Effects of high intensity interval training on exercise capacity in people with chronic pulmonary conditions: a narrative review

Abbey Sawyer, Vinicius Cavalheri, Kylie Hill, Abbey Sawyer, Vinicius Cavalheri, Kylie Hill

Abstract

Background: Exercise training is important in the management of adults with chronic pulmonary conditions. However, achieving high intensity exercise may be challenging for this clinical population. There has been clinical interest in applying interval-based training as a strategy to optimise the load that can be tolerated during exercise training. Evidence for such an approach is limited in most chronic pulmonary populations.

Main body: In this narrative review, we provide an appraisal of studies investigating whole-body high intensity interval training (HIIT) in adults with chronic obstructive pulmonary disease (COPD). This is the first review to also include studies investigating HIIT in people with conditions other than COPD. Studies undertaken in adults with a chronic pulmonary condition were reviewed when participants were randomised to receive; (i) HIIT or no exercise or, (ii) HIIT or moderate intensity continuous exercise. Data were extracted on peak rate of oxygen uptake (VO2peak; 'cardiorespiratory fitness') and maximal work rate (Wmax; 'exercise capacity').In people with COPD, two studies demonstrated between-group differences favouring HIIT compared with no exercise. There appears to be no advantage for HIIT compared to continuous exercise on these outcomes. In people with cystic fibrosis (CF), no studies have compared HIIT to no exercise and the two studies that compared HIIT to continuous exercise reported similar benefits. In people prior to resection for non-small cell lung cancer, one study demonstrated a between-group difference in favour of HIIT compared with no exercise on VO2peak. In people with asthma, one study demonstrated a between-group difference in favour of HIIT compared with no exercise on VO2peak and one that compared HIIT to continuous exercise reported similar benefits. No studies were identified non-CF bronchiectasis or interstitial lung diseases.

Conclusions: High intensity interval training increases cardiorespiratory fitness and exercise capacity when compared with no exercise and produces a similar magnitude of change as continuous exercise in people with COPD. There is a paucity of studies exploring the effects of HIIT in other chronic pulmonary conditions.

Keywords: Adults; Chronic pulmonary disease; Exercise; High intensity interval training.

Conflict of interest statement

Competing interestsThe authors declare that they have no competing interests.

© The Author(s) 2020.

Figures

Fig. 1
Fig. 1
Comparison of effect of HIIT versus continuous exercise training on maximal work rate (measured in Watts)
Fig. 2
Fig. 2
Comparison of effect of HIIT versus continuous exercise training on peak oxygen uptake (measured in L/min)

