Tumour PD-L1 Expression in Small-Cell Lung Cancer: A Systematic Review and Meta-Analysis

Emmanuel Acheampong, Afaf Abed, Michael Morici, Samantha Bowyer, Benhur Amanuel, Weitao Lin, Michael Millward, Elin S Gray, Emmanuel Acheampong, Afaf Abed, Michael Morici, Samantha Bowyer, Benhur Amanuel, Weitao Lin, Michael Millward, Elin S Gray

Abstract

: Antibodies against programmed death-1 (PD-1), and its ligand, (PD-L1) have been approved recently for the treatment of small-cell lung cancer (SCLC). Although there are previous reports that addressed PD-L1 detection on tumour cells in SCLC, there is no comprehensive meta-analysis on the prevalence of PD-L1 expression in SCLC. We performed a systematic search of the PubMed, Cochrane Library and EMBASE databases to assess reports on the prevalence of PD-L1 expression and the association between PD-L1 expression and overall survival (OS). This meta-analysis included 27 studies enrolling a total of 2792 patients. The pooled estimate of PD-L1 expression was 26.0% (95% CI 17.0-37.0), (22.0% after removing outlying studies). The effect size was significantly heterogeneous (I2 = 97.4, 95% CI: 95.5-98.5, p < 0.0001).Positive PD-L1 expression was a favourable prognostic factor for SCLC but not statistically significant (HR = 0.86 (95% CI (0.49-1.50), p = 0.5880; I2 = 88.7%, p < 0.0001). Begg's funnel plots and Egger's tests indicated no publication bias across included studies (p > 0.05). Overall, there is heterogeneity in the prevalence of PD-L1 expression in SCLC tumour cells across studies. This is significantly moderated by factors such as immunohistochemistry (IHC) evaluation cut-off values, and assessment of PD-L1 staining patterns as membranous and/or cytoplasmic. There is the need for large size, prospective and multicentre studies with well-defined protocols and endpoints to advance the clinical value of PD-L1 expression in SCLC.

Keywords: meta-analysis; programmed death ligand-1; small-cell lung cancer.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of identifying eligible articles.
Figure 2
Figure 2
Forest plot of studies reporting the detection rate of programmed cell death ligand-1 (PD-L1) expression in small-cell lung cancer (SCLC). The PD-L1 detection rates and 95% CI of each study are represented with a horizontal line and the square area mirrors the point estimate of each study. A random-effect model was utilised.
Figure 3
Figure 3
Leave-one-out sensitivity plot of studies reporting the prevalence of PD-L1 expression in SCLC. Each box depicts a summary of the calculated prevalence leaving out a study. The reference shows where the original summarised prevalence lies.
Figure 4
Figure 4
Forest plot of subgroup analysis of the association between immunohistochemistry (IHC) cut-off values and prevalence of PD-L1 expression. The PD-L1 detection rates and 95% CI of each study are represented with a horizontal line and the square area mirrors the effect size of each study A random-effect model was utilised.
Figure 5
Figure 5
Forest plot of subgroup analysis of the association between the assessment of PD-L1 staining pattern in membrane+/-cytoplasm and prevalence of PD-L1 expression. The PD-L1 detection rates and 95% CI of each study are represented with a horizontal line and the square area mirrors the size effect of each study.
Figure 6
Figure 6
Forest plot of subgroup analysis of the association between the type of antibody and prevalence of PD-L1 expression. The PD-L1 detection rates and 95% CI of each study are represented with a horizontal line and the square area mirrors the size effect of each study. Highlighted in red are the antibody clones from FDA approved PD-L1 assays.
Figure 7
Figure 7
Forest plots of overall survival and PD-L1 expression in SCLC tumours. The HR and 95% CI of each study is represented with a horizontal line and the square area mirrors the size effect of each study. Pooled HR and 95% CI are depicted by diamonds. A random-effect model was utilised.

References

    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2019. CA Cancer J. Clin. 2019;69:7–34. doi: 10.3322/caac.21551.
    1. Travis W.D. Update on small cell carcinoma and its differentiation from squamous cell carcinoma and other non-small cell carcinomas. Mod. Pathol. 2012;25:S18–S30. doi: 10.1038/modpathol.2011.150.
    1. Van Meerbeeck J.P., Fennell D.A., De Ruysscher D.K. Small-cell lung cancer. Lancet. 2011;378:1741–1755. doi: 10.1016/S0140-6736(11)60165-7.
