Association of Real-time Continuous Glucose Monitoring With Glycemic Control and Acute Metabolic Events Among Patients With Insulin-Treated Diabetes

Andrew J Karter, Melissa M Parker, Howard H Moffet, Lisa K Gilliam, Richard Dlott, Andrew J Karter, Melissa M Parker, Howard H Moffet, Lisa K Gilliam, Richard Dlott

Abstract

Importance: Continuous glucose monitoring (CGM) is recommended for patients with type 1 diabetes; observational evidence for CGM in patients with insulin-treated type 2 diabetes is lacking.

Objective: To estimate clinical outcomes of real-time CGM initiation.

Design, setting, and participants: Exploratory retrospective cohort study of changes in outcomes associated with real-time CGM initiation, estimated using a difference-in-differences analysis. A total of 41 753 participants with insulin-treated diabetes (5673 type 1; 36 080 type 2) receiving care from a Northern California integrated health care delivery system (2014-2019), being treated with insulin, self-monitoring their blood glucose levels, and having no prior CGM use were included.

Exposures: Initiation vs noninitiation of real-time CGM (reference group).

Main outcomes and measures: Ten end points measured during the 12 months before and 12 months after baseline: hemoglobin A1c (HbA1c); hypoglycemia (emergency department or hospital utilization); hyperglycemia (emergency department or hospital utilization); HbA1c levels lower than 7%, lower than 8%, and higher than 9%; 1 emergency department encounter or more for any reason; 1 hospitalization or more for any reason; and number of outpatient visits and telephone visits.

Results: The real-time CGM initiators included 3806 patients (mean age, 42.4 years [SD, 19.9 years]; 51% female; 91% type 1, 9% type 2); the noninitiators included 37 947 patients (mean age, 63.4 years [SD, 13.4 years]; 49% female; 6% type 1, 94% type 2). The prebaseline mean HbA1c was lower among real-time CGM initiators than among noninitiators, but real-time CGM initiators had higher prebaseline rates of hypoglycemia and hyperglycemia. Mean HbA1c declined among real-time CGM initiators from 8.17% to 7.76% and from 8.28% to 8.19% among noninitiators (adjusted difference-in-differences estimate, -0.40%; 95% CI, -0.48% to -0.32%; P < .001). Hypoglycemia rates declined among real-time CGM initiators from 5.1% to 3.0% and increased among noninitiators from 1.9% to 2.3% (difference-in-differences estimate, -2.7%; 95% CI, -4.4% to -1.1%; P = .001). There were also statistically significant differences in the adjusted net changes in the proportion of patients with HbA1c lower than 7% (adjusted difference-in-differences estimate, 9.6%; 95% CI, 7.1% to 12.2%; P < .001), lower than 8% (adjusted difference-in-differences estimate, 13.1%; 95% CI, 10.2% to 16.1%; P < .001), and higher than 9% (adjusted difference-in-differences estimate, -7.1%; 95% CI, -9.5% to -4.6%; P < .001) and in the number of outpatient visits (adjusted difference-in-differences estimate, -0.4; 95% CI, -0.6 to -0.2; P < .001) and telephone visits (adjusted difference-in-differences estimate, 1.1; 95% CI, 0.8 to 1.4; P < .001). Initiation of real-time CGM was not associated with statistically significant changes in rates of hyperglycemia, emergency department visits for any reason, or hospitalizations for any reason.

Conclusions and relevance: In this retrospective cohort study, insulin-treated patients with diabetes selected by physicians for real-time continuous glucose monitoring compared with noninitiators had significant improvements in hemoglobin A1c and reductions in emergency department visits and hospitalizations for hypoglycemia, but no significant change in emergency department visits or hospitalizations for hyperglycemia or for any reason. Because of the observational study design, findings may have been susceptible to selection bias.

Conflict of interest statement

Conflict of Interest Disclosures: Dr Karter reported receiving grants from Dexcom (an independent investigator award), the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), the National Institute on Aging (NIA), the National Library of Medicine, and the Patient-Centered Outcomes Research Institute. Ms Parker reported receiving grants from Dexcom Inc, the NIDDK, and the National Institute on Aging (NIA). Mr Moffet reported receiving grants from Dexcom, the NIDDK, the NIA, Kaiser Permanente Northern California Community Benefits, and the National Library of Medicine. No other disclosures were reported.

Figures

Figure 1.. Selection and Exclusion of Patients…
Figure 1.. Selection and Exclusion of Patients for This Studya
aPatients were identified as initiators of real-time continuous glucose monitoring (CGM) if they had a durable medical equipment vendor claim for CGM supplies during January 1, 2015, through December 31, 2019. Baseline for follow-up was defined by the date of the first real-time CGM claim or, for noninitiators, a randomly assigned date during the same time frame. Patients with baselines in 2019 were excluded because they lacked 12 months of follow-up prior to the end of the study.
Figure 2.. Mirrored Density Plot of Propensity…
Figure 2.. Mirrored Density Plot of Propensity Scores in the Full Cohort, Including 3806 Initiators of Real-time Continuous Glucose Monitoring and 37 947 Noninitiators, Before and After Overlap Weightinga
aPropensity scores were derived from propensity score models that included variables (eTable 1 in the Supplement) used to calculate overlap weights applied to difference-in-differences models for hemoglobin A1c (HbA1c).

Source: PubMed

Подписаться