Pneumonia and pneumonia related mortality in patients with COPD treated with fixed combinations of inhaled corticosteroid and long acting β2 agonist: observational matched cohort study (PATHOS)

Christer Janson, Kjell Larsson, Karin H Lisspers, Björn Ställberg, Georgios Stratelis, Helena Goike, Leif Jörgensen, Gunnar Johansson, Christer Janson, Kjell Larsson, Karin H Lisspers, Björn Ställberg, Georgios Stratelis, Helena Goike, Leif Jörgensen, Gunnar Johansson

Abstract

Objective: To investigate the occurrence of pneumonia and pneumonia related events in patients with chronic obstructive pulmonary disease (COPD) treated with two different fixed combinations of inhaled corticosteroid/long acting β2 agonist.

Design: Observational retrospective pairwise cohort study matched (1:1) for propensity score.

Setting: Primary care medical records data linked to Swedish hospital, drug, and cause of death registry data for years 1999-2009.

Participants: Patients with COPD diagnosed by a physician and prescriptions of either budesonide/formoterol or fluticasone/salmeterol.

Main outcome measures: Yearly pneumonia event rates, admission to hospital related to pneumonia, and mortality.

Results: 9893 patients were eligible for matching (2738 in the fluticasone/salmeterol group; 7155 in the budesonide/formoterol group), yielding two matched cohorts of 2734 patients each. In these patients, 2115 (39%) had at least one recorded episode of pneumonia during the study period, with 2746 episodes recorded during 19,170 patient years of follow up. Compared with budesonide/formoterol, rate of pneumonia and admission to hospital were higher in patients treated with fluticasone/salmeterol: rate ratio 1.73 (95% confidence interval 1.57 to 1.90; P<0.001) and 1.74 (1.56 to 1.94; P<0.001), respectively. The pneumonia event rate per 100 patient years for fluticasone/salmeterol versus budesonide/formoterol was 11.0 (10.4 to 11.8) versus 6.4 (6.0 to 6.9) and the rate of admission to hospital was 7.4 (6.9 to 8.0) versus 4.3 (3.9 to 4.6). The mean duration of admissions related to pneumonia was similar for both groups, but mortality related to pneumonia was higher in the fluticasone/salmeterol group (97 deaths) than in the budesonide/formoterol group (52 deaths) (hazard ratio 1.76, 1.22 to 2.53; P=0.003). All cause mortality did not differ between the treatments (1.08, 0.93 to 1.14; P=0.59).

Conclusions: There is an intra-class difference between fixed combinations of inhaled corticosteroid/long acting β2 agonist with regard to the risk of pneumonia and pneumonia related events in the treatment of patients with COPD.

Trial registration: Clinical Trials.gov NCT01146392.

Conflict of interest statement

Competing interests: All authors have completed the ICMJE uniform disclosure form at www.icmje.org/coi_disclosure.pdf (available on request from the corresponding author) and declare: CJ has received honorariums for educational activities from AstraZeneca, GlaxoSmithKline, and Merck Sharp and Dohme. KL has served in an advisory board and/or served as a speaker and/or participated in education arranged by AstraZeneca, Boehringer Ingelheim, GlaxoSmithKline, Meda, MSD, Nycomed, Novartis, and Pfizer. KL has also received unrestricted research grants from AstraZeneca, Boehringer Ingelheim, and GlaxoSmithKline. KHL has received speaking fees from AstraZeneca, Boehringer Ingelheim, and Merck Sharp and Dohme. BS has received honorariums for educational activities from AstraZeneca, GlaxoSmithKline, and Merck Sharp and Dohme. GJ has served on an advisory board arranged by AstraZeneca and Takeda. GS, HG, and LJ are fulltime employees of AstraZeneca Nordic.

Figures

https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4790754/bin/janc009399.f1_default.jpg
Fig 1 Cumulative number of pneumonia events and admissions to hospital because of pneumonia per patient over nine years after index date
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4790754/bin/janc009399.f2_default.jpg
Fig 2 Distribution of number of pneumonia events per patient by treatment (budesonide/formoterol v fluticasone/salmeterol)
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4790754/bin/janc009399.f3_default.jpg
Fig 3 Pneumonia event rate by treatment and by disease burden (quarters based on baseline propensity scores), with number need to treat (NNT)
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4790754/bin/janc009399.f4_default.jpg
Fig 4 Fraction of patients with mortality related to pneumonia by treatment (budesonide/formoterol v fluticasone/salmeterol)
https://www.ncbi.nlm.nih.gov/pmc/articles/instance/4790754/bin/janc009399.f5_default.jpg
Fig 5 Number of patients with mortality related to pneumonia (52 patients in budesonide/formoterol cohort; 97 patients in fluticasone/salmeterol cohort) by disease burden (quarters based on propensity scores at baseline)