    1. Lally B.E., Urbanic J.J., Blackstock A.W., Miller A.A., Perry M.C. Small Cell Lung Cancer: Have We Made Any Progress Over the Last 25 Years? Oncology. 2007;12:1096–1104. doi: 10.1634/theoncologist.12-9-1096.
    1. Farago A.F., Keane F.K. Current standards for clinical management of small cell lung cancer. Transl. Lung Cancer Res. 2018;7:69. doi: 10.21037/tlcr.2018.01.16.
    1. Pietanza M.C., Byers L.A., Minna J.D., Rudin C.M. Small Cell Lung Cancer: Will Recent Progress Lead to Improved Outcomes? Clin. Cancer Res. 2015;21:2244–2255. doi: 10.1158/1078-0432.CCR-14-2958.
    1. Jalal S.I., Lavin P., Lo G., Lebel F., Einhorn L. Carboplatin and Etoposide With or Without Palifosfamide in Untreated Extensive-Stage Small-Cell Lung Cancer: A Multicenter, Adaptive, Randomized Phase III Study (MATISSE) J. Clin. Oncol. 2017;35:2619–2623. doi: 10.1200/JCO.2016.71.7454.
    1. Gelsomino F., Rossi A., Tiseo M. MET and Small-Cell Lung Cancer. Cancers. 2014;6:2100–2115. doi: 10.3390/cancers6042100.
    1. Tiseo M., Boni L., Ambrosio F., Camerini A., Baldini E., Cinieri S., Brighenti M., Zanelli F., DeFraia E., Chiari R., et al. Italian, Multicenter, Phase III, Randomized Study of Cisplatin Plus Etoposide With or Without Bevacizumab as First-Line Treatment in Extensive-Disease Small-Cell Lung Cancer: The GOIRC-AIFA FARM6PMFJM Trial. J. Clin. Oncol. 2017;35:1281–1287. doi: 10.1200/JCO.2016.69.4844.
    1. Arriola E., Cañadas I., Arumí M., Rojo F., Rovira A., Albanell J. Genetic changes in small cell lung carcinoma. Clin. Transl. Oncol. 2008;10:189–197. doi: 10.1007/s12094-008-0181-1.
    1. Peifer M., Fernández-Cuesta L., Sos M.L., George J., Seidel D., Kasper L.H., Plenker D., Leenders F., Sun R., Zander T., et al. Integrative genome analyses identify key somatic driver mutations of small-cell lung cancer. Nat. Genet. 2012;44:1104–1110. doi: 10.1038/ng.2396.
    1. Wistuba I. Molecular genetics of small cell lung carcinoma. Semin. Oncol. 2001;28:3–13. doi: 10.1016/S0093-7754(01)90072-7.
    1. Mori N., Yokota J., Akiyama T., Sameshima Y., Okamoto A., Mizoguchi H., Toyoshima K., Sugimura T., Terada M. Variable mutations of the RB gene in small-cell lung carcinoma. Oncogene. 1990;5:1713–1717.
    1. William W.N., Glisson B.S. Novel strategies for the treatment of small-cell lung carcinoma. Nat. Rev. Clin. Oncol. 2011;8:611–619. doi: 10.1038/nrclinonc.2011.90.
    1. Spigel D.R., Socinski M.A. Rationale for Chemotherapy, Immunotherapy, and Checkpoint Blockade in SCLC: Beyond Traditional Treatment Approaches. J. Thorac. Oncol. 2013;8:587–598. doi: 10.1097/JTO.0b013e318286cf88.
    1. Pardoll D.M. The blockade of immune checkpoints in cancer immunotherapy. Nat. Rev. Cancer. 2012;12:252–264. doi: 10.1038/nrc3239.
    1. Zhang X., Schwartz J.-C.D., Guo X., Bhatia S., Cao E., Chen L., Zhang Z.-Y., Edidin M.A., Nathenson S.G., Almo S.C. Structural and functional analysis of the costimulatory receptor programmed death-1. Immunity. 2004;20:337–347. doi: 10.1016/S1074-7613(04)00051-2.
    1. Riley J.L. PD-1 signaling in primary T cells. Immunol. Rev. 2009;229:114–125. doi: 10.1111/j.1600-065X.2009.00767.x.
    1. Kazarian M., A Laird-Offringa I. Small-cell lung cancer-associated autoantibodies: Potential applications to cancer diagnosis, early detection, and therapy. Mol. Cancer. 2011;10:33. doi: 10.1186/1476-4598-10-33.
    1. Zaborowski M.P., Michalak S. Cell-Mediated Immune Responses in Paraneoplastic Neurological Syndromes. Clin. Dev. Immunol. 2013;2013:1–11. doi: 10.1155/2013/630602.
