. 10.2337/db09-0530
    1. Sarr M. G., Billington C. J., Brancatisano R., Brancatisano A., Toouli J., Kow L., et al. . (2012). The EMPOWER study: randomized, prospective, double-blind, multicenter trial of vagal blockade to induce weight loss in morbid obesity. Obes. Surg. 22, 1771–1782. 10.1007/s11695-012-0751-8
    1. Sartor D. M., Verberne A. J. (2002). Cholecystokinin selectively affects presympathetic vasomotor neurons and sympathetic vasomotor outflow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 282, R1174–R1184. 10.1152/ajpregu.00500.2001
    1. Sartor D. M., Verberne A. J. (2006). The sympathoinhibitory effects of systemic cholecystokinin are dependent on neurons in the caudal ventrolateral medulla in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 291, R1390–R1398. 10.1152/ajpregu.00314.2006
    1. Sartor D. M., Verberne A. J. (2008). Abdominal vagal signalling: a novel role for cholecystokinin in circulatory control? Brain Res. Rev. 59, 140–154. 10.1016/j.brainresrev.2008.07.002
    1. Satoh N., Ogawa Y., Katsuura G., Hayase M., Tsuji T., Imagawa K., et al. . (1997). The arcuate nucleus as a primary site of satiety effect of leptin in rats. Neurosci. Lett. 224, 149–152. 10.1016/S0304-3940(97)00163-8
    1. Scherer T., O'Hare J., Diggs-Andrews K., Schweiger M., Cheng B., Lindtner C., et al. . (2011). Brain insulin controls adipose tissue lipolysis and lipogenesis. Cell Metab. 13, 183–194. 10.1016/j.cmet.2011.01.008
    1. Schmidt P. T., Naslund E., Gryback P., Jacobsson H., Holst J. J., Hilsted L., et al. . (2005). A role for pancreatic polypeptide in the regulation of gastric emptying and short-term metabolic control. J. Clin. Endocrinol. Metab. 90, 5241–5246. 10.1210/jc.2004-2089
    1. Schwartz M. W., Prigeon R. L., Kahn S. E., Nicolson M., Moore J., Morawiecki A., et al. . (1997). Evidence that plasma leptin and insulin levels are associated with body adiposity via different mechanisms. Diabetes Care 20, 1476–1481. 10.2337/diacare.20.9.1476
    1. Schwartz T. W. (1983). Pancreatic polypeptide: a hormone under vagal control. Gastroenterology 85, 1411–1425.
    1. Scriba D., Aprath-Husmann I., Blum W. F., Hauner H. (2000). Catecholamines suppress leptin release from in vitro differentiated subcutaneous human adipocytes in primary culture via beta1- and beta2-adrenergic receptors. Eur. J. Endocrinol. 143, 439–445. 10.1530/eje.0.1430439
    1. Seravalle G., Colombo M., Perego P., Giardini V., Volpe M., Dell'Oro R., et al. . (2014). Long-term sympathoinhibitory effects of surgically induced weight loss in severe obese patients. Hypertension 64, 431–437. 10.1161/HYPERTENSIONAHA.113.02988
    1. Sheikh A. (2013). Direct cardiovascular effects of glucagon like peptide-1. Diabetol. Metab. Syndr. 5:47. 10.1186/1758-5996-5-47
    1. Sheikh S. P., Holst J. J., Orskov C., Ekman R., Schwartz T. W. (1989). Release of PYY from pig intestinal mucosa; luminal and neural regulation. Regul. Pept. 26, 253–266. 10.1016/0167-0115(89)90193-6