References

    1. Global Initiative for Chronic Obstructive Lung Disease. Global strategy for the diagnosis, management and prevention of chronic obstructive pulmonary disease. Updated 2011. .
    1. Lopez AD, Mathers CD, Ezzati M, Jamison DT, Murray CJ. Global and regional burden of disease and risk factors, 2001: systematic analysis of population health data. Lancet 2006;367:1747-57.
    1. Calverley PM, Stockley RA, Seemungal TA, Hagan G, Willits LR, Riley JH, et al. Reported pneumonia in patients with COPD: findings from the INSPIRE study. Chest 2011;139:505-12.
    1. Ewig S, Birkner N, Strauss R, Schaefer E, Pauletzki J, Bischoff H, et al. New perspectives on community-acquired pneumonia in 388 406 patients. Results from a nationwide mandatory performance measurement programme in healthcare quality. Thorax 2009;64:1062-9.
    1. Holguin F, Folch E, Redd SC, Mannino DM. Comorbidity and mortality in COPD-related hospitalizations in the United States, 1979 to 2001. Chest 2005;128:2005-11.
    1. Calverley P, Pauwels R, Vestbo J, Jones P, Pride N, Gulsvik A, et al. Combined salmeterol and fluticasone in the treatment of chronic obstructive pulmonary disease: a randomised controlled trial. Lancet 2003;361:449-56.
    1. Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, Jones PW, et al. Salmeterol and fluticasone propionate and survival in chronic obstructive pulmonary disease. N Engl J Med 2007;356:775-89.
    1. Calverley PM, Boonsawat W, Cseke Z, Zhong N, Peterson S, Olsson H. Maintenance therapy with budesonide and formoterol in chronic obstructive pulmonary disease. Eur Respir J 2003;22:912-9.
    1. Szafranski W, Cukier A, Ramirez A, Menga G, Sansores R, Nahabedian S, et al. Efficacy and safety of budesonide/formoterol in the management of chronic obstructive pulmonary disease. Eur Respir J 2003;21:74-81.
    1. Nannini LJ, Lasserson TJ, Poole P. Combined corticosteroid and long-acting beta(2)-agonist in one inhaler versus long-acting beta(2)-agonists for chronic obstructive pulmonary disease. Cochrane Database Syst Rev 2012;9:CD006829.
    1. Ernst P, Gonzalez AV, Brassard P, Suissa S. Inhaled corticosteroid use in chronic obstructive pulmonary disease and the risk of hospitalization for pneumonia. Am J Respir Crit Care Med 2007;176:162-6.
    1. Wedzicha JA, Calverley PM, Seemungal TA, Hagan G, Ansari Z, Stockley RA, et al. The prevention of chronic obstructive pulmonary disease exacerbations by salmeterol/fluticasone propionate or tiotropium bromide. Am J Respir Crit Care Med 2008;177:19-26.
    1. Jenkins CR, Jones PW, Calverley PM, Celli B, Anderson JA, Ferguson GT, et al. Efficacy of salmeterol/fluticasone propionate by GOLD stage of chronic obstructive pulmonary disease: analysis from the randomised, placebo-controlled TORCH study. Respir Res 2009;10:59.
    1. Sin DD, Tashkin D, Zhang X, Radner F, Sjobring U, Thoren A, et al. Budesonide and the risk of pneumonia: a meta-analysis of individual patient data. Lancet 2009;374:712-9.
    1. Halpin DM, Gray J, Edwards SJ, Morais J, Singh D. Budesonide/formoterol vs. salmeterol/fluticasone in COPD: a systematic review and adjusted indirect comparison of pneumonia in randomised controlled trials. Int J Clin Pract 2011;65:764-74.
    1. Eklind-Cervenka M, Benson L, Dahlstrom U, Edner M, Rosenqvist M, Lund LH. Association of candesartan vs losartan with all-cause mortality in patients with heart failure. JAMA 2011;305:175-82.
    1. Martinell M, Stalhammar J, Hallqvist J. Automated data extraction—a feasible way to construct patient registers of primary care utilization. Ups J Med Sci 2012;117:52-6.
