Design and rationale of the inferior vena CAVA and Lung UltraSound-guided therapy in Acute Heart Failure (CAVAL US-AHF Study): a randomised controlled trial

Lucrecia Maria Burgos, Rocio Baro Vila, Ailin Goyeneche, Florencia Muñoz, Ana Spaccavento, Martin Andres Fasan, Franco Ballari, Martin Vivas, Laura Riznyk, Sebastian Ghibaudo, Marcelo Trivi, Ricardo Ronderos, Juan Pablo Costabel, Fernando Botto, Mirta Diez, CAVAL US-AHF group, Lucrecia Maria Burgos, Rocio Baro Vila, Ailin Goyeneche, Florencia Muñoz, Ana Spaccavento, Martin Andres Fasan, Franco Ballari, Martin Vivas, Laura Riznyk, Sebastian Ghibaudo, Marcelo Trivi, Ricardo Ronderos, Juan Pablo Costabel, Fernando Botto, Mirta Diez, CAVAL US-AHF group

Abstract

Background: Between 25% and 30% of patients hospitalised for acute heart failure (AHF) are readmitted within 90 days after discharge, mostly due to persistent congestion on discharge. However, as the optimal evaluation of decongestion is not clearly defined, it is necessary to implement new tools to identify subclinical congestion to guide treatment.

Objective: To evaluate if inferior vena cava (IVC) and lung ultrasound (CAVAL US)-guided therapy for AHF patients reduces subclinical congestion at discharge.

Methods: CAVAL US-AHF is a single-centre, single-blind randomised controlled trial designed to evaluate if an IVC and lung ultrasound-guided healthcare strategy is superior to standard care to reduce subclinical congestion at discharge. Fifty-eight patients with AHF will be randomised using a block randomisation programme that will assign to either lung and IVC ultrasound-guided decongestion therapy ('intervention group') or clinical-guided decongestion therapy ('control group'), using a quantitative protocol and will be classified in three groups according to the level of congestion observed: none or mild, moderate or severe. The treating physicians will know the result of the test and the subsequent adjustment of treatment in response to those findings guided by a customised therapeutic algorithm. The primary endpoint is the presence of more than five B-lines and/or an increase in the diameter of the IVC, with and without collapsibility. The secondary endpoints are the composite of readmission for HF, unplanned visit for worsening HF or death at 90 days, variation of pro-B-type natriuretic peptide at discharge, length of hospital stay and diuretic dose at 90 days. Analyses will be conducted as between-group by intention to treat.

Ethics and dissemination: Ethical approval was obtained from the Institutional Review Board and registered in the PRIISA.BA platform of the Ministry of Health of the City of Buenos Aires.

Trial registration number: NCT04549701.

Keywords: Diagnostic Imaging; Heart Failure; Heart Failure, Diastolic; Heart Failure, Systolic.

Conflict of interest statement

Competing interests: None declared.

© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ.

Figures

Figure 1
Figure 1
Trial diagram. AHF, acute HF; CAVAL US, inferior vena cava and lung ultrasound; HF, heart failure.
Figure 2
Figure 2
Therapeutic algorithm. Adapted from: Mullens et al and Hollenberg et al. BP, blood pressure; CAVAL US, inferior vena cava and lung ultrasound; IV, intravenous; LCOS, low cardiac output syndrome; UO, urinary output.
Figure 3
Figure 3
CAVAL US groups. IVC, inferior vena cava; LUS, lung ultrasound.