    1. Rizvi H., Sanchez-Vega F., La K., Chatila W., Jonsson P., Halpenny D., Plodkowski A., Long N., Sauter J.L., Rekhtman N., et al. Molecular Determinants of Response to Anti–Programmed Cell Death (PD)-1 and Anti–Programmed Death-Ligand 1 (PD-L1) Blockade in Patients With Non–Small-Cell Lung Cancer Profiled With Targeted Next-Generation Sequencing. J. Clin. Oncol. 2018;36:633–641. doi: 10.1200/JCO.2017.75.3384.
    1. Calvo E., López-Martín J., Bendell J., Eder J., Taylor M., Ott P., Pietanza M., Horn L., Jäger D., De Braud F., et al. 3098 Nivolumab (NIVO) monotherapy or in combination with ipilimumab (IPI) for treatment of recurrent small cell lung cancer (SCLC) Eur. J. Cancer. 2015;51:S633. doi: 10.1016/S0959-8049(16)31739-7.
    1. Ott P.A., Fernandez M.E.E., Hiret S., Kim D.-W., Moss R.A., Winser T., Yuan S., Cheng J.D., Piperdi B., Mehnert J.M. Pembrolizumab (MK-3475) in patients (pts) with extensive-stage small cell lung cancer (SCLC): Preliminary safety and efficacy results from KEYNOTE-028. J. Clin. Oncol. 2015;33:7502. doi: 10.1200/jco.2015.33.15_suppl.7502.
    1. Topalian S.L., Drake C.G., Pardoll D.M. Immune Checkpoint Blockade: A Common Denominator Approach to Cancer Therapy. Cancer Cell. 2015;27:450–461. doi: 10.1016/j.ccell.2015.03.001.
    1. Antonia S.J., A López-Martin J., Bendell J., A Ott P., Taylor M., Eder J.P., Jäger D., Pietanza M.C., Le D.T., De Braud F., et al. Nivolumab alone and nivolumab plus ipilimumab in recurrent small-cell lung cancer (CheckMate 032): A multicentre, open-label, phase 1/2 trial. Lancet Oncol. 2016;17:883–895. doi: 10.1016/S1470-2045(16)30098-5.
    1. Horn L., Mansfield A.S., Szczęsna A., Havel L., Krzakowski M., Hochmair M.J., Huemer F., Losonczy G., Johnson M.L., Nishio M., et al. First-Line Atezolizumab plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. N. Engl. J. Med. 2018;379:2220–2229. doi: 10.1056/NEJMoa1809064.
    1. Paz-Ares L., Dvorkin M., Chen Y., Reinmuth N., Hotta K., Trukhin D., Statsenko G., Hochmair M.J., Özgüroğlu M., Ji J.H., et al. Durvalumab plus platinum–etoposide versus platinum–etoposide in first-line treatment of extensive-stage small-cell lung cancer (CASPIAN): A randomised, controlled, open-label, phase 3 trial. Lancet. 2019;394:1929–1939. doi: 10.1016/S0140-6736(19)32222-6.
    1. Yu H., Batenchuk C., Badzio A., Boyle T.A., Czapiewski P., Chan D.C., Lu X., Gao D., Ellison K., Kowalewski A.A., et al. PD-L1 Expression by Two Complementary Diagnostic Assays and mRNA In Situ Hybridization in Small Cell Lung Cancer. J. Thorac. Oncol. 2017;12:110–120. doi: 10.1016/j.jtho.2016.09.002.
    1. Takada K., Toyokawa G., Okamoto T., Akamine T., Takamori S., Katsura M., Fujishita T., Shoji F., Oda Y., Maehara Y. An Immunohistochemical Analysis of PD-L1 Protein Expression in Surgically Resected Small Cell Lung Cancer Using Different Antibodies and Criteria. Anticancer Res. 2016;36:3409–3412.
    1. Miao L., Lu Y., Xu Y., Zhang G., Huang Z., Gong L., Fan Y. PD-L1 and c-MET expression and survival in patients with small cell lung cancer. Oncotarget. 2017;8:53978–53988. doi: 10.18632/oncotarget.9765.
    1. Komiya T., Madan R. PD-L1 expression in small cell lung cancer. Eur. J. Cancer. 2015;51:1853–1855. doi: 10.1016/j.ejca.2015.06.003.