References

    1. McCarthy B, Casey D, Devane D, Murphy K, Lacasse Y. Pulmonary rehabilitation for chronic obstructive pulmonary disease. Cochrane Database Syst Rev. 2015;23(2):CD003793.
    1. Rabe KF, Hurd S, Anzueto A, Barnes PJ, Buist SA, Calverley P, Fukuchi Y, Jenkins C, Rodriguez-Roisin R, van Weel C, Zielinski J. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 2007;176(6):532–555. doi: 10.1164/rccm.200703-456SO.
    1. Radtke T, Nolan SJ, Hebestreit H, Kriemler S. Physical exercise training for cystic fibrosis. PaedResp Rev. 2016;19:42–45.
    1. Button BM, Wilson C, Dentice R, Cox NS, Middleton A, Tannenbaum E, Bishop J, Cobb R, Burton K, Wood M. Physiotherapy for cystic fibrosis in Australia and New Zealand: a clinical practice guideline. Respirology. 2016;21(4):656–667. doi: 10.1111/resp.12764.
    1. Holland A, Hill C. Physical training for interstitial lung disease. Cochrane Database Syst Rev. 2008;4:CD006322.
    1. Curtis K, Hopkinson NS. Exercise training in interstitial lung disease: lumping or splitting? Thorax. 2017;72(7):589–590. doi: 10.1136/thoraxjnl-2016-209929.
    1. Nakazawa A, Cox NS, Holland AE. Current best practice in rehabilitation in interstitial lung disease. Ther Adv Respir Dis. 2017;11(2):115–128. doi: 10.1177/1753465816676048.
    1. Carson KV, Chandratilleke MG, Picot J, Brin MP, Esterman AJ, Smith BJ. Physical training for asthma. Cochrane Database Syst Rev. 2013;9:CD001116.
    1. Cavalheri V, Tahirah F, Nonoyama M, Jenkin S, Hill K. Exercise training undertaken by people within 12 months of lung resection for non-small cell lung cancer. Cochrane Database Syst Rev. 2019;6:1–50.
    1. Peddle-McIntyre CJ, Singh F, Thomas R, Newton RU, Galvae DA, Cavalheri V. Exercise training for advanced lung cancer. Cochrane Database Syst Rev. 2019;2:1–48.
    1. Cavalheri V, Granger C. Preoperative exercise training for patients with non-small cell lung cancer. Cochrane Database Syst Rev. 2017;6:CD012020.
    1. Lee AL, Hill CJ, Cecins N, Jenkins S, McDonald CF, Burge AT, Rautela L, Stirling RG, Thompson PJ, Holland AE. The short and long term effects of exercise training in non-cystic fibrosis bronchiectasis – a randomised controlled trial. Respir Res. 2014;15(1):44.
    1. Garber CE, Blissmer B, Deschenes MR, Franklin BA, Lamonte MJ, Lee IM, et al. Quantity and quality of exercise for developing and maintaining cardiorespiratory, musculoskeletal, and neuromotor fitness in apparently healthy adults: guidance for prescribing exercise. Med Sci Sports Exerc. 2011;43(7):1334–1359. doi: 10.1249/MSS.0b013e318213fefb.
    1. Casaburi R, Porszasz J, Burns MR, Carithers ER, Chang RS, Cooper CB. Physiologic benefits of exercise training in rehabilitation of patients with severe chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1997;155(5):1541–1551. doi: 10.1164/ajrccm.155.5.9154855.
    1. Casaburi R, ZuWallack R. Pulmonary rehabilitation for management of chronic obstructive pulmonary disease. N Engl J Med. 2009;360(13):1329–1335. doi: 10.1056/NEJMct0804632.
    1. Troosters T, Casabrui R, Gosselink R, Decramer M. Pulmonary rehabilitation in chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2005;172(1):19–38.
    1. Casaburi R, Patessio A, Ioli F, Zanaboni S, Donner CF, Wasserman K. Reductions in exercise lactic acidosis and ventilation as a result of exercise training in patients with obstructive lung disease. Am Rev Respir Med. 1991;143(1):9–18. doi: 10.1164/ajrccm/143.1.9.
    1. Morris NR, Walsh J, Adams L, Alision J. Exercise training in COPD: what is it about intensity? Respirology. 2016;21(7):1185–1192. doi: 10.1111/resp.12864.
