The XN-30 hematology analyzer for rapid sensitive detection of malaria: a diagnostic accuracy study

Annelies Post, Berenger Kaboré, Isaie J Reuling, Joel Bognini, Wouter van der Heijden, Salou Diallo, Palpouguini Lompo, Basile Kam, Natacha Herssens, Kjerstin Lanke, Teun Bousema, Robert W Sauerwein, Halidou Tinto, Jan Jacobs, Quirijn de Mast, Andre J van der Ven, Annelies Post, Berenger Kaboré, Isaie J Reuling, Joel Bognini, Wouter van der Heijden, Salou Diallo, Palpouguini Lompo, Basile Kam, Natacha Herssens, Kjerstin Lanke, Teun Bousema, Robert W Sauerwein, Halidou Tinto, Jan Jacobs, Quirijn de Mast, Andre J van der Ven

Abstract

Background: Accurate and timely diagnosis of malaria is essential for disease management and surveillance. Thin and thick blood smear microscopy and malaria rapid diagnostic tests (RDTs) are standard malaria diagnostics, but both methods have limitations. The novel automated hematology analyzer XN-30 provides standard complete blood counts (CBC) as well as quantification of malaria parasitemia at the price of a CBC. This study assessed the accuracy of XN-30 for malaria detection in a controlled human malaria infection (CHMI) study and a phase 3 diagnostic accuracy study in Burkina Faso.

Methods: Sixteen healthy, malaria-naive CHMI participants were challenged with five Plasmodium falciparum-infected mosquitoes. Blood was sampled daily for XN-30, blood smear microscopy, and malaria qPCR. The accuracy study included patients aged > 3 months presenting with acute febrile illness. XN-30, microscopy, and rapid diagnostic tests (HRP-2/pLDH) were performed on site; qPCR was done in retrospect. The malaria reference standard was microscopy, and results were corrected for sub-microscopic cases.

Results: All CHMI participants became parasitemic by qPCR and XN-30 with a strong correlation for parasite density (R2 = 0.91; p < .0001). The XN-30 accurately monitored treatment and allowed detection of recrudescence. Out of 908 patients in the accuracy study, 241 had microscopic malaria (density 24-491,802 parasites/μL). The sensitivity and specificity of XN-30 compared to microscopy were 98.7% and 99.4% (PPV = 98.7%, NPV = 99.4%). Results were corrected for qPCR-confirmed sub-microscopic cases. Three microscopy-confirmed cases were not detected by XN-30. However, XN-30 detected 19/134 (14.2%) qPCR-confirmed cases missed by microscopy. Among qPCR-confirmed cases, XN-30 had a higher sensitivity (70.9% versus 66.4%; p = .0009) and similar specificity (99.6% versus 100%; p = .5) as microscopy. The accuracy of XN-30 for microscopic malaria was equal to or higher than HRP-2 and pLDH RDTs, respectively.

Conclusions: The XN-30 is a novel, automated hematology analyzer that combines standard hemocytometry with rapid, objective, and robust malaria detection and quantification, ensuring prompt treatment of malaria and malaria anemia and follow-up of treatment response.

Trial registration: Both trials were registered on clinicaltrials.gov with respective identifiers NCT02836002 (CHMI trial) and NCT02669823 (diagnostic accuracy study).

Keywords: Burkina Faso; Diagnosis; Malaria; Sensitivity; Specificity.

Conflict of interest statement

AvV and QdM have a non-restricted research grant from SYSMEX, which funded the current study. None of the other authors had any competing interest.

Figures

Fig. 1
Fig. 1
Forward sideward scatter of patient with and without malaria and gametocytes as recorded by the XN-30
Fig. 2
Fig. 2
Diagnostic performance of XN-30 in CHMI model expressed as (a) line graph and (b) scatterplot
Fig. 3
Fig. 3
Parasite density curves of participants with recrudescent infections. The parasite density treatment threshold of 5 p/uL is indicated with a grey line
Fig. 4
Fig. 4
Patient flow of prospective diagnostic validation study in Nanoro, Burkina Faso, excluding patients with incomplete data
Fig. 5
Fig. 5
ROC curves XN-30 versus malaria microscopy and qPCR
Fig. 6
Fig. 6
Correlation between parasite density of XN-30 and respectively microscopy and qPCR