    1. Shibao C., Gamboa A., Diedrich A., Ertl A. C., Chen K. Y., Byrne D. W., et al. . (2007). Autonomic contribution to blood pressure and metabolism in obesity. Hypertension 49, 27–33. 10.1161/01.HYP.0000251679.87348.05
    1. Shikora S., Toouli J., Herrera M. F., Kulseng B., Zulewski H., Brancatisano R., et al. . (2013). Vagal blocking improves glycemic control and elevated blood pressure in obese subjects with type 2 diabetes mellitus. J. Obes. 2013:245683. 10.1155/2013/245683
    1. Shin A. C., Zheng H., Berthoud H. R. (2009). An expanded view of energy homeostasis: neural integration of metabolic, cognitive, and emotional drives to eat. Physiol. Behav. 97, 572–580. 10.1016/j.physbeh.2009.02.010
    1. Smith D. K., Sarfeh J., Howard L. (1983). Truncal vagotomy in hypothalamic obesity. Lancet 1, 1330–1331. 10.1016/S0140-6736(83)92437-6
    1. Soares L. P., Fabbro A. L., Silva A. S., Sartorelli D. S., Franco L. F., Kuhn P. C., et al. . (2015). Prevalence of metabolic syndrome in the Brazilian Xavante indigenous population. Diabetol. Metab. Syndr. 7:105. 10.1186/s13098-015-0100-x
    1. Soderlund V., Larsson S. A., Jacobsson H. (2007). Reduction of FDG uptake in brown adipose tissue in clinical patients by a single dose of propranolol. Eur. J. Nucl. Med. Mol. Imaging 34, 1018–1022. 10.1007/s00259-006-0318-9
    1. Somers V. K., Dyken M. E., Clary M. P., Abboud F. M. (1995). Sympathetic neural mechanisms in obstructive sleep apnea. J. Clin. Invest. 96, 1897–1904. 10.1172/JCI118235
    1. Sondergaard E., Gormsen L. C., Christensen M. H., Pedersen S. B., Christiansen P., Nielsen S., et al. . (2015). Chronic adrenergic stimulation induces brown adipose tissue differentiation in visceral adipose tissue. Diabet. Med. 32, e4–e8. 10.1111/dme.12595
    1. Straznicky N. E., Lambert E. A., Lambert G. W., Masuo K., Esler M. D., Nestel P. J. (2005). Effects of dietary weight loss on sympathetic activity and cardiac risk factors associated with the metabolic syndrome. J. Clin. Endocrinol. Metab. 90, 5998–6005. 10.1210/jc.2005-0961
    1. Takahashi A., Shimazu T. (1981). Hypothalamic regulation of lipid metabolism in the rat: effect of hypothalamic stimulation on lipolysis. J. Auton. Nerv. Syst. 4, 195–205. 10.1016/0165-1838(81)90044-8
    1. Tallam L. S., Stec D. E., Willis M. A., da Silva A. A., Hall J. E. (2005). Melanocortin-4 receptor-deficient mice are not hypertensive or salt-sensitive despite obesity, hyperinsulinemia, and hyperleptinemia. Hypertension 46, 326–332. 10.1161/
    1. Tentolouris N., Tsigos C., Perea D., Koukou E., Kyriaki D., Kitsou E., et al. . (2003). Differential effects of high-fat and high-carbohydrate isoenergetic meals on cardiac autonomic nervous system activity in lean and obese women. Metab. Clin. Exp. 52, 1426–1432. 10.1016/S0026-0495(03)00322-6
    1. Tonhajzerova I., Javorka M., Trunkvalterova Z., Chroma O., Javorkova J., Lazarova Z., et al. . (2008). Cardio-respiratory interaction and autonomic dysfunction in obesity. J. Physiol. Pharmacol. 59(Suppl. 6), 709–718.