    1. McArdle WD, Katch FI, Katch VL. Essentials of exercise physiology. Baltimore: Lippincott Williams & Wilkins; 2006.
    1. Pianosi P, Leblanc J, Almudevar A. Peak oxygen uptake and mortality in children with cystic fibrosis. Thorax. 2005;60(1):50–54. doi: 10.1136/thx.2003.008102.
    1. Nixon PA, Orenstein DM, Kelsey SF, Doershuk CF. The prognostic value of exercise testing in patients with cystic fibrosis. N Engl J Med. 1992;327(25):1785–1788. doi: 10.1056/NEJM199212173272504.
    1. Camillo CA, Langer D, Osadnik CR, Pancini L, Demeyer H, Burtin C, Gosselink R, Decramer M, Janssens W, Troosters T. Survival after pulmonary rehabilitation in patients with COPD: impact of functional exercise capacity and its changes. Int J Chron Obstruct Pulmon Dis. 2016;11:2671–2679. doi: 10.2147/COPD.S113450.
    1. Ries AL, Kaplan RM, Limberg TM, Preqitt LM. Effects of pulmonary rehabilitation on physiologic and psychosocial outcomes in patients with chronic obstructive pulmonary disease. Ann Intern Med. 1995;122(11):823–832. doi: 10.7326/0003-4819-122-11-199506010-00003.
    1. Maltais F, LeBlanc P, Simard C, Jobin J, Berube C, Bruneau J, Carrier L, Beleau R. Skeletal muscle adaptation to endurance training in patients with chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 1996;154(2):442–447. doi: 10.1164/ajrccm.154.2.8756820.
    1. Szucs B, Petrekanits M, Varga J. Effectiveness of a 4-week rehabilitation program on endothelial function, blood vessel elasticity in patients with chronic obstructive pulmonary disease. J Thorac Dis. 2018;10(12):6482–6490. doi: 10.21037/jtd.2018.10.104.
    1. Gelinas JC, Lewis NC, Harper MI, Melzer B, Agar G, Rolf JD, Eves ND. Aerobic exercise training does not alter vascular structure and function in chronic obstructive pulmonary disease. Exp Physiol. 2017;102(11):1548–1560. doi: 10.1113/EP086379.
    1. Vivodtzev I, Minet C, Wuyam B, Borel JC, Vottero G, Monneret D, Baguet JP, Levy P, Pepin JL. Significant improvement in arterial stiffness after endurance training in patients with COPD. Chest. 2010;137(3):585–592. doi: 10.1378/chest.09-1437.
    1. Dowman L, Hill CJ, Holland AE. Pulmonary rehabilitation for interstitial lung disease. Cochrane Database Syst Rev. 2014;10:CD006322.
    1. Lee AL, Hill CJ, McDonald CF, Holland AE. Pulmonary rehabilitation in individuals with non-cystic fibrosis bronchiectasis: a systematic review. Arch Phys Med Rehabil. 2017;98(4):774–782. doi: 10.1016/j.apmr.2016.05.017.
    1. Vogiatzis I, Nanas S, Roussos C. Interval training as an alternative modality to continuous exercise in patients with COPD. Eur Respir J. 2002;20(1):12–19. doi: 10.1183/09031936.02.01152001.
    1. Vogiatzis I, Zakynthinos S. Factors limiting exercise tolerance in chronic lung diseases. Compr Physiol. 2012;2(3):1779–1817.
    1. Alison JA, McKeough ZJ, Leung RWM, Holland AE, Hill K, Morris NR, Jenkins S, Spencer LM, Hill CJ, Lee AL, Seale H, Cecins N, McDonald CF. Oxygen compared to air during exercise training in COPD with exercise-induced desaturation. Eur Respir J. 2019;54(5):1802429. doi: 10.1183/13993003.02429-2018.
    1. Bell EC, Cox NC, Nicole G, Glaspole I, Westall GP, Watson A, Holland AE. Supplemental oxygen and dypsnoea in interstitial lung disease: absence of evidence is not evidence of absence. Eur Respir Rev. 2017;26(145):170072. doi: 10.1183/16000617.0072-2017.
    1. Johannson KA, Pendharkar SR, Mathison K, Fell CD, Guenette JA, Kalluri M, Kolb M, Ryerson CJ. Supplemental oxygen in interstitial lung disease: an art in need of science. Ann Am Thorac Soc. 2017;14(9):1373–1377. doi: 10.1513/AnnalsATS.201702-137OI.
    1. Wshah A, Guilcher SJ, Goldstein R, Brooks D. Prevalence of osteoarthritis in individuals with COPD: a systematic review. Int J Chron Obstruct Pulmon Dis. 2018;13:1207–1216. doi: 10.2147/COPD.S158614.