References

    1. World Health Organisation . World Malaria Report 2017. 2017.
    1. World Health Organisation . A framework for malaria elimination. 2017.
    1. World Health Organisation . World Malaria Report 2016. Geneva: World Health Organization; 2016.
    1. Iqbal J, Siddique A, Jameel M, Hira PR. Persistent histidine-rich protein 2, parasite lactate dehydrogenase, and panmalarial antigen reactivity after clearance of Plasmodium falciparum monoinfection. J Clin Microbiol. 2004;42(9):4237–4241. doi: 10.1128/JCM.42.9.4237-4241.2004.
    1. McMorrow ML, Aidoo M, Kachur SP. Malaria rapid diagnostic tests in elimination settings--can they find the last parasite? Clin Microbiol Infect. 2011;17(11):1624–1631. doi: 10.1111/j.1469-0691.2011.03639.x.
    1. Tougan T, Suzuki Y, Itagaki S, Izuka M, Toya Y, Uchihashi K, Horii T. An automated haematology analyzer XN-30 distinguishes developmental stages of falciparum malaria parasite cultured in vitro. Malar J. 2018;17(1):59. doi: 10.1186/s12936-018-2208-6.
    1. Tougan T, Suzuki Y, Izuka M, Aono K, Okazaki T, Toya Y, Uchihashi K, Horii T. Application of the automated haematology analyzer XN-30 in an experimental rodent model of malaria. Malar J. 2018;17(1):165. doi: 10.1186/s12936-018-2313-6.
    1. Pillay E, Litshie M, Coetzer TL. A new era in malaria diagnosis and surveillance using an automated analyzer. Blood. 2017;130(Suppl 1):2097.
    1. Reuling IJ, van de Schans LA, Coffeng LE, Lanke K, Meerstein-Kessel L, Graumans W, van Gemert GJ, Teelen K, Siebelink-Stoter R, van de Vegte-Bolmer M, et al. A randomized feasibility trial comparing four antimalarial drug regimens to induce Plasmodium falciparum gametocytemia in the controlled human malaria infection model. eLife. 2018;7. 10.7554/eLife.31549.
    1. Derra K, Rouamba E, Kazienga A, Ouedraogo S, Tahita MC, Sorgho H, Valea I, Tinto H. Profile: Nanoro health and demographic surveillance system. Int J Epidemiol. 2012;41(5):1293–1301. doi: 10.1093/ije/dys159.
    1. Maltha J, Guiraud I, Kaboré B, Lompo P, Ley B, Bottieau E, Van Geet C, Tinto H, Jacobs J. Frequency of severe malaria and invasive bacterial infections among children admitted to a rural hospital in Burkina Faso. PLoS One. 2014;9(2):e89103. doi: 10.1371/journal.pone.0089103.
    1. World Health Organisation: Basic Malaria Microscopy - Learner's guide, second edition. ISBN 978 92 4 154782 6 (Part 1). 2010; Available from: .
    1. Hermsen CC, Telgt DS, Linders EH, van de Locht LA, Eling WM, Mensink EJ, Sauerwein RW. Detection of Plasmodium falciparum malaria parasites in vivo by real-time quantitative PCR. Mol Biochem Parasitol. 2001;118(2):247–251. doi: 10.1016/S0166-6851(01)00379-6.
    1. World Health Organisation Severe Malaria. Tropical Med Int Health. 2014;19:7–131. doi: 10.1111/tmi.12313_2.
    1. Pillay E, Khodaiji S, Bezuidenhout BC, Litshie M, Coetzer TL. Evaluation of automated malaria diagnosis using the Sysmex XN-30 analyser in a clinical setting. Malar J. 2019;18(1):15. doi: 10.1186/s12936-019-2655-8.
    1. Ochola LB, Vounatsou P, Smith T, Mabaso MLH, Newton CRJC. The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard. The Lancet Infectious Diseases. 2006;6(9):582–588. doi: 10.1016/S1473-3099(06)70579-5.
    1. Maltha J, Guiraud I, Lompo P, Kabore B, Gillet P, Van Geet C, Tinto H, Jacobs J. Accuracy of PfHRP2 versus Pf-pLDH antigen detection by malaria rapid diagnostic tests in hospitalized children in a seasonal hyperendemic malaria transmission area in Burkina Faso. Malar J. 2014;13:20. doi: 10.1186/1475-2875-13-20.
    1. Jimenez A, Rees-Channer RR, Perera R, Gamboa D, Chiodini PL, Gonzalez IJ, Mayor A, Ding XC. Analytical sensitivity of current best-in-class malaria rapid diagnostic tests. Malar J. 2017;16(1):128. doi: 10.1186/s12936-017-1780-5.