    1. Track N. S. (1980). The gastrointestinal endocrine system. Can. Med. Assoc. J. 122, 287–292.
    1. Travers J. B., Travers S. P., Norgren R. (1987). Gustatory neural processing in the hindbrain. Annu. Rev. Neurosci. 10, 595–632. 10.1146/annurev.ne.10.030187.003115
    1. Trayhurn P., Duncan J. S., Rayner D. V. (1995). Acute cold-induced suppression of ob (obese) gene expression in white adipose tissue of mice: mediation by the sympathetic system. Biochem. J. 311(Pt 3), 729–733. 10.1042/bj3110729
    1. Tschop M., Wawarta R., Riepl R. L., Friedrich S., Bidlingmaier M., Landgraf R., et al. . (2001). Post-prandial decrease of circulating human ghrelin levels. J. Endocrinol. Invest. 24(6), Rc19–Rc 21. 10.1007/BF03351037
    1. Tupone D., Madden C. J., Morrison S. F. (2014). Autonomic regulation of brown adipose tissue thermogenesis in health and disease: potential clinical applications for altering BAT thermogenesis. Front. Neurosci. 8:14. 10.3389/fnins.2014.00014
    1. Turton M. D., O'Shea D., Gunn I., Beak S. A., Edwards C. M., Meeran K., et al. . (1996). A role for glucagon-like peptide-1 in the central regulation of feeding. Nature 379, 69–72. 10.1038/379069a0
    1. Val-Laillet D., Biraben A., Randuineau G., Malbert C. H. (2010). Chronic vagus nerve stimulation decreased weight gain, food consumption and sweet craving in adult obese minipigs. Appetite 55, 245–252. 10.1016/j.appet.2010.06.008
    1. Vallbo A. B., Hagbarth K. E., Wallin B. G. (2004). Microneurography: how the technique developed and its role in the investigation of the sympathetic nervous system. J. Appl. Physiol. (1985) 96, 1262–1269. 10.1152/japplphysiol.00470.2003
    1. van Baak M. A. (2001). The peripheral sympathetic nervous system in human obesity. Obes. Rev. 2, 3–14. 10.1046/j.1467-789x.2001.00010.x
    1. van der Lans A. A., Hoeks J., Brans B., Vijgen G. H., Visser M. G., Vosselman M. J., et al. . (2013). Cold acclimation recruits human brown fat and increases nonshivering thermogenesis. J. Clin. Invest. 123, 3395–3403. 10.1172/JCI68993
    1. van Marken Lichtenbelt W. D., Vanhommerig J. W., Smulders N. M., Drossaerts J. M., Kemerink G. J., Bouvy N. D., et al. . (2009). Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360, 1500–1508. 10.1056/NEJMoa0808718
    1. Ventureyra E. C. (2000). Transcutaneous vagus nerve stimulation for partial onset seizure therapy. A new concept. Childs Nerv. Syst. 16, 101–102. 10.1007/s003810050021
    1. Verdich C., Toubro S., Buemann B., Lysgard Madsen J., Juul Holst J., Astrup A. (2001). The role of postprandial releases of insulin and incretin hormones in meal-induced satiety–effect of obesity and weight reduction. Int. J. Obes. Relat. Metab. Disord. 25, 1206–1214. 10.1038/sj.ijo.0801655
    1. Vijgen G. H., Bouvy N. D., Leenen L., Rijkers K., Cornips E., Majoie M., et al. . (2013). Vagus nerve stimulation increases energy expenditure: relation to brown adipose tissue activity. PLoS ONE 8:e77221. 10.1371/journal.pone.0077221
    1. Virdis A., Lerman L. O., Regoli F., Ghiadoni L., Lerman A., Taddei S. (2016). Human ghrelin: a gastric hormone with cardiovascular properties. Curr. Pharm. Des. 22, 52–58. 10.2174/1381612822666151119144458
    1. Virtanen K. A., Lidell M. E., Orava J., Heglind M., Westergren R., Niemi T., et al. . (2009). Functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360, 1518–1525. 10.1056/NEJMoa0808949
    1. Wang Z., Yu L., Wang S., Huang B., Liao K., Saren G., et al. . (2014). Chronic intermittent low-level transcutaneous electrical stimulation of auricular branch of vagus nerve improves left ventricular remodeling in conscious dogs with healed myocardial infarction. Circ. Heart Fail. 7, 1014–1021. 10.1161/CIRCHEARTFAILURE.114.001564