    1. Eisner MD, Blanc PD, Yelin YH, Katz PP, Sanchez G, Iribarren C, Omachi TA. Influence of anxiety on health outcomes in COPD. Thorax. 2010;65(3):229–234. doi: 10.1136/thx.2009.126201.
    1. Westermann H, Choi TN, Briggs WM, CHarlson ME, Mancuso CA. Obesity and exercise habits of asthmatic patients. Ann Allergy Asthma Immunol. 2008;101(5):488–494. doi: 10.1016/S1081-1206(10)60287-6.
    1. Gruber W, Orenstein DM, Braumann KM, Beneke R. Interval exercise training in cystic fibrosis- effects on exercise capacity in severely affected adults. J Cyst Fibros. 2014;13(1):86–91. doi: 10.1016/j.jcf.2013.06.005.
    1. Beauchamp MK, Nonoyama M, Goldstein RS, Hill K, Dolmage TE, Mathur S, Brooks D. Interval versus continuous training in individuals with chronic obstructive pulmonary disease- a systematic review. Thorax. 2010;65(2):157–164. doi: 10.1136/thx.2009.123000.
    1. O'Neill C, Burgomaster K, Sanchez O, Dogra S. The acute response to interval and continuous exercise in adults with confirmed airway hyper-responsiveness. J Sci Med Sport. 2017;20(11):976–980. doi: 10.1016/j.jsams.2017.04.010.
    1. Billat LV. Interval training for performance: a scientific and empirical practice. Special recommendations for middle- and long-distance running. Part I: aerobic interval training. Sports Med. 2001;31(1):13–31. doi: 10.2165/00007256-200131010-00002.
    1. Laursen PB. Training for intense exercise performance: high-intensity or high-volume training? Scand J Med Sci Sports. 2010;20(Suppl 2):1–10. doi: 10.1111/j.1600-0838.2010.01184.x.
    1. Porszasz J, Rambod M, Hester V, Casaburi R. Sinusoidal high-intensity exercise does not elicit ventilatory limitation in chronic obstructive pulmonary disease. Exp Physiol. 2013;98(6):1102–1114. doi: 10.1113/expphysiol.2012.070375.
    1. Gibala MJ, Little J, MacDonald MJ, Hawley JA. Physiological adaptations to low-volume, high-intensity interval training in health and disease. J Physiol. 2012;590(5):1077–1084. doi: 10.1113/jphysiol.2011.224725.
    1. Burgomaster KA, Hughes SC, Heigenhauser GJ, Bradwell SN, Gibala MJ. Six sessions of sprint interval training increases muscle oxidative potential and cycle endurance capacity in humans. J Appl Physiol. 2005;98(6):1985–1990. doi: 10.1152/japplphysiol.01095.2004.
    1. Gillen JB, Martin BJ, MacInnis MJ, Skelly LE, Tarnopolsky MA, Gibala MJ. Twelve weeks of sprint interval training improves indices of cardiometabolic health similar to traditional endurance training despite a five-fold lower exercise volume and time commitment. PLoS One. 2016;11(4):1–10.
    1. Sawyer A, Cavalheri V, Wood J, Hill K. Exercise testing and exercise training within cystic fibrosis centres across Australia and New Zealand: what is considered important and what is current practice? Int Med J. 2019; [e-pub ahead of print].
    1. Perez-Bogerd S, et al. Short and long-term effects of pulmonary rehabilitation in interstitial lung diseases: a randomised controlled trial. Respir Res. 2018;19(1):182. doi: 10.1186/s12931-018-0884-y.
    1. Vainshelboim B, et al. Exercise training-based pulmonary rehabilitation program is clinically beneficial for idiopathic pulmonary fibrosis. Respiration. 2014;88(5):378–388. doi: 10.1159/000367899.
    1. Roitman JL. ACSM's guidelines for exercise testing and prescription. 9th ed. Baltimore: Lippincott Williams & Wilkins; 2013. p. 472–9.
    1. Alcazar J, Losa-Reyna J, Rodriguez Lopez C, Navarro-Cruz R, Alfaro-Acha A, Ignacio A, Garcia-Garcia RJ, Alegre LM, Guadalupe-Grau A. Effects of concurrent exercise training on muscle dysfunction and systemic oxidative stress in older people with COPD. Scand J Med Sci Sports. 2019;29:1591–1603.