    1. Schultheis A.M., Scheel A.H., Ozretić L., George J., Thomas R.K., Hagemann T., Zander T., Wolf J., Buettner R. PD-L1 expression in small cell neuroendocrine carcinomas. Eur. J. Cancer. 2015;51:421–426. doi: 10.1016/j.ejca.2014.12.006.
    1. Yasuda Y., Ozasa H., Kim Y.H. PD-L1 Expression in Small Cell Lung Cancer. J. Thorac. Oncol. 2018;13:e40–e41. doi: 10.1016/j.jtho.2017.10.013.
    1. Ishii H., Azuma K., Kawahara A., Yamada K., Imamura Y., Tokito T., Kinoshita T., Kage M., Hoshino T. Significance of Programmed Cell Death-Ligand 1 Expression and its Association with Survival in Patients with Small Cell Lung Cancer. J. Thorac. Oncol. 2015;10:426–430. doi: 10.1097/JTO.0000000000000414.
    1. McLaughlin J.K., Han G., Schalper K.A., Carvajal-Hausdorf D., Pelekanou V., Rehman J., Velcheti V., Herbst R.S., Lorusso P.M., Rimm D.L. Quantitative Assessment of the Heterogeneity of PD-L1 Expression in Non–Small-Cell Lung Cancer. JAMA Oncol. 2016;2:46–54. doi: 10.1001/jamaoncol.2015.3638.
    1. McLean A.E., Barnes D.J., Troy L. Diagnosing Lung Cancer: The Complexities of Obtaining a Tissue Diagnosis in the Era of Minimally Invasive and Personalised Medicine. J. Clin. Med. 2018;7:163. doi: 10.3390/jcm7070163.
    1. Liberati A., Altman D.G., Tetzlaff J., Mulrow C.D., Gøtzsche P.C., Ioannidis J.P., Clarke M., Devereaux P., Kleijnen J., Moher D. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: Explanation and elaboration. J. Clin. Epidemiol. 2009;62:e1–e34. doi: 10.1016/j.jclinepi.2009.06.006.
    1. Peterson J., Welch V., Losos M., Tugwell P. The Newcastle-Ottawa Scale (Nos) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Ottawa Hospital Research Institute; Ottawa, ON, Canada: 2011.
    1. Higgins J.P., Thompson S.G. Quantifying heterogeneity in a meta-analysis. Stat. Med. 2002;21:1539–1558. doi: 10.1002/sim.1186.
    1. Egger M., Smith G.D., Schneider M., Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ. 1997;315:629–634. doi: 10.1136/bmj.315.7109.629.
    1. Ready N., Owonikoko T.K., Postmus P.E., Reck M., Peters S., Pieters A., Selvaggi G., Fairchild J.P., Govindan R. CheckMate 451: A randomized, double-blind, phase III trial of nivolumab (nivo), nivo plus ipilimumab (ipi), or placebo as maintenance therapy in patients (pts) with extensive-stage disease small cell lung cancer (ED-SCLC) after first-line platinum-based doublet chemotherapy (PT-DC) J. Clin. Oncol. 2016;34:TPS8579. doi: 10.1200/jco.2016.34.15_suppl.tps8579.
    1. Horn L., Reck M., Gettinger S., Spigel D.R., Antonia S.J., Rupnow B.A., Pieters A., Selvaggi G., Fairchild J.P., Peters S. CheckMate 331: An open-label, randomized phase III trial of nivolumab versus chemotherapy in patients (pts) with relapsed small cell lung cancer (SCLC) after first-line platinum-based chemotherapy (PT-DC) J. Clin. Oncol. 2016;34:TPS8578. doi: 10.1200/JCO.2016.34.15_suppl.TPS8578.
    1. Paz-Ares L., Goldman J., Garassino M., Dvorkin M., Trukhin D., Statsenko G., Hotta K., Ji J., Hochmair M., Voitko O., et al. PD-L1 expression, patterns of progression and patient-reported outcomes (PROs) with durvalumab plus platinum-etoposide in ES-SCLC: Results from CASPIAN. Ann. Oncol. 2019;30:v928–v929. doi: 10.1093/annonc/mdz394.089.
    1. Reck M., Liu S., Mansfield A., Mok T., Scherpereel A., Reinmuth N., Garassino M., De Carpeno J., Califano R., Nishio M., et al. IMpower133: Updated overall survival (OS) analysis of first-line (1L) atezolizumab (atezo) + carboplatin + etoposide in extensive-stage SCLC (ES-SCLC) Ann. Oncol. 2019;30:v710–v711. doi: 10.1093/annonc/mdz264.