    1. Wank S. A. (1995). Cholecystokinin receptors. Am. J. Physiol. 269(5 Pt 1), G628–646.
    1. Welle S. (1995). Sympathetic nervous system response to intake. Am. J. Clin. Nutr. 62(5 Suppl.), 1118s–1122s.
    1. Welle S., Schwartz R. G., Statt M. (1991). Reduced metabolic rate during beta-adrenergic blockade in humans. Metab. Clin. Exp. 40, 619–622. 10.1016/0026-0495(91)90053-Y
    1. Wettergren A., Maina P., Boesby S., Holst J. J. (1997). Glucagon-like peptide-1 7-36 amide and peptide YY have additive inhibitory effect on gastric acid secretion in man. Scand. J. Gastroenterol. 32, 552–555. 10.3109/00365529709025098
    1. Wijers S. L., Saris W. H., van Marken Lichtenbelt W. D. (2010). Cold-induced adaptive thermogenesis in lean and obese. Obesity 18, 1092–1099. 10.1038/oby.2010.74
    1. Williams D. L., Grill H. J., Cummings D. E., Kaplan J. M. (2003). Vagotomy dissociates short- and long-term controls of circulating ghrelin. Endocrinology 144, 5184–5187. 10.1210/en.2003-1059
    1. Witkowski A., Prejbisz A., Florczak E., Kadziela J., Sliwinski P., Bielen P., et al. . (2011). Effects of renal sympathetic denervation on blood pressure, sleep apnea course, and glycemic control in patients with resistant hypertension and sleep apnea. Hypertension 58, 559–565. 10.1161/HYPERTENSIONAHA.111.173799
    1. Wofford M. R., Anderson D. C., Jr., Brown C. A., Jones D. W., Miller M. E., Hall J. E. (2001). Antihypertensive effect of alpha- and beta-adrenergic blockade in obese and lean hypertensive subjects. Am. J. Hypertens 14(7 Pt 1), 694–698. 10.1016/S0895-7061(01)01293-6
    1. Woods A. J., Stock M. J. (1996). Leptin activation in hypothalamus. Nature 381:745. 10.1038/381745a0
    1. Woods S. C., Seeley R. J., Porte D., Jr., Schwartz M. W. (1998). Signals that regulate food intake and energy homeostasis. Science 280, 1378–1383. 10.1126/science.280.5368.1378
    1. Xu X., Chen D. D., Yin J., Chen J. D. (2014). Altered postprandial responses in gastric myoelectrical activity and cardiac autonomic functions in healthy obese subjects. Obes. Surg. 24, 554–560. 10.1007/s11695-013-1109-6
    1. Yang H. (2002). Central and peripheral regulation of gastric acid secretion by peptide YY. Peptides 23, 349–358. 10.1016/S0196-9781(01)00611-8
    1. Yi C. X., la Fleur S. E., Fliers E., Kalsbeek A. (2010). The role of the autonomic nervous liver innervation in the control of energy metabolism. Biochim. Biophys. Acta 1802, 416–431. 10.1016/j.bbadis.2010.01.006
    1. Yoneshiro T., Aita S., Matsushita M., Kayahara T., Kameya T., Kawai Y., et al. . (2013). Recruited brown adipose tissue as an antiobesity agent in humans. J. Clin. Invest. 123, 3404–3408. 10.1172/JCI67803
    1. Young J. B., Landsberg L. (1977). Stimulation of the sympathetic nervous system during sucrose feeding. Nature 269, 615–617. 10.1038/269615a0
    1. Zhang Y., Proenca R., Maffei M., Barone M., Leopold L., Friedman J. M. (1994). Positional cloning of the mouse obese gene and its human homologue. Nature 372, 425–432. 10.1038/372425a0

Source: PubMed

Подписаться