    1. Louvaris Z, Spetsioti S, Kortianou EA, Vasilopoulou M, Nasis I, Kaltsakas G, Vogiatzis I. Interval training induces clinically meaningful effects in daily activity levels in COPD. Eur Respir J. 2016;48(2):567–570. doi: 10.1183/13993003.00679-2016.
    1. Arnardóttir RH, Boman G, Larsson K, Hedenstrom H, Emtner M. Interval training compared with continuous training in patients with COPD. Respir Med. 2007;101(6):1196–1204. doi: 10.1016/j.rmed.2006.11.004.
    1. Coppoolse R, Schols AM, Baarends EM, Mostert R, Akkermans MA, Janssen PP, Wouters EF. Interval versus continuous training in patients with severe COPD: a randomized clinical trial. Eur Respir J. 1999;14(2):258–263. doi: 10.1034/j.1399-3003.1999.14b04.x.
    1. Mador MJ, Krawza M, Alhajhusian A, Khan AI, Shaffer M, Kufel TJ. Interval training versus continuous training in patients with chronic obstructive pulmonary disease. J Cardiopulm Rehabil Prev. 2009;29(2):126–132. doi: 10.1097/HCR.0b013e31819a024f.
    1. Nasis I, Vogiatzis I, Stratakos G, Athanasopoulos D, Koutsoukou A, Daskalakis A, Spetsioti S, Evangelodimou A, Roussos C, Zakynthinos S. Effects of interval-load versus constant-load training on the BODE index in COPD patients. Respir Med. 2009;103:1392–1398. doi: 10.1016/j.rmed.2009.03.003.
    1. Puhan MA, Busching G, Schunermann HJ, Zaugg C, Frey M. Interval versus continuous high-intensity exercise in chronic obstructive pulmonary disease: a randomized trial. Ann Intern Med. 2006;145(11):816–825. doi: 10.7326/0003-4819-145-11-200612050-00006.
    1. Varga J, Porszasz J, Boda K, Casaburi R, Somfay A. Supervised high intensity continuous and interval training vs. self-paced training in COPD. Respir Med. 2007;101(11):2297–2304. doi: 10.1016/j.rmed.2007.06.017.
    1. Vogiatzis I, Terzis G, Nanas S, Stratakos G, Simoes DC, Georgiadou O, Zakynthinos S, Roussos C. Skeletal muscle adaptations to interval training in patients with advanced COPD. Chest. 2005;128(6):3838–3845. doi: 10.1378/chest.128.6.3838.
    1. Brønstad E, Tjonna AE, Rognmo O, Dalen H, Heggli AM, Wisloff U, Ingul CB, Steinshamn S. Aerobic exercise training improves right- and left ventricular systolic function in patients with COPD. J Chron Obstr Pulm Dis. 2013;10(3):300–306. doi: 10.3109/15412555.2012.745843.
    1. Rodriguez DA, Arbillaga A, Barberan-Garcia A, Ramirez-Sarmiento A, Torralba Y, Vilaro J, Gimeno-Santos E, Gea J, Orozco-Levi M, Roca J, Marco E. Effects of interval and continuous exercise training on autonomic cardiac function in COPD patients. Clin Respir J. 2016;10(1):83–89. doi: 10.1111/crj.12189.
    1. Elkins MR, Dwyer TJ. Interval and continuous training are similarly effective in chronic obstructive pulmonary disease. BJ Sports Med. 2011;45:155–156. doi: 10.1136/bjsm.2010.083097.
    1. Hulzebos HJ, Snieder H, van der Et J, Helders PJ, Takken T. High-intensity interval training in an adolescent with cystic fibrosis: a physiological perspective. Physiother Theory Pract. 2011;27(3):231–237. doi: 10.3109/09593985.2010.483266.
    1. DiMenna FRR, Gunaratnam C, Arad AD, GN ME. High-intensity interval training accelerates oxygen uptake kinetics and improves exercise tolerance for individuals with cystic fibrosis – a pilot study. 2019.
    1. Kaltsakas G, Anastasopoulos N, Chynkiamis N, Zeliou P, Karapatoucha V, Kotsifas K, Diamantea F, Inglezos I, Koulouris NG, Vogiatzis I. S81 Functional capacity, peripheral muscle strength, and quality of life following interval versus continuous rehabilitative exercise training in cystic fibrosis. Thorax. 2017;72:A51.1–A51.