References

    1. van Riet EES, Hoes AW, Wagenaar KP, et al. . Epidemiology of heart failure: the prevalence of heart failure and ventricular dysfunction in older adults over time. A systematic review. Eur J Heart Fail 2016;18:242–52. 10.1002/ejhf.483
    1. Savarese G, Lund LH. Global public health burden of heart failure. Card Fail Rev 2017;3:7–11. 10.15420/cfr.2016:25:2
    1. McMurray JJV, Adamopoulos S, Anker SD, et al. . Esc guidelines for the diagnosis and treatment of acute and chronic heart failure 2012: the task force for the diagnosis and treatment of acute and chronic heart failure 2012 of the European Society of cardiology. developed in collaboration with the heart failure association (HFA) of the ESC. Eur Heart J 2012;33:1787–847. 10.1093/eurheartj/ehs104
    1. Gheorghiade M, Vaduganathan M, Fonarow GC, et al. . Rehospitalization for heart failure: problems and perspectives. J Am Coll Cardiol 2013;61:391–403. 10.1016/j.jacc.2012.09.038
    1. Berkowitz R, Blank LJ, Powell SK. Strategies to reduce hospitalization in the management of heart failure. Lippincotts Case Manag 2005;10:S1???S15–17. 10.1097/00129234-200511001-00001
    1. Gracia E, Singh P, Collins S, et al. . The vulnerable phase of heart failure. Am J Ther 2018;25:e456–64. 10.1097/MJT.0000000000000794
    1. Metra M, Gheorghiade M, Bonow RO, et al. . Postdischarge assessment after a heart failure hospitalization: the next step forward. Circulation 2010;122:1782–5. 10.1161/CIRCULATIONAHA.110.982207
    1. Chun S, Tu JV, Wijeysundera HC, et al. . Lifetime analysis of hospitalizations and survival of patients newly admitted with heart failure. Circ Heart Fail 2012;5:414–21. 10.1161/CIRCHEARTFAILURE.111.964791
    1. O'Connor CM, Stough WG, Gallup DS, et al. . Demographics, clinical characteristics, and outcomes of patients hospitalized for decompensated heart failure: observations from the IMPACT-HF registry. J Card Fail 2005;11:200–5. 10.1016/j.cardfail.2004.08.160
    1. Gheorghiade M, Follath F, Ponikowski P, et al. . Assessing and grading congestion in acute heart failure: a scientific statement from the acute heart failure Committee of the heart failure association of the European Society of cardiology and endorsed by the European Society of intensive care medicine. Eur J Heart Fail 2010;12:423–33. 10.1093/eurjhf/hfq045
    1. Adams KF, Fonarow GC, Emerman CL, et al. . Characteristics and outcomes of patients hospitalized for heart failure in the United States: rationale, design, and preliminary observations from the first 100,000 cases in the acute decompensated heart failure national registry (adhere). Am Heart J 2005;149:209–16. 10.1016/j.ahj.2004.08.005
    1. Chioncel O, Mebazaa A, Maggioni AP, et al. . Acute heart failure congestion and perfusion status - impact of the clinical classification on in-hospital and long-term outcomes; insights from the ESC-EORP-HFA Heart Failure Long-Term Registry. Eur J Heart Fail 2019;21:1338–52. 10.1002/ejhf.1492
    1. Rubio-Gracia J, Demissei BG, Ter Maaten JM, et al. . Prevalence, predictors and clinical outcome of residual congestion in acute decompensated heart failure. Int J Cardiol 2018;258:185–91. 10.1016/j.ijcard.2018.01.067
    1. Yancy CW, Jessup M, Bozkurt B, et al. . 2013 ACCF/AHA guideline for the management of heart failure. Circulation 2013;128:240–327.
    1. Ponikowski P, Voors AA, Anker SD, et al. . 2016 ESC Guidelines for the diagnosis and treatment of acute and chronic heart failure: The Task Force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC)Developed with the special contribution of the Heart Failure Association (HFA) of the ESC. Eur Heart J 2016;37:2129–200. 10.1093/eurheartj/ehw128
    1. Martens P, Nijst P, Mullens W. Current approach to decongestive therapy in acute heart failure. Curr Heart Fail Rep 2015;12:367–78. 10.1007/s11897-015-0273-5
    1. Harjola V-P, Parissis J, Brunner-La Rocca H-P, et al. . Comprehensive in-hospital monitoring in acute heart failure: applications for clinical practice and future directions for research. A statement from the acute heart failure Committee of the heart failure association (HFA) of the European Society of cardiology (ESC). Eur J Heart Fail 2018;20:1081–99. 10.1002/ejhf.1204