    1. Carvajal-Hausdorf D., Altan M., Velcheti V., Gettinger S.N., Herbst R.S., Rimm D.L., Schalper K.A. Expression and clinical significance of PD-L1, B7-H3, B7-H4 and TILs in human small cell lung Cancer (SCLC) J. Immunother. Cancer. 2019;7:65. doi: 10.1186/s40425-019-0540-1.
    1. Chang Y.-L., Yang C.-Y., Huang Y.-L., Wu C.-T., Yang P.-C. High PD-L1 expression is associated with stage IV disease and poorer overall survival in 186 cases of small cell lung cancers. Oncotarget. 2017;8:18021. doi: 10.18632/oncotarget.14935.
    1. Sun J.-M., Zhou W., Choi Y.-L., Choi S.-J., Kim S.E., Wang Z., Dolled-Filhart M., Emancipator K., Wu D., Weiner R., et al. Prognostic Significance of PD-L1 in Patients with Non–Small Cell Lung Cancer: A Large Cohort Study of Surgically Resected Cases. J. Thorac. Oncol. 2016;11:1003–1011. doi: 10.1016/j.jtho.2016.04.007.
    1. Inamura K., Yokouchi Y., Kobayashi M., Ninomiya H., Sakakibara R., Nishio M., Okumura S., Ishikawa Y. Relationship of tumor PD-L1 (CD274) expression with lower mortality in lung high-grade neuroendocrine tumor. Cancer Med. 2017;6:2347–2356. doi: 10.1002/cam4.1172.
    1. Tsuruoka K., Horinouchi H., Goto Y., Kanda S., Fujiwara Y., Nokihara H., Yamamoto N., Asakura K., Nakagawa K., Sakurai H., et al. PD-L1 expression in neuroendocrine tumors of the lung. Lung Cancer. 2017;108:115–120. doi: 10.1016/j.lungcan.2017.03.006.
    1. Bonanno L., Pavan A., Dieci M., Di Liso E., Schiavon M., Comacchio G., Attili I., Pasello G., Calabrese F., Rea F., et al. The role of immune microenvironment in small-cell lung cancer: Distribution of PD-L1 expression and prognostic role of FOXP3-positive tumour infiltrating lymphocytes. Eur. J. Cancer. 2018;101:191–200. doi: 10.1016/j.ejca.2018.06.023.
    1. Berghoff A.S., Ricken G., Wilhelm D., Rajky O., Widhalm G., Dieckmann K., Birner P., Bartsch R., Preusser M. Tumor infiltrating lymphocytes and PD-L1 expression in brain metastases of small cell lung cancer (SCLC) J. Neuro Oncol. 2016;130:19–29. doi: 10.1007/s11060-016-2216-8.
    1. Gadgeel S.M., Pennell N.A., Fidler M.J., Halmos B., Bonomi P., Stevenson J., Schneider B., Sukari A., Ventimiglia J., Chen W., et al. Phase II Study of Maintenance Pembrolizumab in Patients with Extensive-Stage Small Cell Lung Cancer (SCLC) J. Thorac. Oncol. 2018;13:1393–1399. doi: 10.1016/j.jtho.2018.05.002.
    1. Kim H.S., Lee J.H., Nam S.J., Ock C.-Y., Moon J.-W., Yoo C.W., Lee G.K., Han J.-Y. Association of PD-L1 Expression with Tumor-Infiltrating Immune Cells and Mutation Burden in High-Grade Neuroendocrine Carcinoma of the Lung. J. Thorac. Oncol. 2018;13:636–648. doi: 10.1016/j.jtho.2018.01.008.
    1. Wang H., Li Z., Dong B., Sun W., Yang X., Liu R., Zhou L., Huang X., Jia L., Lin D. Prognostic significance of PD-L1 expression and CD8+ T cell infiltration in pulmonary neuroendocrine tumors. Diagn. Pathol. 2018;13:30. doi: 10.1186/s13000-018-0712-1.
    1. Ichiki Y., Matsumiya H., Mori M., Kanayama M., Nabe Y., Taira A., Shinohara S., Kuwata T., Takenaka M., Hirai A., et al. Predictive factors of postoperative survival among patients with pulmonary neuroendocrine tumor. J. Thorac. Dis. 2018;10:6912–6920. doi: 10.21037/jtd.2018.11.115.
    1. Liu J., Lu Z., Wang W., Sun X. Programmed death-ligand 1 positivity can predict improved survival and a lower risk of brain metastasis in patients with resectable small cell lung cancer. Oncol. Lett. 2018;16:2373–2381. doi: 10.3892/ol.2018.8895.