    1. Parsons LS. Reducing bias in a propensity score matched-pair sample using greedy matching techniques. Proceedings of the Twenty-Sixth Annual SAS Users Group International Conference. Long Beach, CA, 2001.
    1. Perkins SM, Tu W, Underhill MG, Zhou XH, Murray MD. The use of propensity scores in pharmacoepidemiologic research. Pharmacoepidemiol Drug Saf 2000;9:93-101.
    1. Russell D, Stalhammar J, Bodegard J, Hasvold P, Thuresson M, Kjeldsen SE. Cardiovascular events in subgroups of patients during primary treatment of hypertension with candesartan or losartan. J Clin Hypertens (Greenwich) 2011;13:189-97.
    1. Heinze G, Juni P. An overview of the objectives of and the approaches to propensity score analyses. Eur Heart J 2011;32:1704-8.
    1. Suissa S. Number needed to treat in COPD: exacerbations versus pneumonias. Thorax 2012;68:540-3.
    1. Suissa S, Baltzan M, Kremer R, Ernst P. Inhaled and nasal corticosteroid use and the risk of fracture. Am J Respir Crit Care Med 2004;169:83-8.
    1. Spindler C, Stralin K, Eriksson L, Hjerdt-Goscinski G, Holmberg H, Lidman C, et al. Swedish guidelines on the management of community-acquired pneumonia in immunocompetent adults—Swedish Society of Infectious Diseases 2012. Scand J Infect Dis 2012;44:885-902.
    1. Vestbo J, Anderson JA, Calverley PM, Celli B, Ferguson GT, Jenkins C, et al. Bias due to withdrawal in long-term randomised trials in COPD: evidence from the TORCH study. Clin Respir J 2011;5:44-9.
    1. Crim C, Calverley PM, Anderson JA, Celli B, Ferguson GT, Jenkins C, et al. Pneumonia risk in COPD patients receiving inhaled corticosteroids alone or in combination: TORCH study results. Eur Respir J 2009;34:641-7.
    1. Ferguson GT, Anzueto A, Fei R, Emmett A, Knobil K, Kalberg C. Effect of fluticasone propionate/salmeterol (250/50 microg) or salmeterol (50 microg) on COPD exacerbations. Respir Med 2008;102:1099-108.
    1. Malo de Molina R, Mortensen EM, Restrepo MI, Copeland LA, Pugh MJ, Anzueto A. Inhaled corticosteroid use is associated with lower mortality for subjects with COPD and hospitalised with pneumonia. Eur Respir J 2010;36:751-7.
    1. Larsson K, Janson C, Lisspers K, Jørgensen L, Stratelis G, Telg G, et al. Efficacy of fixed ICS/LABA combinations in COPD—a population-based, matched-cohort study. J Int Med 2013;273:584-94.
    1. Suissa S, McGhan R, Niewoehner D, Make B. Inhaled corticosteroids in chronic obstructive pulmonary disease. Proc Am Thorac Soc 2007;4:535-42.
    1. Ek A, Larsson K, Siljerud S, Palmberg L. Fluticasone and budesonide inhibit cytokine release in human lung epithelial cells and alveolar macrophages. Allergy 1999;54:691-9.
    1. Miller-Larsson A, Jansson P, Runstrom A, Brattsand R. Prolonged airway activity and improved selectivity of budesonide possibly due to esterification. Am J Respir Crit Care Med 2000;162:1455-61.
    1. Dalby C, Polanowski T, Larsson T, Borgstrom L, Edsbacker S, Harrison TW. The bioavailability and airway clearance of the steroid component of budesonide/formoterol and salmeterol/fluticasone after inhaled administration in patients with COPD and healthy subjects: a randomized controlled trial. Respir Res 2009;10:104.
    1. Cabello H, Torres A, Celis R, El-Ebiary M, Puig de la Bellacasa J, Xaubet A, et al. Bacterial colonization of distal airways in healthy subjects and chronic lung disease: a bronchoscopic study. Eur Respir J 1997;10:1137-44.
    1. Papi A, Bellettato CM, Braccioni F, Romagnoli M, Casolari P, Caramori G, et al. Infections and airway inflammation in chronic obstructive pulmonary disease severe exacerbations. Am J Respir Crit Care Med 2006;173:1114-21.

Source: PubMed

Подписаться