    1. Thibodeau JT, Drazner MH. The Role of the Clinical Examination in Patients With Heart Failure. JACC: Heart Failure 2018;6:543–51. 10.1016/j.jchf.2018.04.005
    1. Narang N, Chung B, Nguyen A, et al. . Discordance between clinical assessment and invasive hemodynamics in patients with advanced heart failure. J Card Fail 2020;26:128–35. 10.1016/j.cardfail.2019.08.004
    1. Stienen S, Salah K, Moons AH, et al. . NT-proBNP (N-Terminal pro-B-Type Natriuretic Peptide)-Guided Therapy in Acute Decompensated Heart Failure. Circulation 2018;137:1671–83. 10.1161/CIRCULATIONAHA.117.029882
    1. Picano E, Pellikka PA. Ultrasound of extravascular lung water: a new standard for pulmonary congestion. Eur Heart J 2016;37:2097–104. 10.1093/eurheartj/ehw164
    1. Rivas-Lasarte M, Álvarez-García J, Fernández-Martínez J, et al. . Lung ultrasound-guided treatment in ambulatory patients with heart failure: a randomized controlled clinical trial (LUS-HF study). Eur J Heart Fail 2019;21:1605–13. 10.1002/ejhf.1604
    1. Marini C, Fragasso G, Italia L, et al. . Lung ultrasound-guided therapy reduces acute decompensation events in chronic heart failure. Heart 2020;106:1934–9. 10.1136/heartjnl-2019-316429
    1. Araiza-Garaygordobil D, Gopar-Nieto R, Martinez-Amezcua P, et al. . A randomized controlled trial of lung ultrasound-guided therapy in heart failure (CLUSTER-HF study). Am Heart J 2020;227:31–9. 10.1016/j.ahj.2020.06.003
    1. Coiro S, Rossignol P, Ambrosio G, et al. . Prognostic value of residual pulmonary congestion at discharge assessed by lung ultrasound imaging in heart failure. Eur J Heart Fail 2015;17:1172–81. 10.1002/ejhf.344
    1. Cogliati C, Casazza G, Ceriani E, et al. . Lung ultrasound and short-term prognosis in heart failure patients. Int J Cardiol 2016;218:104–8. 10.1016/j.ijcard.2016.05.010
    1. Gargani L, Pang PS, Frassi F, et al. . Persistent pulmonary congestion before discharge predicts rehospitalization in heart failure: a lung ultrasound study. Cardiovasc Ultrasound 2015;13:40. 10.1186/s12947-015-0033-4
    1. Rivas-Lasarte M, Maestro A, Fernández-Martínez J, et al. . Prevalence and prognostic impact of subclinical pulmonary congestion at discharge in patients with acute heart failure. ESC Heart Fail 2020;7:2621–8. 10.1002/ehf2.12842
    1. Beigel R, Cercek B, Luo H, et al. . Noninvasive evaluation of right atrial pressure. J Am Soc Echocardiogr 2013;26:1033–42. 10.1016/j.echo.2013.06.004
    1. Khandwalla RM, Birkeland KT, Zimmer R, et al. . Usefulness of Serial Measurements of Inferior Vena Cava Diameter by VscanTM to Identify Patients With Heart Failure at High Risk of Hospitalization. Am J Cardiol 2017;119:1631–6. 10.1016/j.amjcard.2017.02.007
    1. Pellicori P, Shah P, Cuthbert J, et al. . Prevalence, pattern and clinical relevance of ultrasound indices of congestion in outpatients with heart failure. Eur J Heart Fail 2019;21:904–16. 10.1002/ejhf.1383
    1. Laffin LJ, Patel A, Saha N, et al. . Inferior vena cava measurement by focused cardiac ultrasound in acute decompensated heart failure prevents Hospital readmissions. J Am Coll Cardiol 2014;63:A542. 10.1016/S0735-1097(14)60542-8
    1. Jobs A, Brünjes K, Katalinic A, et al. . Inferior vena cava diameter in acute decompensated heart failure as predictor of all-cause mortality. Heart Vessels 2017;32:856–64. 10.1007/s00380-017-0944-0
    1. Öhman J, Harjola V-P, Karjalainen P, et al. . Focused echocardiography and lung ultrasound protocol for guiding treatment in acute heart failure. ESC Heart Fail 2018;5:120–8. 10.1002/ehf2.12208
    1. Mullens W, Damman K, Harjola V-P, et al. . The use of diuretics in heart failure with congestion - a position statement from the Heart Failure Association of the European Society of Cardiology. Eur J Heart Fail 2019;21:137–55. 10.1002/ejhf.1369
    1. Hollenberg SM, Warner Stevenson L, Ahmad T, et al. . 2019 ACC Expert Consensus Decision Pathway on Risk Assessment, Management, and Clinical Trajectory of Patients Hospitalized With Heart Failure: A Report of the American College of Cardiology Solution Set Oversight Committee. J Am Coll Cardiol 2019;74:1966–2011. 10.1016/j.jacc.2019.08.001