    1. Chung H.C., Lopez-Martin J.A., Kao S.C.-H., Miller W.H., Ros W., Gao B., Marabelle A., Gottfried M., Zer A., Delord J.-P., et al. Phase 2 study of pembrolizumab in advanced small-cell lung cancer (SCLC): KEYNOTE-158. J. Clin. Oncol. 2018;36:8506. doi: 10.1200/JCO.2018.36.15_suppl.8506.
    1. Xu Y., Cui G., Jiang Z., Li N., Zhang X. Survival analysis with regard to PD-L1 and CD155 expression in human small cell lung cancer and a comparison with associated receptors. Oncol. Lett. 2019;17:2960–2968. doi: 10.3892/ol.2019.9910.
    1. Zhao X., Kallakury B., Chahine J.J., Hartmann D., Zhang Y., Chen Y., Zhang H., Zhang B., Wang C., Giaccone G. Surgical Resection of SCLC: Prognostic Factors and the Tumor Microenvironment. J. Thorac. Oncol. 2019;14:914–923. doi: 10.1016/j.jtho.2019.01.019.
    1. Pujol J.-L., Greillier L., Audigier-Valette C., Moro-Sibilot D., Uwer L., Hureaux J., Guisier F., Carmier D., Madelaine J., Otto J., et al. A Randomized Non-Comparative Phase II Study of Anti-Programmed Cell Death-Ligand 1 Atezolizumab or Chemotherapy as Second-Line Therapy in Patients With Small Cell Lung Cancer: Results From the IFCT-1603 Trial. J. Thorac. Oncol. 2019;14:903–913. doi: 10.1016/j.jtho.2019.01.008.
    1. Armstrong S.A., Liu S.V. Immune Checkpoint Inhibitors in Small Cell Lung Cancer: A Partially Realized Potential. Adv. Ther. 2019;36:1826–1832. doi: 10.1007/s12325-019-01008-2.
    1. Rizvi N.A., Hellmann M.D., Snyder A., Kvistborg P., Makarov V., Havel J.J., Lee W., Yuan J., Wong P., Ho T.S., et al. Mutational landscape determines sensitivity to PD-1 blockade in non–small cell lung cancer. Science. 2015;348:124–128. doi: 10.1126/science.aaa1348.
    1. Alexandrov L.B., Nik-Zainal S., Wedge D.C., Aparicio S.A., Behjati S., Biankin A.V., Bignell G.R., Bolli N., Borg A., Børresen-Dale A.-L. Signatures of mutational processes in human cancer. Nature. 2013;500:415–421. doi: 10.1038/nature12477.
    1. George J., Lim J.S., Jang S.J., Cun Y., Ozretić L., Kong G., Leenders F., Lu X., Fernández-Cuesta L., Bosco G., et al. Comprehensive genomic profiles of small cell lung cancer. Nat. Cell Biol. 2015;524:47–53. doi: 10.1038/nature14664.
    1. Chen X., Xiaoxia C., Likun H., Jun Q., Tao J., Caicun Z., Maciej C., Yuchen B., Bai Y., Hou L., et al. PD-L1 expression and its effect on clinical outcomes of EGFR-mutant NSCLC patients treated with EGFR-TKIs. Cancer Biol. Med. 2018;15:434–442. doi: 10.20892/j.issn.2095-3941.2018.0223.
    1. Cooper W.A., Tran T., Vilain R.E., Madore J., Selinger C.I., Kohonencorish M.R.J., Yip P., Yu B., O’Toole S.A., McCaughan B.C., et al. PD-L1 expression is a favorable prognostic factor in early stage non-small cell carcinoma. Lung Cancer. 2015;89:181–188. doi: 10.1016/j.lungcan.2015.05.007.
    1. Schmidt L.H., Kümmel A., Görlich D., Mohr M., Bröckling S., Mikesch J.H., Grünewald I., Marra A., Schultheis A.M., Wardelmann E. PD-1 and PD-L1 expression in NSCLC indicate a favorable prognosis in defined subgroups. PLoS ONE. 2015;10:e0136023. doi: 10.1371/journal.pone.0136023.
    1. Lantuejoul S., Damotte D., Hofman V., Adam J. Programmed death ligand 1 immunohistochemistry in non-small cell lung carcinoma. J. Thorac. Dis. 2019;11(Suppl. 1):S89–S101. doi: 10.21037/jtd.2018.12.103.