    1. Emtner MM, Herala M, Stålenheim G. High-intensity physical training in adults with asthma: a 10-week rehabilitation program. Chest. 1996;109(2):323–330. doi: 10.1378/chest.109.2.323.
    1. Toennesen LL, Meier N, Hostrup M, Porsbjerg C, Backer V. High-intensity interval training improves maximal oxygen consumption in untrained adult asthmatics. ATS. 2016;A69:A2304.
    1. Toennesen LL, Meier N, Hostrup M, Porsbjerg C, Backer V. Feasibility of high-intensity training in asthma. Eur Clin Respir J. 2018;5(1):1468714. doi: 10.1080/20018525.2018.1468714.
    1. Aparecido da Silva R, et al. High intensity interval training increases the clinical control, aerobic fitness and decreases dyspnea in severe asthmatics. Eur Respir J. 2016;48(suppl 60):PA1560.
    1. Good J, Viana E, Burgomaster KA, Dogra S. Acute responses to sprint-interval and continuous exercise in adults with and without exercise-induced bronchoconstriction. J Sports Sci. 2019;37(2):212–220. doi: 10.1080/02640414.2018.1488520.
    1. Freeman A, Geale R, Bali S, Gove K, Cellura D, Burke H, Wallis T, Paas KHW, Staples KJ, Jack S, Grocott MPW, Wilkinson TMA. High intensity intermittent exercise training in poorly controlled asthma: preliminary clinical trial results. Thorax. 2018;73(Supp 4):A159–9.
    1. Good J, Dogra S. Subjective responses to sprint interval exercise in adults with and without exercise-induced bronchoconstriction. J Asthma. 2018;55(10):1059–1067. doi: 10.1080/02770903.2017.1391282.
    1. Vainshelboim B. Exercise training in idiopathic pulmonary fibrosis: is it of benefit? Breathe. 2016;12(2):130–138. doi: 10.1183/20734735.006916.
    1. Bajwah S, Colquitt J, Loveman E, Bausemwein C, Almond H, Oluyase A, Wells A. Interventions to improve symptoms and quality of life of patients with fibrotic interstitial lung disease: a systematic review of the literature. Eur Respir J. 2013;68(9):867–879.
    1. Wells AU, Hirani N. Interstitial lung disease guideline. Thorax. 2008;63(Suppl 5):v1–v58.
    1. Spruit MA, Singh S, Garvey C, ZuWallack R, Nici L, Rochester C, Hill K, Holland AE, et al. An official American Thoracic Society/European Respiratory Society statement: key concepts and advances in pulmonary rehabilitation. Am J Respir Crit Care Med. 2013;188(8):13–64. doi: 10.1164/rccm.201309-1634ST.
    1. Dowman L, Cox N, Morris N, Nakazawa A, Bondarenko J, Parker L, Prasad J, Glaspole I, Holland AE. Acute physiological responses to interval and continuous training in ILD. Thoracic Society of Austrlia and New Zealand Annual Scientific Meeting. Gold Coast: Wiley; 2019.
    1. Jones LW, Eves ND, Peterson BL, Garst J, Crawford J, West MJ, Mabe S, Harpole D, Kraus WE, Douglas PS. Safety and feasibility of aerobic training on cardiopulmonary function and quality of life in postsurgical nonsmall cell lung cancer patients. Cancer. 2008;113(12):3430–3439. doi: 10.1002/cncr.23967.
    1. Jones LW, Peddle CJ, Eves ND, Haykowsky MJ, Courneya KS, Mackey JR, Joy AA, Kumar V, Winton TW, Reiman T. Effects of presurgical exercise training on cardiorespiratory fitness among patients undergoing thoracic surgery for malignant lung lesions. Cancer. 2007;110(3):590–598. doi: 10.1002/cncr.22830.
    1. Licker M, Karenovics W, Diaper J, Fresard I, Triponez F, Ellenberger C, Schorer R, Kayser B, Bridevaux PO. Short-term preoperative high-intensity interval training in patients awaiting lung cancer surgery: a randomized controlled trial. J Thorac Oncol. 2017;12(2):323–333. doi: 10.1016/j.jtho.2016.09.125.
    1. Make B, Casaburi R, Leidy NK. Interpreting results from clinical trials: understanding minimal clinically important differences in COPD outcomes. COPD: J Chron Obstru Pulm Dis. 2005;2(1):1–5.

Source: PubMed

Подписаться