    1. Frassi F, Gargani L, Tesorio P, et al. . Prognostic value of extravascular lung water assessed with ultrasound lung comets by chest sonography in patients with dyspnea and/or chest pain. J Card Fail 2007;13:830–5. 10.1016/j.cardfail.2007.07.003
    1. Rudski LG, Lai WW, Afilalo J, et al. . Guidelines for the echocardiographic assessment of the right heart in adults: a report from the American Society of echocardiography endorsed by the European association of echocardiography, a registered branch of the European Society of cardiology, and the Canadian Society of echocardiography. J Am Soc Echocardiogr 2010;23:685–713. 10.1016/j.echo.2010.05.010
    1. Volpicelli G, Elbarbary M, Blaivas M, et al. . International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med 2012;38:577–91. 10.1007/s00134-012-2513-4
    1. Lindner M, Thomas R, Claggett B, et al. . Quantification of pleural effusions on thoracic ultrasound in acute heart failure. Eur Heart J Acute Cardiovasc Care 2020;9:513–21. 10.1177/2048872620901835
    1. Picano E, Scali MC, Ciampi Q, et al. . Lung ultrasound for the cardiologist. JACC Cardiovasc Imaging 2018;11:1692–705. 10.1016/j.jcmg.2018.06.023
    1. Lala A, McNulty SE, Mentz RJ, et al. . Relief and recurrence of congestion during and after hospitalization for acute heart failure: insights from diuretic optimization strategy evaluation in acute decompensated heart failure (DOSE-AHF) and cardiorenal rescue study in acute decompensated heart failure (CARESS-HF). Circ Heart Fail 2015;8:741–8. 10.1161/CIRCHEARTFAILURE.114.001957
    1. Picano E, Scali MC. The lung water cascade in heart failure. Echocardiography 2017;34:1503–7. 10.1111/echo.13657
    1. Stevenson LW, Perloff JK. The limited reliability of physical signs for estimating hemodynamics in chronic heart failure. JAMA 1989;261:884–8. 10.1001/jama.1989.03420060100040
    1. Ambrosy AP, Pang PS, Khan S, et al. . Clinical course and predictive value of congestion during hospitalization in patients admitted for worsening signs and symptoms of heart failure with reduced ejection fraction: findings from the Everest trial. Eur Heart J 2013;34:835–43. 10.1093/eurheartj/ehs444
    1. Platz E, Jhund PS, Girerd N, et al. . Expert consensus document: reporting checklist for quantification of pulmonary congestion by lung ultrasound in heart failure. Eur J Heart Fail 2019;21:844–51. 10.1002/ejhf.1499
    1. Anderson KL, Fields JM, Panebianco NL, et al. . Inter-Rater reliability of quantifying pleural B-lines using multiple counting methods. J Ultrasound Med 2013;32:115–20. 10.7863/jum.2013.32.1.115
    1. Platz E, Pivetta E, Merz AA, et al. . Impact of device selection and clip duration on lung ultrasound assessment in patients with heart failure. Am J Emerg Med 2015;33:1552–6. 10.1016/j.ajem.2015.06.002
    1. Pivetta E, Baldassa F, Masellis S, et al. . Sources of variability in the detection of B-Lines, using lung ultrasound. Ultrasound Med Biol 2018;44:1212–6. 10.1016/j.ultrasmedbio.2018.02.018
    1. Balik M, Plasil P, Waldauf P, et al. . Ultrasound estimation of volume of pleural fluid in mechanically ventilated patients. Intensive Care Med 2006;32:318. 10.1007/s00134-005-0024-2
    1. Eibenberger KL, Dock WI, Ammann ME, et al. . Quantification of pleural effusions: sonography versus radiography. Radiology 1994;191:681–4. 10.1148/radiology.191.3.8184046
    1. Remérand F, Dellamonica J, Mao Z, et al. . Multiplane ultrasound approach to quantify pleural effusion at the bedside. Intensive Care Med 2010;36:656–64. 10.1007/s00134-010-1769-9
    1. Januzzi JL, van Kimmenade R, Lainchbury J, et al. . Nt-Probnp testing for diagnosis and short-term prognosis in acute destabilized heart failure: an international pooled analysis of 1256 patients: the International collaborative of NT-proBNP study. Eur Heart J 2006;27:330–7. 10.1093/eurheartj/ehi631
    1. Mueller C, McDonald K, de Boer RA, et al. . Heart failure association of the European Society of cardiology practical guidance on the use of natriuretic peptide concentrations. Eur J Heart Fail 2019;21:715–31. 10.1002/ejhf.1494

Source: PubMed

Подписаться