    1. Scheel A.H., Dietel M., Heukamp L.C., Jöhrens K., Kirchner T., Reu S., Rüschoff J., Schildhaus H.-U., Schirmacher P., Tiemann M., et al. Harmonized PD-L1 immunohistochemistry for pulmonary squamous-cell and adenocarcinomas. Mod. Pathol. 2016;29:1165–1172. doi: 10.1038/modpathol.2016.117.
    1. Rimm D.L., Han G., Taube J.M., Yi E.S., Bridge J.A., Flieder D.B., Homer R., West W.W., Wu H., Roden A.C., et al. A Prospective, Multi-institutional, Pathologist-Based Assessment of 4 Immunohistochemistry Assays for PD-L1 Expression in Non–Small Cell Lung Cancer. JAMA Oncol. 2017;3:1051–1058. doi: 10.1001/jamaoncol.2017.0013.
    1. Hirsch F.R., McElhinny A., Stanforth D., Ranger-Moore J., Jansson M., Kulangara K., Richardson W., Towne P., Hanks D., Vennapusa B., et al. PD-L1 Immunohistochemistry Assays for Lung Cancer: Results from Phase 1 of the Blueprint PD-L1 IHC Assay Comparison Project. J. Thorac. Oncol. 2017;12:208–222. doi: 10.1016/j.jtho.2016.11.2228.
    1. Tsao M.S., Kerr K.M., Kockx M., Beasley M.-B., Borczuk A.C., Botling J., Bubendorf L., Chirieac L., Chen G., Chou T.-Y., et al. PD-L1 immunohistochemistry comparability study in real-life clinical samples: Results of Blueprint phase 2 project. J. Thorac. Oncol. 2018;13:1302–1311. doi: 10.1016/j.jtho.2018.05.013.
    1. Herbst R.S., Baas P., Kim D.-W., Felip E., Pérez-Gracia J.L., Joo-Hang K., Molina J., Kim J.-H., Arvis C.D., Ahn M.-J., et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): A randomised controlled trial. Lancet. 2016;387:1540–1550. doi: 10.1016/S0140-6736(15)01281-7.
    1. Fehrenbacher L., Spira A., Ballinger M., Kowanetz M., Vansteenkiste J., Mazieres J., Park K., Smith D., Artal-Cortes A., Lewanski C. Atezolizumab versus docetaxel for patients with previously treated non-small-cell lung cancer (POPLAR): A multicentre, open-label, phase 2 randomised controlled trial. Lancet. 2016;387:1837–1846. doi: 10.1016/S0140-6736(16)00587-0.
    1. Phillips T., Simmons P., Inzunza H.D., Cogswell J., Novotny J., Taylor C., Zhang X. Development of an Automated PD-L1 Immunohistochemistry (IHC) Assay for Non–Small Cell Lung Cancer. Appl. Immunohistochem. Mol. Morphol. 2015;23:541–549. doi: 10.1097/PAI.0000000000000256.
    1. Rebelatto M.C., Midha A., Mistry A., Sabalos C., Schechter N., Li X., Jin X., Steele K.E., Robbins P.B., Blake-Haskins J.A., et al. Development of a programmed cell death ligand-1 immunohistochemical assay validated for analysis of non-small cell lung cancer and head and neck squamous cell carcinoma. Diagn. Pathol. 2016;11:1–14. doi: 10.1186/s13000-016-0545-8.
    1. Brahmer J.R., Reckamp K.L., Baas P., Crinò L., Eberhardt W.E., Poddubskaya E., Antonia S., Pluzanski A., Vokes E.E., Holgado E., et al. Nivolumab versus Docetaxel in Advanced Squamous-Cell Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015;373:123–135. doi: 10.1056/NEJMoa1504627.
    1. Borghaei H., Paz-Ares L., Horn L., Spigel D.R., Steins M., Ready N.E., Chow L.Q., Vokes E.E., Felip E., Holgado E., et al. Nivolumab versus Docetaxel in Advanced Nonsquamous Non–Small-Cell Lung Cancer. N. Engl. J. Med. 2015;373:1627–1639. doi: 10.1056/NEJMoa1507643.
    1. Wu P., Wu D., Li L., Chai Y., Huang J. PD-L1 and Survival in Solid Tumors: A Meta-Analysis. PLoS ONE. 2015;10:e0131403. doi: 10.1371/journal.pone.0131403.
    1. Pan Z.-K., Ye F., Wu X., An H.-X., Wu J.-X. Clinicopathological and prognostic significance of programmed cell death ligand1 (PD-L1) expression in patients with non-small cell lung cancer: A meta-analysis. J. Thorac. Dis. 2015;7:462.