    1. Cunningham J: Update on Plasmodium falciparum HRP 2/3 gene deletions. Global Malaria Programme. 2018. Available from: .
    1. World Health Organisation: Universal access to malaria diagnostic testing – An operational manual. ISBN 978 92 4 150209 2; 2013. Available from: .
    1. Thomas J, Ayieko P, Ogero M, Gachau S, Makone B, Nyachiro W, Mbevi G, Chepkirui M, Malla L, Oliwa J, et al. Blood transfusion delay and outcome in county hospitals in Kenya. Am J Trop Med Hyg. 2017;96(2):511–517. doi: 10.4269/ajtmh.16-0735.
    1. Yoo JH, Song J, Lee KA, Sun YK, Kim YA, Park TS, Choi JR. Automated detection of malaria-associated pseudoeosinophilia and abnormal WBC scattergram by the Sysmex XE-2100 hematology analyzer: a clinical study with 1,801 patients and real-time quantitative PCR analysis in vivax malaria-endemic area. Ame J Trop Med Hyg. 2010;82(3):412–414. doi: 10.4269/ajtmh.2010.09-0560.
    1. Wernli M, Tichelli A, von Planta M, Gratwohl A, Speck B. Flow cytometric monitoring of parasitaemia during treatment of severe malaria by exchange transfusion. Eur J Haematol. 1991;46(2):121–123. doi: 10.1111/j.1600-0609.1991.tb00534.x.
    1. van Vianen PH, van Engen A, Thaithong S, van der Keur M, Tanke HJ, van der Kaay HJ, Mons B, Janse CJ. Flow cytometric screening of blood samples for malaria parasites. Cytometry. 1993;14(3):276–280. doi: 10.1002/cyto.990140307.
    1. Sharma P, Bhargava M, Sukhachev D, Datta S, Wattal C. LH750 hematology analyzers to identify malaria and dengue and distinguish them from other febrile illnesses. Int J Lab Hematol. 2014;36(1):45–55. doi: 10.1111/ijlh.12116.
    1. Huh HJ, Oh GY, Huh JW, Chae SL. Malaria detection with the Sysmex XE-2100 hematology analyzer using pseudoeosinophilia and abnormal WBC scattergram. Ann Hematol. 2008;87(9):755. doi: 10.1007/s00277-008-0486-8.
    1. Dumas C, Bienvenu AL, Girard S, Picot S, Debize G, Durand B. Automated Plasmodium detection by the Sysmex XN hematology analyzer. J Clin Pathol. 2018;71(7):594–599. doi: 10.1136/jclinpath-2017-204878.
    1. Campuzano-Zuluaga G, Hänscheid T, Grobusch MP. Automated haematology analysis to diagnose malaria. Malar J. 2010;9:346. doi: 10.1186/1475-2875-9-346.
    1. Bianco AE, Battye FL, Brown GV. Plasmodium falciparum: rapid quantification of parasitemia in fixed malaria cultures by flow cytometry. Exp Parasitol. 1986;62(2):275–282. doi: 10.1016/0014-4894(86)90032-9.
    1. Howard RJ, Battye FL, Mitchell GF. Plasmodium-infected blood cells analyzed and sorted by flow fluorimetry with the deoxyribonucleic acid binding dye 33258 Hoechst. J Histochem Cytochem. 1979;27(4):803–813. doi: 10.1177/27.4.87413.
    1. Grimberg BT. Methodology and application of flow cytometry for investigation of human malaria parasites. J Immunol Methods. 2011;367:1–2):1-16. doi: 10.1016/j.jim.2011.01.015.
    1. Hare JD. Two-color flow-cytometric analysis of the growth cycle of Plasmodium falciparum in vitro: identification of cell cycle compartments. J Histochem Cytochem. 1986;34(12):1651–1658. doi: 10.1177/34.12.2431031.
    1. Mendelow BV, Lyons C, Nhlangothi P, Tana M, Munster M, Wypkema E, Liebowitz L, Marshall L, Scott S, Coetzer TL. Automated malaria detection by depolarization of laser light. Br J Haematol. 1999;104(3):499–503. doi: 10.1046/j.1365-2141.1999.01199.x.
    1. Janse CJ, van Vianen PH, Tanke HJ, Mons B, Ponnudurai T, Overdulve JP. Plasmodium species: flow cytometry and microfluorometry assessments of DNA content and synthesis. Exp Parasitol. 1987;64(1):88–94. doi: 10.1016/0014-4894(87)90012-9.

Source: PubMed

Подписаться