    1. Wang A., Wang H., Liu Y., Zhao M., Zhang H., Lu Z., Fang Y., Chen X., Liu G. The prognostic value of PD-L1 expression for non-small cell lung cancer patients: A meta-analysis. Eur. J. Surg. Oncol. EJSO. 2015;41:450–456. doi: 10.1016/j.ejso.2015.01.020.
    1. Ota K., Azuma K., Kawahara A., Hattori S., Iwama E., Tanizaki J., Harada T., Matsumoto K., Takayama K., Takamori S. Induction of PD-L1 expression by the EML4–ALK oncoprotein and downstream signaling pathways in non-small cell lung cancer. Clin. Cancer Res. 2015;21:4014–4021. doi: 10.1158/1078-0432.CCR-15-0016.
    1. Zhang M., Li G., Wang Y., Wang Y., Zhao S., Haihong P., Zhao H. PD-L1 expression in lung cancer and its correlation with driver mutations: A meta-analysis. Sci. Rep. 2017;7:1–10. doi: 10.1038/s41598-017-10925-7.
    1. Killian J.K., Walker R.L., Suuriniemi M., Jones L., Scurci S., Singh P., Cornelison R., Harmon S., Boisvert N., Zhu J., et al. Archival fine-needle aspiration cytopathology (FNAC) samples: Untapped resource for clinical molecular profiling. J. Mol. Diagn. 2010;12:739–745. doi: 10.2353/jmoldx.2010.090238.
    1. Coley S.M., Crapanzano J.P., Saqi A. FNA, core biopsy, or both for the diagnosis of lung carcinoma: Obtaining sufficient tissue for a specific diagnosis and molecular testing. Cancer Cytopathol. 2015;123:318–326. doi: 10.1002/cncy.21527.
    1. Bettegowda C., Sausen M., Leary R.J., Kinde I., Wang Y., Agrawal N., Bartlett B.R., Wang H., Luber B., Alani R.M. Detection of circulating tumor DNA in early-and late-stage human malignancies. Sci. Transl. Med. 2014;6 doi: 10.1126/scitranslmed.3007094.
    1. Malapelle U., Pisapia P., Rocco D., Smeraglio R., Di Spirito M., Bellevicine C., Troncone G. Next generation sequencing techniques in liquid biopsy: Focus on non-small cell lung cancer patients. Transl. Lung Cancer Res. 2016;5:505–510. doi: 10.21037/tlcr.2016.10.08.
    1. Hodgkinson C.L., Morrow C.J., Li Y., Metcalf R.L., Rothwell D.G., Trapani F., Polanski R., Burt D.J., Simpson K.L., Morris K., et al. Tumorigenicity and genetic profiling of circulating tumor cells in small-cell lung cancer. Nat. Med. 2014;20:897–903. doi: 10.1038/nm.3600.
    1. Hamilton G., Moser D., Hochmair M.J. Metastasis: Circulating Tumor Cells in Small Cell Lung Cancer. Trends Cancer. 2016;2:159–160. doi: 10.1016/j.trecan.2016.02.006.
    1. Acheampong E., Spencer I., Lin W., Ziman M., Millward M., Gray E.S. Is the Blood an Alternative for Programmed Cell Death Ligand 1 Assessment in Non-Small Cell Lung Cancer? Cancers. 2019;11:920. doi: 10.3390/cancers11070920.
    1. Boffa D., Graf R.P., Salazar M.C., Hoag J., Lu D., Krupa R., Louw J., Dugan L., Wang Y., Landers M., et al. Cellular Expression of PD-L1 in the Peripheral Blood of Lung Cancer Patients is Associated with Worse Survival. Cancer Epidemiol. Biomark. Prev. 2017;26:1139–1145. doi: 10.1158/1055-9965.EPI-17-0120.
    1. Guibert N., Delaunay M., Lusque A., Boubekeur N., Rouquette I., Clermont E., Mourlanette J., Gouin S., Dormoy I., Favre G., et al. PD-L1 expression in circulating tumor cells of advanced non-small cell lung cancer patients treated with nivolumab. Lung Cancer. 2018;120:108–112. doi: 10.1016/j.lungcan.2018.04.001.
    1. Ilie M., Szafer-Glusman E., Hofman V., Chamorey E., Lalvée S., Selva E., Leroy S., Marquette C.-H., Kowanetz M., Hedge P., et al. Detection of PD-L1 in circulating tumor cells and white blood cells from patients with advanced non-small-cell lung cancer. Ann. Oncol. 2018;29:193–199. doi: 10.1093/annonc/mdx636.

Source: PubMed

Подписаться